Skip to main content

Corrosion initiation and propagation in cracked concrete – a literature review

  • Conference paper
  • First Online:
Advances in Modeling Concrete Service Life

Part of the book series: RILEM Bookseries ((RILEM,volume 3))

Abstract

The major degradation mechanism in civil engineering concrete structures is corrosion of reinforcement due to chloride penetration. Corrosion reduces serviceability and safety due to cracking and spalling of concrete and loss of steel cross section. Recently, service life design has moved from prescriptive performance based. The current approach aims at postponing initiation of corrosion until the end of the required service life with a predetermined reliability, based on simplified modelling of transport in uncracked concrete and testing of laboratory samples for chloride diffusion. Real structures under service load contain cracks and execution defects. Cracks are fast transport routes for chloride, but the effect is mitigated by poorly known mechanisms such as self-healing and crack blocking. Current models do not cover the effect of cracks, voids and compaction defects in concrete on chloride transport and corrosion initiation, rendering them less robust than desired. A project is carried out aimed at modelling the influence of cracks on the initiation and propagation of reinforcement corrosion. As the first phase, a literature review was made, which is reported in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. fib, (2006), Model Code for Service Life Design, fib Bulletin 34, Model Code, 116 pages, ISBN 978-2-88394-074-1.

    Google Scholar 

  2. Bouwmeester, W.J. and Schlangen, E., (2008), In: Tailor made concrete structures, JC Walraven & D Stoelhorst (Eds.), Taylor & Francis, London, 65–70.

    Google Scholar 

  3. Otieno, M.B., Alexander, M.G. and Beushausen, H.D., (2010), Mag Concrete Res, vol. 62, n.6, pp. 393–404.

    Article  Google Scholar 

  4. François R., Arliguie, G., (1998), J Mater Civil Eng, vol. 10, n. 1, pp. 14–20.

    Article  Google Scholar 

  5. Mohammed T.U., Otsuki N., Hisada M., (2003), J Mater Civil Eng, vol. 13, n.3, pp. 460–469.

    Article  Google Scholar 

  6. Schießl P., Raupach, M., (1997), ACI Struct J, vol. 94, n. 1, pp. 56–61.

    Google Scholar 

  7. Bentur A., Diamond S. and Berke N.S., (1997), Steel corrosion in concrete, Chapman-Hall.

    Google Scholar 

  8. Mehta P.K., Gerwick B.C., (1982), Concrete International, October, pp. 45–51.

    Google Scholar 

  9. Otsuki N., Miyazato S., Diola N.B., Suzuki, H. (2000), ACI Mater J, vol. 97, n. 4, pp. 454–464.

    Google Scholar 

  10. Arya C., Ofori-Darko F.K., (1996), Cement and Concrete Research, Vol. 26, No. 3, pp. 345–353.

    Article  Google Scholar 

  11. Raupach M., (1996), In: Corrosion of reinforcement in concrete construction, C.L. Page, P.B. Bamforth and J.W. Figgs (eds.), Cambridge, 13–23.

    Google Scholar 

  12. Wilkins N.J.M., Lawrence P.F., (1983) In: Corrosion of reinforcement in concrete construction, A.P. Crane, (ed.), pp. 119–141.

    Google Scholar 

  13. Bertolini L., Elsener B., Pedeferri P., Polder R.B., (2004), Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, ISBN 3-527-30800-8.

    Google Scholar 

  14. Win P. P., Watanabe M., Machida A., (2004), Cement Concrete Res, vol. 34, p. 1073–1079.

    Article  Google Scholar 

  15. Djerbi A., Bonnet S., Khelidj A., Baroghel-bouny V., (2008), Cement Concrete Res, vol. 38, pp. 877–883.

    Article  Google Scholar 

  16. Boulfiza M., Sakai K., Banthia N. and Yoshida H., (2003) ACI Materials Journal, V. 100, No. 1, January-February 2003, Title no. 100-M5, pp. 38–48

    Google Scholar 

  17. Konin A., Francois R., Arliguie G., (1998), Materials and Structures, Vol. 31, June 1998.

    Google Scholar 

  18. Gowripalan, N., Sirivivnaton, V. and Lim, C.C. (2000), Cement Concrete Res, vol. 30, pp. 725–730.

    Article  Google Scholar 

  19. Angst U., Elsener B., Larsen C.K., Vennesland Ø., (2009), Cement Concrete Res, 39, 1122–1138.

    Article  Google Scholar 

  20. Tang L., Utgenannt P., (2009), Materials and Corrosion, 60, No. 8.

    Article  Google Scholar 

  21. Alonso M.C., Sanchez M., (2009), Materials and Corrosion, 60, No. 8.

    Article  Google Scholar 

  22. Alonso, M.C., Andrade C., Castellote M., Castro P., (2000), Cement Concrete Res, 30, 1047–1055.

    Article  Google Scholar 

  23. Markeset G., (2009), Materials and Corrosion, 60, No. 8.

    Article  Google Scholar 

  24. Nygaard P.V., Geiker M.R., (2005), Materials and Structures.

    Google Scholar 

  25. Izquierdo, D., Alonso, M.C., Andrade, C., Castellote, M., (2004), Electroch. Acta 49, 2731–2739.

    Article  Google Scholar 

  26. Polder, R.B., Peelen, W.H.A., (2002), Cement & Concrete Composites, Vol. 24, 427–435.

    Article  Google Scholar 

  27. Polder, R.B., (2009), Materials and Corrosion, 60, (8), 623–630

    Article  Google Scholar 

  28. Beeby A.W., (1983), Concrete International, 5, 2, p. 35–68.

    Google Scholar 

  29. Suzuki K., Ohno Y., Praparntanatorn S., Hamura T., (1996), In: Corrosion of Reinforcement in Concrete, C.L. Page, P.B. Bamforth and J.W. Figgs (eds.), Cambridge, 19–28.

    Google Scholar 

  30. Mangat P.S., Gurusamy K., (1987), Cement Concrete Res, 17, p. 385–396.

    Article  Google Scholar 

  31. Scott A., Alexander M.G., (2007), Magazine of Concrete Research, 59, No. 7, p. 495–505.

    Article  Google Scholar 

  32. Darwin D., Manning D.G., Hognestad E., Beeby A.W., Rice P.F. and Ghowrwal A.Q., (1985), Concrete International, May, pp. 20–35.

    Google Scholar 

  33. Page C.L., (2009), Materials and Corrosion, 60, No. 8

    Article  Google Scholar 

  34. Hansson C.M., Okulaja S.A., (2003), In: Advances in Cement and Concrete, University of Illinois at Urbana – Champaign, Copper Mountain

    Google Scholar 

  35. Marcotte, T.D., Hansson, C.M. (2003), J Mater Sci, vol. 38, pp. 4765–4776.

    Article  Google Scholar 

  36. Jaffer S.J., Hansson C.M., (2009), Cement Concrete Res, 39, 116–125.

    Article  Google Scholar 

  37. Sahmaran, M. (2007), J Mater Sci, vol. 42, pp. 9131–913.

    Article  Google Scholar 

  38. Schlangen E., Joseph C., (2008), In: Self-healing Materials: Fundamentals, Design Strategies and Applications, Swapan Kumar Ghosh., (ed.)Wiley-VCH GmbH & Co, Weinheim, 141–182.

    Google Scholar 

  39. Allan M.L., (1995), Cement Concrete Res, 35, 6, p. 1179–1190.

    Article  Google Scholar 

  40. Aligizaki K.K., Rooij de M.R., Macdonald D.D., (2000), Cement Concrete Res, 30, 12, p. 1941–1945.

    Article  Google Scholar 

  41. Marcotte T.D., Hansson C.D., (1998), In: International Symposium on High-Performance and Reactive Powder Concretes

    Google Scholar 

Download references

Acknowledgement

Financial support by the Dutch Technology Foundation (STW) for project 10978 M3C4 with the framework of Perspectief programma IS2C, as well as its industrial sponsors is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Pacheco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 RILEM

About this paper

Cite this paper

Pacheco, J., Polder, R. (2012). Corrosion initiation and propagation in cracked concrete – a literature review. In: Andrade, C., Gulikers, J. (eds) Advances in Modeling Concrete Service Life. RILEM Bookseries, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2703-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2703-8_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2702-1

  • Online ISBN: 978-94-007-2703-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics