Skip to main content

Organic Ionic Liquids: Ultimate Green Solvents in Organic Synthesis

  • Chapter
  • First Online:
Green Solvents II

Abstract

Over the years, ionic liquids have gained significant attention in organic synthesis and other areas of chemistry as environmentally benign solvents. Unlike traditional solvents, ionic liquids offer several advantages such as being nonvolatile, noncorrosive, immiscible in organic solvents, easily stored and handled, producing less hazardous waste, and easily recovered in terms of materials during the reaction work-up. Their role in enhancing reaction rates and selectivity is well documented in the literature. Ionic liquids have proved to be an important alternative over traditional solvents in a variety of synthetic transformations. In this account, we highlight some of the advancements over the last decade in the development of ionic liquids as solvents in organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welton T (1999) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  2. Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248:2459–2477

    Article  CAS  Google Scholar 

  3. Roger RD, Sheddon KR (2002) Ionic liquids: industrial applications for green chemistry. American Chemical Society, Washington, DC

    Book  Google Scholar 

  4. Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  5. Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci 405–422

    Google Scholar 

  6. Appleby D, Hussey CL, Seldon KR, Turp JE (1986) Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes. Nature 323:614–616

    Article  CAS  Google Scholar 

  7. Chum HL, Koch VR, Miller LL, Osteryoung RA (1975) Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J Am Chem Soc 97:3264–3265

    Article  CAS  Google Scholar 

  8. Gale RJ, Gilbert B, Osteryoung RA (1978) Raman spectra of molten aluminum chloride: 1-butylpyridinium chloride systems at ambient temperatures. Inorg Chem 17:2728–2729

    Article  CAS  Google Scholar 

  9. Robinson J, Osteryoung RA (1979) An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride. J Am Chem Soc 101:323–327

    Article  CAS  Google Scholar 

  10. Hurley FH, Wier TP (1951) Electrodeposition of metals from fused quaternary ammonium salts. J Electrochem Soc 98:203–206

    Article  CAS  Google Scholar 

  11. Hussey CL (1988) Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry. Pure Appl Chem 60:1763–1772

    Article  CAS  Google Scholar 

  12. Swain CG, Ohno A, Roe DK, Brown R, Maugh T (1967) Tetrahexylammonium benzoate, a liquid salt at 25° a solvent for kinetics or electrochemistry. J Am Chem Soc 89:2648–2649

    Article  CAS  Google Scholar 

  13. Olivier-Bourbigou H, Magna L (2002) Ionic liquids: perspectives for organic and catalytic reactions. J Mol Catal A 182–183:419–437

    Google Scholar 

  14. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 2399–2407

    Article  Google Scholar 

  15. Song CE (2004) Enantioselective chemo- and bio-catalysis in ionic liquids. Chem Commun 1033–1043

    Article  Google Scholar 

  16. Wasserscheid P, Keim W (2000) Ionic liquids – new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789

    Article  CAS  Google Scholar 

  17. Jain N, Kumar A, Chauhan S, Chauhan SMS (2005) Chemical and biochemical transformations in ionic liquids. Tetrahedron 61:1015–1060

    Article  CAS  Google Scholar 

  18. Rogers RD, Seddon KR (2003) Ionic liquids as green solvents: progress and prospects. ACS Symposium Series, Washington, DC

    Book  Google Scholar 

  19. Busi S, Lahtinen M, Karna M, Valkonen J, Kolehmainen E, Rissanen K (2006) Synthesis, characterization and thermal properties of nine quaternary dialkyldiaralkylammonium chlorides. J Mol Struct 787:18–30

    Article  CAS  Google Scholar 

  20. Pagni RM (1987) Organic and organometallic reactions in molten salts and related melts. Adv Molten Salt Chem 6:211–346

    CAS  Google Scholar 

  21. Lee S (2006) Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem Commun 1049–1063

    Article  Google Scholar 

  22. Ennis E, Handy ST (2007) The chemistry of the C-2 position of imidazolium room temperature ionic liquids. Curr Org Synth 4:381–389

    Article  CAS  Google Scholar 

  23. Dupont J, Spencer J (2004) On the noninnocent nature of 1,3-dialkylimidazolium ionic liquids. Angew Chem Int Ed 43:5296–5297

    Article  CAS  Google Scholar 

  24. Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3691

    Article  CAS  Google Scholar 

  25. Zhang X, Fan X, Niu H, Wang J (2003) An ionic liquid as a recyclable medium for the preparation of α-α’-bis (susbstituted benzylidene)cycloalkanones catalyzed by FeCl3·6H2O. Green Chem 5:267–269

    Article  CAS  Google Scholar 

  26. Furton KG, Morales R (1991) Effect of anion chain length on the solvent properties of liquid tetrabutylammonium alkylsulfonate salts studied by gas–liquid chromatography. Anal Chim Acta 246:171–179

    Article  CAS  Google Scholar 

  27. Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 18:275–297

    Article  CAS  Google Scholar 

  28. Johnson KE, Hussey CL (2007) Liquid salts: a brief introduction. Electrochem Soc Trans 16:37

    CAS  Google Scholar 

  29. Seddon KR (1998) In: Wendt H (ed) Molten salt chemistry and technology: Proceedings of 5th international conference on molten salt chemistry and technology, vols 5–6, Dresden, Germany, Trans Tech Publications, Zurich

    Google Scholar 

  30. Hussey CL, Scheffler TB, Wilkes JS, Fannin AA (1986) Chloroaluminate equilibria in the aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid. J Electrochem Soc 133:1389–1391

    Article  CAS  Google Scholar 

  31. Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 2133–2140

    Article  Google Scholar 

  32. Gordon CM, Holbrey JD, Kennedy AR, Seddon KR (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mater Chem 8:2627–2636

    Article  CAS  Google Scholar 

  33. Chan BKM, Chang NH, Grimmett RM (1977) The synthesis and thermolysis of imidazole quaternary salts. Aust J Chem 30:2005–2013

    Article  CAS  Google Scholar 

  34. Dyson PJ, Grossel MC, Srinivasan N, Vine T, Welton T, Williams DJ, White AJP, Zigras T (1997) Organometallic synthesis in ambient temperature chloroaluminate(III) ionic liquids. Ligand exchange reactions of ferrocene. J Chem Soc Dalton Trans 34653469

    Google Scholar 

  35. Wilkes JS, Zaworotko MJ (1990) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 965–967

    Google Scholar 

  36. Fuller J, Carlin RT, De Long HC, Haworth D (1994) Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. J Chem Soc Chem Commun 299–300

    Google Scholar 

  37. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  CAS  Google Scholar 

  38. Ford WT, Hauri RJ, Hart DJ (1973) Syntheses and properties of molten tetraalkylammonium tetraalkylborides. J Org Chem 38:3916–3918

    Article  CAS  Google Scholar 

  39. Poole SK, Shetty PH, Poole CF (1989) Chromatographic and spectroscopic studies of the solvent properties of a new series of room-temperature liquid tetraalkylammonium sulfonates. Anal Chim Acta 218:241–264

    Article  CAS  Google Scholar 

  40. Bolkan SA, Yoke JT (1986) Room temperature fused salts based on copper(I) chloride-1-methyl-3-ethylimidazolium chloride mixtures. J Chem Eng Data 31:194–197

    Article  CAS  Google Scholar 

  41. Zhu J, Bienaymé H (2004) Multicomponent reactions. Wiley-VCH, Weinheim

    Google Scholar 

  42. Vilotijevic I, Jamison TF (2007) Epoxide-opening cascade promoted by water. Science 317:1189–1192

    Article  CAS  Google Scholar 

  43. Yadav JS, Reddy BVS, Shubashree S, Sadashiv K, Naidu JJ (2004) Ionic liquids-promoted multicomponent reaction: green approach for highly substituted 2-aminofuran derivatives. Synthesis 2376–2380

    Article  Google Scholar 

  44. Ye F, Alper H (2007) Ionic-liquid-promoted palladium-catalyzed multicomponent cyclocarbonylation of o-iodoanilines and allenes to form methylene-2,3-dihydro-1H-quinolin-4-ones. J Org Chem 72:3218–3222

    Article  CAS  Google Scholar 

  45. Ranu BC, Jana R, Sowmiah S (2007) An improved procedure for the three-component synthesis of highly substituted pyridines using ionic liquid. J Org Chem 72:3152–3154

    Article  CAS  Google Scholar 

  46. Tiwari S, Khupse N, Kumar A (2008) Intramolecular Diels–Alder reaction in ionic liquids: effect of ion-specific solvent friction. J Org Chem 73:9075–9083

    Article  CAS  Google Scholar 

  47. Song CE, Shim WH, Roh EJ, Lee S, Choi JH (2001) Ionic liquids as powerful media in scandium triflate catalyzed Diels–Alder reactions: significant rate acceleration, selectivity improvement and easy recycling of catalyst. Chem Commun 1122–1123

    Article  Google Scholar 

  48. Aitken SG, Abell AD (2005) Olefin metathesis: catalyst development, microwave catalysis, and domino applications. Aust J Chem 58:3–13

    Article  CAS  Google Scholar 

  49. Deiters A, Martin SF (2004) Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem Rev 104:2199–2238

    Article  CAS  Google Scholar 

  50. La DS, Alexander JB, Cefalo DR, Graf DD, Hoveyda AH, Schrock RR (1998) Mo-catalyzed asymmetric synthesis of dihydrofurans. Catalytic kinetic resolution and enantioselective desymmetrization through ring-closing metathesis. J Am Chem Soc 120:9720–9721

    Article  CAS  Google Scholar 

  51. Trnka TM, Grubbs RH (2001) The development of L2X2Ru:CHR olefin metathesis catalysts: an organometallic success story. Acc Chem Res 34:18–29

    Article  CAS  Google Scholar 

  52. Buijsman RC, van Vuuren E, Sterrenburg JG (2001) Ruthenium-catalyzed olefin metathesis in ionic liquids. Org Lett 3:3785–3787

    Article  CAS  Google Scholar 

  53. Audic N, Clavier H, Mauduit M, Guillemin JC (2003) An ionic liquid-supported ruthenium carbene complex: a robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids. J Am Chem Soc 125:9248–49

    Article  CAS  Google Scholar 

  54. Wakamatsu H, Saito Y, Masubuchi M, Fujita R (2008) Synthesis of imidazolium-tagged ruthenium carbene complex: remarkable activity and reusability in regard to olefin metathesis in ionic liquids. Synlett 1805–1808

    Article  Google Scholar 

  55. Sarma R, Prajapati D (2008) Ionic liquid; an efficient recyclable system for the synthesis of 2,4-disubstituted quinolines via Meyer–Schuster rearrangement. Synlett 3001–3005

    Google Scholar 

  56. Yavari I, Kowsari E (2008) Task-specific basic ionic liquid: a reusable and green catalyst for one-pot synthesis of highly functionalized pyrroles in aqueous media. Synlett 897–899

    Article  Google Scholar 

  57. Su C, Chen ZC, Zheng QG (2003) Organic reactions in ionic liquids: Knoevenagel condensation catalyzed by ethylenediammonium diacetate. Synthesis 555–559

    Google Scholar 

  58. Tseng MC, Liang YM, Chu YH (2005) Synthesis of fused tetrahydro-β-carbolinequinoxalinones in 1-n-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([bdmim][Tf2N]) and 1-n-butyl-2,3-dimethylimidazolium perfluorobutylsulfonate ([bdmim][PFBuSO3]) ionic liquids. Tetrahedron Lett 46:6131–6136

    Article  CAS  Google Scholar 

  59. Balogh M, László P (1993) Organic chemistry using clays. Springer, Berlin

    Google Scholar 

  60. Li A, Li T, Ding T (1997) Montmorillonite K-10 and KSF as remarkable acetylation catalysts. Chem Commun 1389–1390

    Article  Google Scholar 

  61. Portela-Cubillo F, Scott JS, Walton JC (2009) Microwave-promoted syntheses of quinazolines and dihydroquinazolines from 2-aminoarylalkanone O-phenyl oximes. J Org Chem 74:4934–3942

    Article  CAS  Google Scholar 

  62. Likhanova NV, Veloz MA, Höpfl H, Matias DJ, Reyes-Cruz VE, Olivares O, Martínez-Palou R (2007) Microwave-assisted synthesis of 2-(2-pyridyl)azoles. Study of their corrosion inhibiting properties. J Heterocyclic Chem 44:145–153

    Article  CAS  Google Scholar 

  63. Sarda SR, Pathan MY, Paike VV, Pachmase PR, Jadhav WN, Pawar RP (2006) A facile synthesis of flavones using recyclable ionic liquid under microwave irradiation. Arkivoc XVI:43–48

    Google Scholar 

  64. Pegot B, Vo-Thanh G, Gori D, Loupy AT (2004) First application of chiral ionic liquids in asymmetric Baylis–Hillman reaction. Tetrahedron Lett 45:6425–6428

    Article  CAS  Google Scholar 

  65. Gausepohl R, Buskens P, Kleinen J, Bruckmann A, Lahmann CW, Klankermayer J, Leitner W (2006) Highly enantioselective aza-Baylis–Hillman reaction in a chiral reaction medium. Angew Chem Int Ed 45:3689–3692

    Article  CAS  Google Scholar 

  66. Ni B, Zhang Q, Headley AD (2006) Design and synthesis of pyridinium chiral ionic liquids tethered to a urea functionality. J Org Chem 71:9857–9860

    Article  CAS  Google Scholar 

  67. Toukoniitty B, Mikkola JP, Eränen K, Salmi T, Murzin DY (2005) Esterification of propionic acid under microwave irradiation over an ion-exchange resin. Catal Today 100:431–435

    Article  CAS  Google Scholar 

  68. Yoshino T, Imori S, Togo H (2006) Efficient esterification of carboxylic acids and phosphonic acids with trialkyl orthoacetate in ionic liquid. Tetrahedron 62:1309–1317

    Article  CAS  Google Scholar 

  69. McNulty J, Cyck J, Larichev V, Capretta A, Robertson A (2004) Phosphonium salt catalyzed Henry nitroaldol reactions. Lett Org Chem 1:137–139

    Article  CAS  Google Scholar 

  70. Zhu A, Jiang T, Han B, Huang J, Zhang J, Ma X (2006) Study on guanidine-based task-specific ionic liquids as catalysts for direct aldol reactions without solvent. New J Chem 30:736–740

    Article  CAS  Google Scholar 

  71. Dyson PJ, Geldbrach T, Moro F, Taeschler C, Zhao D (2003) In: Rogers RD, Seddon KR (eds) Ionic liquids IIIB: fundamentals, progress, challenges and opportunities, ACS Symposium Series 902, p 322, Washington, DC. ISBN 0-8412-3894-4

    Google Scholar 

  72. Taylor R (1990) Electrophilic aromatic substitution. Wiley, Chichester

    Google Scholar 

  73. Repichet S, Le Roux C, Cubac J (1999) Bismuth(III) halides: remarkable doping agents for triflic acid in the catalytic sulfonylation of arenes. Tetrahedron Lett 40:9233–9234

    Article  CAS  Google Scholar 

  74. Xie H, Zhang S, Duan H (2004) An ionic liquid based on a cyclic guanidinium cation is an efficient medium for the selective oxidation of benzyl alcohols. Tetrahedron Lett 45:2013–2015

    Article  CAS  Google Scholar 

  75. Yamada R, Takemoto Y (2002) OsO4-Catalyzed dihydroxylation of olefins in ionic liquid [emim]BF4: a recoverable and reusable osmium. Tetrahedron Lett 43:6849–6851

    Article  Google Scholar 

  76. Song CE, Jung D, Roh EJ, Lee SG, Chi DY (2002) Osmium tetroxide-(QN)2PHAL in an ionic liquid: a highly efficient and recyclable catalyst system for asymmetric dihydroxylation of olefins. Chem Commun 3038–3039

    Article  Google Scholar 

  77. Handy ST, Zhang X (2001) Organic synthesis in ionic liquids: the Stille coupling. Org Lett 3:233–236

    Article  CAS  Google Scholar 

  78. Li S, Lin Y, Xie H, Zhang S, Xu J (2006) Bronsted guanidine acid–base ionic liquids: novel reaction media for the palladium-catalyzed heck reaction. Org Lett 8:391–392

    Article  CAS  Google Scholar 

  79. Liu Q, Janssen MHA, Rantwijk FV, Sheldon RA (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem 7:39–42

    Article  CAS  Google Scholar 

  80. Rantwijk FV, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785

    Article  Google Scholar 

Download references

Acknowledgments

Financial support provided by the Radiology Department of Brigham and Women’s Hospital and Georgia Southern University (MAS) is highly acknowledged. We thank Ms. Kimberly Lawson at Radiology Department of Brigham and Women’s Hospital for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed Abid Shaikh or Xudong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shaikh, M.A., Huang, X. (2012). Organic Ionic Liquids: Ultimate Green Solvents in Organic Synthesis. In: Mohammad, A., Inamuddin, D. (eds) Green Solvents II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2891-2_17

Download citation

Publish with us

Policies and ethics