Skip to main content

Biofunctional Coatings for Dental Implants

  • Chapter
  • First Online:
Thin Films and Coatings in Biology

Abstract

Success of dental implant materials depends on their integration into the adjacent soft and hard tissues where critical interactions take place at the interface between the surface of the metal and the biological components. The properties of the dental implant surface, such as surface morphology, surface energy, and chemistry affect cell responses and tissue regeneration. Therefore, modifications of the surfaces of the implant to minimize the nonspecific adsorption of proteins and to mediate bone osseointegration and tissue healing are research subjects of major interest. One promising approach consists of functionalizing dental implant materials by incorporating biological molecules with known bioactivities. Bioactive components such as extracellular matrix proteins, growth factors, and peptides have been covalently immobilized on surfaces to investigate their potential benefit in the clinical success of dental implants. The immobilization by means of primary bonds between the surface and the biomolecules can enhance stability and retention of the biomolecules on the implant and preserve biological activity compared to physically adsorbed molecules. We introduce here methodologies to covalently anchor biomolecules on the surface of dental implants. We thoroughly review the chemical strategies and biomolecules used as well as their effects on different biological responses of interest, such as osteoblasts response to improve osseointegration, antimicrobial properties, and in vivo integration. The stable immobilization of biomolecules on implants to form a bioactive surface can be an effective and novel approach to achieve implantation success in all clinical scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunski, J.B.: Classes of materials used in medicine. Metals. In: Rutner, B., Hoffman, A., Schoen, F., Lemons, J. (eds.) Biomaterials Science, an Introduction to Materials in Medicine. Academic Press, San Diego (1996)

    Google Scholar 

  2. Ratner, B.D.: A perspective on titanium biocompatibility. In: Brunette, D.M., Tengvall, P., Textor, M., Thomsen, P. (eds.) Titanium in medicine: Material science, surface science, engineering, biological responses and medical applications, pp. 1–12. Springer-Verlag, Berlin Heidelberg (2001)

    Google Scholar 

  3. Lindquist, L.W., Carlsson, G.E., Jemt, T.: A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants—clinical results and marginal bone loss. Clin. Oral Implan. Res. 7, 329–336 (1996)

    Google Scholar 

  4. Schwartz-Arad, D., Kidron, N., Dolev, E.: A long-term study of implants supporting overdentures as a model for implant success. J. Periodontol. 76, 1431–1435 (2005)

    Google Scholar 

  5. Branemark, P.I., Hansson, B.O., Adell, R., et al.: Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scandinavian journal of plastic and reconstructive surgery. Supplementum 16, 1–132 (1977)

    Google Scholar 

  6. Bumgardner, J.D., Adatrow, P., Haggard, W.O., et al.: Emerging antibacterial biomaterial strategies for the prevention of peri-implant inflammatory diseases. Int. J. Oral. Max. Impl. 26, 553–560 (2011)

    Google Scholar 

  7. Le Guehennec, L., Soueidan, A., Layrolle, P., et al.: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844–854 (2007)

    Google Scholar 

  8. Schliephake, H., Scharnweber, D.: Chemical and biological functionalization of titanium for dental implants. J. Mater. Chem. 18, 2404–2414 (2008)

    Google Scholar 

  9. Williams, D.F.: Titanium for medical applications. In: Brunette, D.M., Tengvall, P., Textor, M., Thomsen, P. (eds.) Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, pp. 13–24. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  10. Kasemo, B.: Biological surface science. Surf. Sci. 500, 656–677 (2002)

    ADS  Google Scholar 

  11. Castner, D.G., Ratner, B.D.: Biomedical surface science: Foundations to frontiers. Surf. Sci. 500, 28–60 (2002)

    ADS  Google Scholar 

  12. Elmengaard, B., Bechtold, J.E., Soballe, K.: In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials 26, 3521–3526 (2005)

    Google Scholar 

  13. Wang, H.L., Ormianer, Z., Palti, A., et al.: Consensus conference on immediate loading: The single tooth and partial edentulous areas. Implant Dent. 15, 324–333 (2006)

    Google Scholar 

  14. Puleo, D.A., Nanci, A.: Understanding and controlling the bone-implant interface. Biomaterials 20, 2311–2321 (1999)

    Google Scholar 

  15. Buser, D.: Titanium for dental applications (II): Implants with roughened surfaces. In: Brunette, D.M., Tengvall, P., Textor, M., Thomsen, P. (eds.) Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, pp. 875–887. Springer-Verlag, Berlin Heidelberg (2001)

    Google Scholar 

  16. Klokkevold, P.R., Johnson, P., Dadgostari, S., et al.: Early endosseous integration enhanced by dual acid etching of titanium: a torque removal study in the rabbit. Clin. Oral Implan. Res. 12, 350–357 (2001)

    Google Scholar 

  17. Ivanoff, C.J., Hallgren, C., Widmark, G., et al.: Histologic evaluation of the bone integration of TiO2 blasted and turned titanium microimplants in humans. Clin. Oral. Implan. Res. 12, 128–134 (2001)

    Google Scholar 

  18. Sutter, F., Schroeder, A., Buser, D.A.: The new concept of ITI hollowcylinder and hollowscrew implants. Part 1. Engineering and design. Int. J. Oral Maxillofac. Implants. 3, 161–172 (1988)

    Google Scholar 

  19. Sul, Y.T., Johansson, C.B., Petronis, S., et al.: Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 23, 491–501 (2002)

    Google Scholar 

  20. Buser, D., Nydegger, T., Hirt, H.P., et al.: Removal torque values of titanium implants in the maxilla of miniature pigs. Int. J. Oral Maxillofac. Implants 13, 611–619 (1998)

    Google Scholar 

  21. Boyan, B.D., Hummert, T.W., Dean, D.D., et al.: Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17, 137–146 (1996)

    Google Scholar 

  22. Han, C.-H., Johansson, C.B., Wennerberg, A., et al.: Quantitative and qualitative investigations of surface enlarged titanium and titanium alloys implants. Clin. Oral Implan. Res. 9, 1–10 (1998)

    Google Scholar 

  23. Martin, J.Y., Schwartz, Z., Hummert, T.W., et al.: Effect of titanium surface-roughness on proliferation, differentiation, and protein-synthesis of human osteoblast-like cells (Mg63). J. Biomed. Mater. Res. 29, 389–401 (1995)

    Google Scholar 

  24. Pegueroles, M., Aparicio, C., Bosio, M., et al.: Spatial organization of osteoblasts fibronectin-matrix on titanium surface-effects of roughness, chemical heterogeneity, and surface free energy. Acta. Biomater. 6, 291–301 (2010)

    Google Scholar 

  25. Cochran, D.L., Schenk, R.K., Lussi, A., et al.: Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. J. Biomed. Mater. Res. 40, 1–11 (1998)

    Google Scholar 

  26. Aparicio, C., Gil, F.J., Fonseca, C., et al.: Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 24, 263–273 (2003)

    Google Scholar 

  27. Pegueroles, M., Gil, F.J., Planell, J.A., et al.: The influence of blasting and sterilization on static and time-related wettability and surface-energy properties of titanium surfaces. Surf. Coat. Tech. 202, 3470–3479 (2008)

    Google Scholar 

  28. Mendonca, G., Mendonca, D.B.S., Aragao, F.J.L., et al.: Advancing dental implant surface technology—from micron- to nanotopography. Biomaterials 29, 3822–3835 (2008)

    Google Scholar 

  29. Variola, F., Brunski, J.B., Orsini, G., et al.: Nanoscale surface modifications of medically relevant metals: State-of-the art and perspectives. Nanoscale 3, 335–353 (2011)

    ADS  Google Scholar 

  30. Palmquist, A., Omar, O.M., Esposito, M., et al.: Titanium oral implants: surface characteristics, interface biology and clinical outcome. J. R. Soc. Interface 7, S515–S527 (2010)

    Google Scholar 

  31. Junker, R., Dimakis, A., Thoneick, M., et al.: Effects of implant surface coatings and composition on bone integration: a systematic review. Clin. Oral Implan. Res. 20, 185–206 (2009)

    Google Scholar 

  32. Rupp, F., Scheideler, L., Olshanska, N., et al.: Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J. Biomed. Mater. Res. A 76A, 323–334 (2006)

    Google Scholar 

  33. Schwarz, F., Herten, M., Sager, M., et al.: Bone regeneration in dehiscence-type defects at chemically modified (SLActive®) and conventional SLA titanium implants: A pilot study in dogs. J. Clin. Periodontol. 34, 78–86 (2007)

    Google Scholar 

  34. Zhao, G., Schwartz, Z., Wieland, M., et al.: High surface energy enhances cell response to titanium substrate microstructure. J. Biomed. Mater. Res. A 74A, 49–58 (2005)

    Google Scholar 

  35. Ueno, T., Yamada, M., Suzuki, T., et al.: Enhancement of bone-titanium integration profile with UV-photofunctionalized titanium in a gap healing model. Biomaterials 31, 1546–1557 (2010)

    Google Scholar 

  36. Borsari, V., Fini, M., Giavaresi, G., et al.: Osteointegration of titanium and hydroxyapatite rough surfaces in healthy and compromised cortical and trabecular bone: In vivo comparative study on young, aged, and estrogen-deficient sheep. J. Orthop. Res. 25, 1250–1260 (2007)

    Google Scholar 

  37. Geesink, R.G.T., Degroot, K., Klein, C.P.A.T.: Chemical implant fixation using hydroxyl-apatite coatings—the development of a human total hip-prosthesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates. Clin. Orthop. Relat. Res. 147–170 (1987)

    Google Scholar 

  38. Hulshoff, J.E., Hayakawa, T., Van Dijk, K., et al.: Mechanical and histologic evaluation of Ca-P plasma-spray and magnetron sputter-coated implants in trabecular bone of the goat. J. Biomed. Mater. Res. 36, 75–83 (1997)

    Google Scholar 

  39. Lee JR, L., Beirne, O.: Survival of hydroxypatite-coated implants: A meta-analytic review. J. Oral Maxillofac. Surg. 58, 1372–1379 (2000)

    Google Scholar 

  40. Kim, H.M., Miyaji, F., Kokubo, T., et al.: Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res. 32, 409–417 (1996)

    Google Scholar 

  41. Li, P.J., Degroot, K.: Calcium-phosphate formation within sol-gel prepared Titania in-vitro and in-vivo. J. Biomed. Mater. Res. 27, 1495–1500 (1993)

    Google Scholar 

  42. Li, P.J., Ducheyne, P.: Quasi-biological apatite film induced by titanium in a simulated body fluid. J. Biomed. Mater. Res. 41, 341–348 (1998)

    Google Scholar 

  43. Ohtsuki, C., Iida, H., Hayakawa, S., et al.: Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J. Biomed. Mater. Res. 35, 39–47 (1997)

    Google Scholar 

  44. Wen, H.B., Dewijn, J.R., Liu, Q., et al.: A simple method to prepare calcium phosphate coatings on Ti6Al4 V. J. Mater. Sci. Mater. M 8, 765–770 (1997)

    Google Scholar 

  45. Kim, H.M., Miyaji, F., Kokubo, T., et al.: Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res. 32, 409–417 (1996)

    Google Scholar 

  46. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006)

    Google Scholar 

  47. Nishiguchi, S., Kato, H., Fujita, H., et al.: Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials 22, 2525–2533 (2001)

    Google Scholar 

  48. Aparicio, C., Padros, A., Gil, F.J.: In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests. J. Mech. Behav. Biomed. Mater. 4, 1672–1682 (2011)

    Google Scholar 

  49. Aparicio, C., Manero, J.M., Conde, F., et al.: Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants. J Biomed Mater Res A 82A, 521–529 (2007)

    Google Scholar 

  50. Aparicio, C., Gil, F.J., Planell, J.A., et al.: Human-osteoblast proliferation and differentiation on grit-blasted and bioactive titanium for dental applications. J. Mater. Sci. Mater. M 13, 1105–1111 (2002)

    Google Scholar 

  51. Albelda, S.M., Buck, C.A.: Integrins and other cell-adhesion molecules. Faseb J. 4, 2868–2880 (1990)

    Google Scholar 

  52. Ratner, B.D.: New ideas in biomaterials science—a path to engineered biomaterials. J. Biomed. Mater. Res. 27, 837–850 (1993)

    Google Scholar 

  53. Massia, S.P., Hubbell, J.A.: An rgd spacing of 440 nm is sufficient for integrin alpha-V-beta-3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114, 1089–1100 (1991)

    Google Scholar 

  54. García, A.J.: Surface modification of biomaterials. In: Atala, A., Lanza, R., Thomson, J.A., Nerem, R. (eds.) Principles of Regenerative Medicine (2nd edn), pp. 663–673. Elsevier/Academic Press, San Diego (2011)

    Google Scholar 

  55. Hall, J., Sorensen, R.G., Wozney, J.M., et al.: Bone formation at rhBMP-2-coated titanium implants in the rat ectopic model. J. Clin. Periodontol. 34, 444–451 (2007)

    Google Scholar 

  56. Bekos, E.J., Ranieri, J.P., Aebischer, P., et al.: Structural-changes of bovine serum-albumin upon adsorption to modified fluoropolymer substrates used for neural cell attachment studies. Langmuir 11, 984–989 (1995)

    Google Scholar 

  57. Tebbe, D., Thull, R., Gbureck, U.: Influence of spacer length on heparin coupling efficiency and fibrinogen adsorption of modified titanium surfaces. Biomed. Eng. Online. 6(1), 31 (2007)

    Google Scholar 

  58. Nadkarni, V.D., Pervin, A., Linhardt, R.J.: Directional immobilization of heparin onto beaded supports. Anal. Biochem. 222, 59–67 (1994)

    Google Scholar 

  59. Nanci, A., Wuest, J.D., Peru, L., et al.: Chemical modification of titanium surfaces for covalent attachment of biological molecules. J. Biomed. Mater. Res. 40, 324–335 (1998)

    Google Scholar 

  60. Puleo, D.A., Kissling, R.A., Sheu, M.S.: A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials 23, 2079–2087 (2002)

    Google Scholar 

  61. Rezania, A., Johnson, R., Lefkow, A.R., et al.: Bioactivation of metal oxide surfaces. 1. Surface characterization and cell response. Langmuir 15, 6931–6939 (1999)

    Google Scholar 

  62. Endo, M., Takagaki, K., Nakamura, T.: A new avenue of proteoglycan studies—of glycosaminoglycan chains using endo-type glycosidases. Seikagaku 67, 1269–1282 (1995)

    Google Scholar 

  63. Puleo, D.A.: Activity of enzyme immobilized on silanized Co-Cr-Mo. J. Biomed. Mater. Res. 29, 951–957 (1995)

    Google Scholar 

  64. Puleo, D.A.: Retention of enzymatic activity immobilized on silanized Co-Cr-Mo and Ti-6Al-4 V. J. Biomed. Mater. Res. 37, 222–228 (1997)

    Google Scholar 

  65. Li, Y., Aparicio, C., Rodriguez-Cabello, C., et al.: Bio-mineralization of nanorough titanium covalently-coated with statherin-derived recombinant biopolymers. J. Dent. Res. (Spec. Iss. B). 89, 3574 (2010)

    Google Scholar 

  66. Schuler, M., Trentin, D., Textor, M., et al.: Biomedical interfaces: Titanium surface technology for implants and cell carriers. Nanomedicine (Lond) 1, 449–463 (2006)

    Google Scholar 

  67. Porte-Durrieu, M.C., Guillemot, F., Pallu, S., et al.: Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4 V: Physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials 25, 4837–4846 (2004)

    Google Scholar 

  68. Puleo, D.A.: Biochemical surface modification of Co-Cr-Mo. Biomaterials 17, 217–222 (1996)

    Google Scholar 

  69. Xiao, S.J., Textor, M., Spencer, N.D., et al.: Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. J. Mater. Sci. Mater. Med. 8, 867–872 (1997)

    Google Scholar 

  70. Zhang, F., Xu, F.J., Kang, E.T., et al.: Modification of titanium via surface-initiated atom transfer radical polymerization (ATRP). Ind. Eng. Chem. Res. 45, 3067–3073 (2006)

    Google Scholar 

  71. Kamigaito, M., Ando, T., Sawamoto, M.: Metal-catalyzed living radical polymerization. Chem. Rev. 101, 3689–3745 (2001)

    Google Scholar 

  72. Matyjaszewski, K., Miller, P.J., Shukla, N., et al.: Polymers at interfaces: Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules 32, 8716–8724 (1999)

    ADS  Google Scholar 

  73. Matyjaszewski, K., Xia, J.H.: Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001)

    Google Scholar 

  74. Zhang, F., Shi, Z.L., Chua, P.H., et al.: Functionalization of titanium surfaces via controlled living radical polymerization: From antibacterial surface to surface for osteoblast adhesion. Ind. Eng. Chem. Res. 46, 9077–9086 (2007)

    Google Scholar 

  75. Mrksich, M., Chen, C.S., Xia, Y.N., et al.: Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. USA 93, 10775–10778 (1996)

    ADS  Google Scholar 

  76. Gawalt, E.S., Avaltroni, M.J., Koch, N., et al.: Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium. Langmuir 17, 5736–5738 (2001)

    Google Scholar 

  77. Danahy, M.P., Avaltroni, M.J., Midwood, K.S., et al.: Self-assembled monolayers of alpha, omega-diphosphonic acids on Ti enable complete or spatially controlled surface derivatization. Langmuir 20, 5333–5337 (2004)

    Google Scholar 

  78. Hayakawa, T., Yoshinari, M., Nagai, M., et al.: X-ray photoelectron spectroscopic studies of the reactivity of basic terminal OH of titanium towards tresyl chloride and fibronectin. Biomed. Res. Tokyo 24, 223–230 (2003)

    Google Scholar 

  79. Huang, N.P., Michel, R., Voros, J., et al.: Poly (l-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: Surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 17, 489–498 (2001)

    Google Scholar 

  80. Kenausis, G.L., Voros, J., Elbert, D.L., et al.: Poly (l-lysine)-g-poly (ethylene glycol) layers on metal oxide surfaces: Attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J. Phys. Chem. B 104, 3298–3309 (2000)

    Google Scholar 

  81. Tosatti, S., De Paul, S.M., Askendal, A., et al.: Peptide functionalized poly (l-lysine)-g-poly (ethylene glycol) on titanium: resistance to protein adsorption in full heparinized human blood plasma. Biomaterials 24, 4949–4958 (2003)

    Google Scholar 

  82. Vandevondele, S., Voros, J., Hubbell, J.A.: RGD-Grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol. Bioeng. 82, 784–790 (2003)

    Google Scholar 

  83. Beutner, R., Michael, J., Forster, A., et al.: Immobilization of oligonucleotides on titanium based materials by partial incorporation in anodic oxide layers. Biomaterials 30, 2774–2781 (2009)

    Google Scholar 

  84. Michael, J., Beutner, R., Hempel, U., et al.: Surface modification of titanium-based alloys with bioactive molecules using electrochemically fixed nucleic acids. J. Biomed. Mater Res. B 80B, 146–155 (2007)

    Google Scholar 

  85. Schliephake, H., Botel, C., Forster, A., et al.: Effect of oligonucleotide mediated immobilization of bone morphogenic proteins on titanium surfaces. Biomaterials 33, 1315–1322 (2012)

    Google Scholar 

  86. De Jonge, L.T., Leeuwenburgh, S.C.G., Wolke, J.G.C., et al.: Organic-inorganic surface modifications for titanium implant surfaces. Pharm. Res. Dordr 25, 2357–2369 (2008)

    Google Scholar 

  87. Bierbaum, S., Hempel, U., Geissler, U., et al.: Modification of Ti6Al4 V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses. J Biomed Mater Res A 67A, 431–438 (2003)

    Google Scholar 

  88. Ku, Y., Chung, C.P., Jang, J.H.: The effect of the surface modification of titanium using a recombinant fragment of fibronectin and vitronectin on cell behavior. Biomaterials 26, 5153–5157 (2005)

    Google Scholar 

  89. Steele, J.G., Johnson, G., Mcfarland, C., et al.: Roles of serum vitronectin and fibronectin in initial attachment of human vein endothelial-cells and dermal fibroblasts on oxygen-containing and nitrogen-containing surfaces made by radiofrequency plasmas. J. Biomat. Sci. Polym. E 6, 511–532 (1994)

    Google Scholar 

  90. Carson, A.E., Barker, T.H.: Emerging concepts in engineering extracellular matrix variants for directing cell phenotype. Regen. Med. 4, 593–600 (2009)

    Google Scholar 

  91. Pierschbacher, M.D., Ruoslahti, E.: Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984)

    ADS  Google Scholar 

  92. Ruoslahti, E.: RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697–715 (1996)

    Google Scholar 

  93. Collier, J.H., Segura, T.: Evolving the use of peptides as components of biomaterials. Biomaterials 32, 4198–4204 (2011)

    Google Scholar 

  94. Coin, I., Beyermann, M., Bienert, M.: Solid-phase peptide synthesis: From standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007)

    Google Scholar 

  95. Cooper, L.F., Deporter, D., Wennerberg, A., et al.: What physical and/or biochemical characteristics of roughened endosseous implant surfaces particularly enhance their bone-implant contact capability? Int. J. Oral Max. Impl. 20, 307–312 (2005)

    Google Scholar 

  96. Lebaron, R.G., Athanasiou, K.A.: Extracellular matrix cell adhesion peptides: Functional applications in orthopedic materials. Tissue Eng. 6, 85–103 (2000)

    Google Scholar 

  97. Itoh, D., Yoneda, S., Kuroda, S., et al.: Enhancement of osteogenesis on hydroxyapatite surface coated with synthetic peptide (EEEEEEEPRGDT) in vitro. J. Biomed. Mater. Res. 62, 292–298 (2002)

    Google Scholar 

  98. Grzesik, W.J., Robey, P.G.: Bone-matrix rgd glycoproteins—immunolocalization and interaction with human primary osteoblastic bone-cells in-vitro. J. Bone Miner. Res. 9, 487–496 (1994)

    Google Scholar 

  99. Pierschbacher, M.D., Hayman, E.G., Ruoslahti, E.: Cell attachment to fibronectin and the extracellular-matrix. In. Vitro Cell Dev. B 20, 255–265 (1984)

    Google Scholar 

  100. Rezania, A., Thomas, C.H., Branger, A.B., et al.: The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein. J. Biomed. Mater. Res. 37, 9–19 (1997)

    Google Scholar 

  101. Petrie, T.A., Raynor, J.E., Reyes, C.D., et al.: The effect of integrin-specific bioactive coatings on tissue healing and implant osseointegration. Biomaterials 29, 2849–2857 (2008)

    Google Scholar 

  102. Aucoin, L., Griffith, C.M., Pleizier, G., et al.: Interactions of corneal epithelial cells and surfaces modified with cell adhesion peptide combinations. J. Biomat. Sci. Polym. E 13, 447–462 (2002)

    Google Scholar 

  103. Benoit, D.S.W., Anseth, K.S.: The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 26, 5209–5220 (2005)

    Google Scholar 

  104. Feng, Y.Z., Mrksich, M.: The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism. Biochemistry-Us 43, 15811–15821 (2004)

    Google Scholar 

  105. Kao, W.J., Lee, D., Schense, J.C., et al.: Fibronectin modulates macrophage adhesion and FBGC formation: The pole of RGD, PHSRN, and PRRARV domains. J. Biomed. Mater. Res. 55, 79–88 (2001)

    Google Scholar 

  106. Kokkoli, E., Ochsenhirt, S.E., Tirrell, M.: Collective and single-molecule interactions of alpha (5) beta (1) integrins. Langmuir 20, 2397–2404 (2004)

    Google Scholar 

  107. Mardilovich, A., Kokkoli, E.: Biomimetic peptide-amphiphiles for functional biomaterials: The role of GRGDSP and PHSRN. Biomacromolecules 5, 950–957 (2004)

    Google Scholar 

  108. Ochsenhirt, S.E., Kokkoli, E., Mccarthy, J.B., et al.: Effect of RGD secondary structure and the synergy site PHSRN on cell adhesion, spreading and specific integrin engagement. Biomaterials 27, 3863–3874 (2006)

    Google Scholar 

  109. Collier, J.H., Rudra, J.S., Gasiorowski, J.Z., et al.: Multi-component extracellular matrices based on peptide self-assembly. Chem. Soc. Rev. 39, 3413–3424 (2010)

    Google Scholar 

  110. Vogel, V.: Mechanotransduction involving multimodular proteins: Converting force into biochemical signals. Annu. Rev. Bioph. Biom. 35, 459–488 (2006)

    Google Scholar 

  111. Reyes, C.D., Garcia, A.J.: Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide. J. Biomed. Mater. Res. A 65A, 511–523 (2003)

    Google Scholar 

  112. Bagno, A., Piovan, A., Dettin, M., et al.: Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides. Bone 40, 693–699 (2007)

    Google Scholar 

  113. Benesch, J., Mano, J.F., Reis, R.L.: Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering. Tissue Eng. Part B-Rev. 14, 433–445 (2008)

    Google Scholar 

  114. Weiner, S., Traub, W.: Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett. 206, 262–266 (1986)

    Google Scholar 

  115. He, G., Ramachandran, A., Dahl, T., et al.: Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization. J. Biol. Chem. 280, 33109–33114 (2005)

    Google Scholar 

  116. Steitz, S.A., Speer, M.Y., Mckee, M.D., et al.: Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am. J. Pathol. 161, 2035–2046 (2002)

    Google Scholar 

  117. Wada, T., Mckee, M.D., Steitz, S., et al.: Calcification of vascular smooth muscle cell cultures inhibition by osteopontin. Circ. Res. 84, 166–178 (1999)

    Google Scholar 

  118. Ohta, K., Monma, H., Tanaka, J., et al.: Interaction between hydroxyapatite and proteins by liquid chromatography using simulated body fluids as eluents. J. Mater Sci. Mater. Med. 13, 633–637 (2002)

    Google Scholar 

  119. Raj, P.A., Johnsson, M., Levine, M.J., et al.: Salivary statherin—dependence on sequence, charge, hydrogen-bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. J. Biol. Chem. 267, 5968–5976 (1992)

    Google Scholar 

  120. Wikiel, K., Burke, E.M., Perich, J.W., et al.: Hydroxyapatite mineralization and demineralization in the presence of synthetic phosphorylated pentapeptides. Arch. Oral Biol. 39, 715–721 (1994)

    Google Scholar 

  121. Hunter, G.K., Hauschka, P.V., Poole, A.R., et al.: Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem. J. 317, 59–64 (1996)

    Google Scholar 

  122. Yao, K.L., Todescan, R., Sodek, J.: Temporal changes in matrix protein-synthesis and messenger-rna expression during mineralized tissue formation by adult-rat bone-marrow cells in culture. J. Bone Miner. Res. 9, 231–240 (1994)

    Google Scholar 

  123. Fujisawa, R., Wada, Y., Nodasaka, Y., et al.: Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals. Bba. Protein Struct. Mol. 1292, 53–60 (1996)

    Google Scholar 

  124. Stubbs, J.T., Mintz, K.P., Eanes, E.D., et al.: Characterization of native and recombinant bone sialoprotein: Delineation of the mineral-binding and cell adhesion domains and structural analysis of the RGD domain. J. Bone Miner. Res. 12, 1210–1222 (1997)

    Google Scholar 

  125. Norowski, P.A., Bumgardner, J.D.: Biomaterial and antibiotic strategies for peri-implantitis. J. Biomed. Mater. Res. B 88B, 530–543 (2009)

    Google Scholar 

  126. Huang, H.L., Chang, Y.Y., Lai, M.C., et al.: Antibacterial TaN-Ag coatings on titanium dental implants. Surf. Coat. Tech. 205, 1636–1641 (2010)

    Google Scholar 

  127. Zhao, L.Z., Chu, P.K., Zhang, Y.M., et al.: Antibacterial coatings on titanium implants. J. Biomed. Mater. Res. B 91B, 470–480 (2009)

    Google Scholar 

  128. Popat, K.C., Eltgroth, M., Latempa, T.J., et al.: Decreased staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded Titania nanotubes. Biomaterials 28, 4880–4888 (2007)

    Google Scholar 

  129. Lucke, M., Schmidmaier, G., Sadoni, S., et al.: Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone 32, 521–531 (2003)

    Google Scholar 

  130. Jahoda, D., Nyc, O., Pokorny, D., et al.: Antibiotic treatment for prevention of infectious complications in joint replacement. Acta Chir. Orthopaedicae Et Traumatologiae Cechoslovaca 73, 108–114 (2006)

    Google Scholar 

  131. Alt, V., Bitschnau, A., Osterling, J., et al.: The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials 27, 4627–4634 (2006)

    Google Scholar 

  132. Radin, S., Campbell, J.T., Ducheyne, P., et al.: Calcium phosphate ceramic coatings as carriers of vancomycin. Biomaterials 18, 777–782 (1997)

    Google Scholar 

  133. Yamamura, K., Iwata, H., Yotsuyanagi, T.: Synthesis of antibiotic-loaded hydroxyapatite beads and invitro drug release testing. J. Biomed. Mater. Res. 26, 1053–1064 (1992)

    Google Scholar 

  134. Kim, W.H., Lee, S.B., Oh, K.T., et al.: The release behavior of CHX from polymer-coated titanium surfaces. Surf. Interface Anal. 40, 202–204 (2008)

    Google Scholar 

  135. Chen, W., Liu, Y., Courtney, H.S., et al.: In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27, 5512–5517 (2006)

    Google Scholar 

  136. Harris, L.G., Tosatti, S., Wieland, M., et al.: Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly (l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 25, 4135–4148 (2004)

    Google Scholar 

  137. Chua, P.H., Neoh, K.G., Kang, E.T., et al.: Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 29, 1412–1421 (2008)

    Google Scholar 

  138. Antoci, V., Adams, C.S., Hickok, N.J., et al.: Vancomycin bound to Ti rods reduces periprosthetic infection—preliminary study. Clin. Orthop. Relat. Res. 461, 88–95 (2007)

    Google Scholar 

  139. Antoci, V., Adams, C.S., Parvizi, J., et al.: Covalently attached vancomycin provides a nanoscale antibacterial surface. Clin. Orthop. Relat. Res. 461, 81–87 (2007)

    Google Scholar 

  140. Antoci Jr, V., Adams, C.S., Parvizi, J., et al.: The inhibition of staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials 29, 4684–4690 (2008)

    Google Scholar 

  141. Antoci, V., King, S.B., Jose, B., et al.: Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J. Orthop. Res. 25, 858–866 (2007)

    Google Scholar 

  142. Weber, F.A., Lautenbach, E.E.G.: Revision of infected total hip-arthroplasty. Clin. Orthop. Relat. R. 211, 108–115

    Google Scholar 

  143. Tunney, M.M., Ramage, G., Patrick, S., et al.: Antimicrobial susceptibility of bacteria isolated from orthopedic implants following revision hip surgery. Antimicrob. Agents Ch. 42, 3002–3005 (1998)

    Google Scholar 

  144. Antoci, V., Adams, C.S., Hickok, N.J., et al.: Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin. Orthop. Relat. Res. 462, 200–206 (2007)

    Google Scholar 

  145. Ince, A., Schutze, N., Hendrich, C., et al.: Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells. Swiss Med.Wkly. 137, 139–145 (2007)

    Google Scholar 

  146. Ince, A., Schutze, N., Hendrich, C., et al.: In vitro investigation of orthopedic titanium-coated and brushite-coated surfaces using human osteoblasts in the presence of gentamycin. J. Arthroplasty 23, 762–771 (2008)

    Google Scholar 

  147. Naal, F.D., Salzmann, G.M., Von Knoch, F., et al.: The effects of clindamycin on human osteoblasts in vitro. Arch. Orthop. Trauma Surg. 128, 317–323 (2008)

    Google Scholar 

  148. Salzmann, G.M., Naal, F.D., Von Knoch, F., et al.: Effects of cefuroxime on human osteoblasts in vitro. J. Biomed. Mater. Res. A 82, 462–468 (2007)

    Google Scholar 

  149. Gorr, S.U., Abdolhosseini, M.: Antimicrobial peptides and periodontal disease. J. Clin. Periodontol. 38, 126–141 (2011)

    Google Scholar 

  150. Krisanaprakornkit, S., Khongkhunthian, S.: The role of antimicrobial peptides in periodontal disease. Public Health 21st C. 73–103 (2010)

    Google Scholar 

  151. Hancock, R.E.W., Sahl, H.G.: Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006)

    Google Scholar 

  152. Lau, Y.E., Rozek, A., Scott, M.G., et al.: Interaction and cellular localization of the human host defense peptide LL-37 with lung epithelial cells. Infect. Immun. 73, 583–591 (2005)

    Google Scholar 

  153. Sandgren, S., Wittrup, A., Cheng, F., et al.: The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J. Biol. Chem. 279, 17951–17956 (2004)

    Google Scholar 

  154. Kazemzadeh-Narbat, M., Kindrachuk, J., Duan, K., et al.: Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 31, 9519–9526 (2010)

    Google Scholar 

  155. Campoccia, D., Montanaro, L., Speziale, P., et al.: Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 31, 6363–6377 (2010)

    Google Scholar 

  156. Walsh, C.: Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775–781 (2000)

    Google Scholar 

  157. Gao, G.Z., Lange, D., Hilpert, K., et al.: The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32, 3899–3909 (2011)

    Google Scholar 

  158. Holmberg, K.V., Hegde, R., Abdolhosseini, M., et al.: Antimicrobial-peptide biofunctionalized titanium for dental implants. J. Dent. Res. 90, 1722 (2011)

    Google Scholar 

  159. Jelokhani-Niaraki, M., Prenner, E.J., Kay, C.M., et al.: Conformation and interaction of the cyclic cationic antimicrobial peptides in lipid bilayers. J. Pept. Res. 60, 23–36 (2002)

    Google Scholar 

  160. Wieczorek, M., Jenssen, H., Kindrachuk, J., et al.: Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem. Biol. 17, 970–980 (2010)

    Google Scholar 

  161. Bromberg, L.E., Buxton, D.K., Friden, P.M.: Novel periodontal drug delivery system for treatment of periodontitis. J. Controlled Release 71, 251–259 (2001)

    Google Scholar 

  162. Owen, G.R., Jackson, J.K., Chehroudi, B., et al.: An in vitro study of plasticized poly (lactic-co-glycolic acid) films as possible guided tissue regeneration membranes: Material properties and drug release kinetics. J. Biomed. Mater. Res A 95A, 857–869 (2010)

    Google Scholar 

  163. Srirangarajan, S., Mundargi, R.C., Ravindra, S., et al.: Randomized, controlled, single-masked, clinical study to compare and evaluate the efficacy of microspheres and gel in periodontal pocket therapy. J. Periodontol. 82, 114–121 (2011)

    Google Scholar 

  164. Nagase, H., Fields, G.B.: Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40, 399–416 (1996)

    Google Scholar 

  165. Patterson, J., Hubbell, J.A.: Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31, 7836–7845 (2010)

    Google Scholar 

  166. Patterson, J., Hubbell, J.A.: SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32, 1301–1310 (2011)

    Google Scholar 

  167. Tokatlian, T., Shrum, C.T., Kadoya, W.M., et al.: Protease degradable tethers for controlled and cell-mediated release of nanoparticles in 2-and 3-dimensions. Biomaterials 31, 8072–8080 (2010)

    Google Scholar 

  168. Aulisa, L., Dong, H., Hartgerink, J.D.: Self-assembly of multidomain peptides: Sequence variation allows control over cross-linking and viscoelasticity. Biomacromolecules 10, 2694–2698 (2009)

    Google Scholar 

  169. Tauro Jr, L.B., Ss, Lateef, Ra, Gemeinhart: Matrix metalloprotease selective peptide substrates cleavage within hydrogel matrices for cancer chemotherapy activation. Peptides 29, 1965–1973 (2008)

    Google Scholar 

  170. Galler, K.M., Aulisa, L., Regan, K.R., D’souza, R.N., Hartgerink, J.D.: Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J. Am. Chem. Soc. 132, 1965–1973 (1973)

    Google Scholar 

  171. Chau, Y., Luo, Y., Cheung, A.C.Y., et al.: Incorporation of a matrix metalloproteinase-sensitive substrate into self-assembling peptides—a model for biofunctional scaffolds. Biomaterials 29, 1713–1719 (2008)

    Google Scholar 

  172. Lai, Y.X., Xie, C., Zhang, Z., et al.: Design and synthesis of a potent peptide containing both specific and non-specific cell-adhesion motifs. Biomaterials 31, 4809–4817 (2010)

    Google Scholar 

  173. Gristina, A.G.: Biomaterial-centered infection—microbial adhesion versus tissue integration. Science 237, 1588–1595 (1987)

    ADS  Google Scholar 

  174. Neoh, K.G., Hu, X., Zheng, D., et al.: Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33, 2813–2822 (2012)

    Google Scholar 

  175. Hetrick, E.M., Schoenfisch, M.H.: Reducing implant-related infections: active release strategies. Chem. Soc. Rev. 35, 780–789 (2006)

    Google Scholar 

  176. Shi, Z., Neoh, K.G., Kang, E.T., et al.: Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions. Tissue Eng. Part A 15, 417–426 (2009)

    Google Scholar 

  177. Kim, J., Kim, I.S., Cho, T.H., et al.: Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28, 1830–1837 (2007)

    MathSciNet  Google Scholar 

  178. Holland, N.B., Qiu, Y.X., Ruegsegger, M., et al.: Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 392, 799–801 (1998)

    ADS  Google Scholar 

  179. Vacheethasanee, K., Marchant, R.E.: Surfactant polymers designed to suppress bacterial (staphylococcus epidermidis) adhesion on biomaterials. J. Biomed. Mater. Res. 50, 302–312 (2000)

    Google Scholar 

  180. Maddikeri, R.R., Tosatti, S., Schuler, M., et al.: Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: A first step toward cell selective surfaces. J. Biomed. Mater. Res. A 84A, 425–435 (2008)

    Google Scholar 

  181. Garcia, A.J., Reyes, C.D.: Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J. Dent. Res. 84, 407–413 (2005)

    Google Scholar 

  182. Groll, J., Fiedler, J., Engelhard, E., et al.: A novel star PEG-derived surface coating for specific cell adhesion. J. Biomed. Mater. Res. Part A 74A, 607–617 (2005)

    Google Scholar 

  183. Chen, X., Sevilla, P., Aparicio, C.: Surface biofunctionalization by covalent co-immobilization of oligopeptides. Colloids Surf. B. 107, 189–197 (2013)

    Google Scholar 

  184. Geissler, U., Hempel, U., Wolf, C., et al.: Collagen type I-coating of Ti6Al4 V promotes adhesion of osteoblasts. J. Biomed. Mater. Res. 51, 752–760 (2000)

    Google Scholar 

  185. Roehlecke, C., Witt, M., Kasper, M., et al.: Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells. Cells Tissues Organs 168, 178–187 (2001)

    Google Scholar 

  186. Morra, M., Cassinelli, C., Cascardo, G., et al.: Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies. Biomaterials 24, 4639–4654 (2003)

    Google Scholar 

  187. Morra, M., Cassinelli, C., Cascardo, G., et al.: Collagen I-coated titanium surfaces: Mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. J. Biomed. Mater. Res. A 78A, 449–458 (2006)

    Google Scholar 

  188. Muller, R., Abke, J., Schnell, E., et al.: Surface engineering of stainless steel materials by covalent collagen immobilization to improve implant biocompatibility. Biomaterials 26, 6962–6972 (2005)

    Google Scholar 

  189. Muller, R., Abke, J., Schnell, E., et al.: Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. Biomaterials 27, 4059–4068 (2006)

    Google Scholar 

  190. Couchourel, D., Escoffier, C., Rohanizadeh, R., et al.: Effects of fibronectin on hydroxyapatite formation. J. Inorg. Biochem. 73, 129–136 (1999)

    Google Scholar 

  191. Garcia, A.J., Ducheyne, P., Boettiger, D.: Effect of surface reaction stage on fibronectin-mediated adhesion of osteoblast-like cells to bioactive glass. J. Biomed. Mater. Res. 40, 48–56 (1998)

    Google Scholar 

  192. Pegueroles, M., Aguirre, A., Engel, E., et al.: Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR. J. Mater. Sci. Mater. Med. 22, 617–627 (2011)

    Google Scholar 

  193. El-Ghannam, A., Starr, L., Jones, J.: Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome assembly on Ti-6Al-4 V implant material in vitro. J. Biomed. Mater. Res. 41, 30–40 (1998)

    Google Scholar 

  194. Werner, S., Huck, O., Frisch, B., et al.: The effect of microstructured surfaces and laminin-derived peptide coatings on soft tissue interactions with titanium dental implants. Biomaterials 30, 2291–2301 (2009)

    Google Scholar 

  195. Werner, S., Kocgozlu, L., Huck, O., et al.: Epithelial cell adhesion on a new laminin-5 functionalized porous titanium material. Int. J. Artif. Organs 31, 639–649 (2008)

    Google Scholar 

  196. Lange, K., Herold, M., Scheideler, L., et al.: Investigation of initial pellicle formation on modified titanium dioxide (TiO2) surfaces by reflectometric interference spectroscopy (RIfS) in a model system. Dent. Mater. 20, 814–822 (2004)

    Google Scholar 

  197. Rezania, A., Healy, K.E.: Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol. Prog. 15, 19–32 (1999)

    Google Scholar 

  198. Lynch, S.E., Buser, D., Hernandez, R.A., et al.: Effects of the platelet-derived growth-factor insulin-like growth factor-i combination on bone regeneration around titanium dental implants—results of a pilot-study in beagle dogs. J. Periodontol. 62, 710–716 (1991)

    Google Scholar 

  199. Ito, Y., Chen, G.P., Imanishi, Y.: Micropatterned immobilization of epidermal growth factor to regulate cell function. Bioconjug. Chem. 9, 277–282 (1998)

    Google Scholar 

  200. Kuhl, P.R., Griffithcima, L.G.: Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat. Med. 2, 1022–1027 (1996)

    Google Scholar 

  201. Jensen, E.D., Gopalakrishnan, R., Westendorf, J.J.: Bone morphogenic protein 2 activates protein kinase d to regulate histone deacetylase 7 localization and repression of runx2. J. Biol. Chem. 284, 2225–2234 (2009)

    Google Scholar 

  202. Yamaguchi, A., Komori, T., Suda, T.: Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr. Rev. 21, 393–411 (2000)

    Google Scholar 

  203. Suzawa, M., Takeuchi, Y., Fukumoto, S., et al.: Extracellular matrix-associated bone morphogenetic proteins are essential for differentiation of murine osteoblastic cells in vitro. Endocrinology 140, 2125–2133 (1999)

    Google Scholar 

  204. Fiorellini, J.P., Buser, D., Riley, E., et al.: Effect on bone healing of bone morphogenetic protein placed in combination with endosseous implants: A pilot study in beagle dogs. Int. J. Periodont. Rest. 21, 41–47 (2001)

    Google Scholar 

  205. Marukawa, E., Asahina, I., Oda, M., et al.: Functional reconstruction of the non-human primate mandible using recombinant human bone morphogenetic protein-2. Int. J. Oral Max. Surg. 31, 287–295 (2002)

    Google Scholar 

  206. Seol, Y.J., Park, Y.J., Lee, S.C., et al.: Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J. Biomed. Mater. Res. A 77A, 599–607 (2006)

    Google Scholar 

  207. Leong, L.M., Brickell, P.M.: Bone morphogenetic protein-4. Int. J. Biochem. Cell B 28, 1293–1296 (1996)

    Google Scholar 

  208. Morra, M.: Biochemical modification of titanium surfaces: Peptides and ECM proteins. Eur. Cells Mater. 12, 1–15 (2006)

    ADS  Google Scholar 

  209. Schmidmaier, G., Wildemann, B., Ostapowicz, D., et al.: Long-term effects of local growth factor (IGF-I and TGF-beta 1) treatment on fracture healing—a safety study for using growth factors. J. Orthop. Res. 22, 514–519 (2004)

    Google Scholar 

  210. Ruoslahti, E.: Proteoglycans in cell regulation. J. Biol. Chem. 264, 13369–13372 (1989)

    Google Scholar 

  211. Rammelt, S., Illert, T., Bierbaum, S., et al.: Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 27, 5561–5571 (2006)

    Google Scholar 

  212. Zou, X.N., Li, H.S., Chen, L., et al.: Stimulation of porcine bone marrow stromal cells by hyaluronan, dexamethasone and rhBMP-2. Biomaterials 25, 5375–5385 (2004)

    Google Scholar 

  213. Chen, W.Y.J., Abatangelo, G.: Functions of hyaluronan in wound repair. Wound Repair Regen 7, 79–89 (1999)

    MATH  Google Scholar 

  214. Morra, M., Cassinelli, C., Cascardo, G., et al.: Covalently-linked hyaluronan promotes bone formation around Ti implants in a rabbit model. J. Orthop. Res. 27, 657–663 (2009)

    Google Scholar 

  215. Fisher, L.W., Fedarko, N.S.: Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect. Tissue Res. 44, 33–40 (2003)

    Google Scholar 

  216. Young, M.F.: Bone matrix proteins: Their function, regulation, and relationship to osteoporosis. Osteoporos. Int. 14, S35–S42 (2003)

    Google Scholar 

  217. Yoshitake, H., Rittling, S.R., Denhardt, D.T., et al.: Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. P. Natl. Acad. Sci. USA 96, 8156–8160 (1999)

    ADS  Google Scholar 

  218. Asou, Y., Rittling, S.R., Yoshitake, H., et al.: Osteopontin facilitates angiogenesis, accumulation of osteoclasts, and resorption in ectopic bone. Endocrinology 142, 1325–1332 (2001)

    Google Scholar 

  219. Boskey, A., Spevak, L., Tan, M., et al.: Dentin sialoprotein (DSP) has limited effects on in vitro apatite formation and growth. Calcif. Tissue Int. 67, 472–478 (2000)

    Google Scholar 

  220. Hunter, G.K., Goldberg, H.A.: Nucleation of hydroxyapatite by bone sialoprotein. Proc. Natl. Acad. Sci. USA 90, 8562–8565 (1993)

    ADS  Google Scholar 

  221. Fisher, L.W., Torchia, D.A., Fohr, B., et al.: Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem. Bioph. Res. Co. 280, 460–465 (2001)

    Google Scholar 

  222. Tye, C.E., Rattray, K.R., Warner, K.J., et al.: Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J. Biol. Chem. 278, 7949–7955 (2003)

    Google Scholar 

  223. Fujisawa, R., Kuboki, Y.: Affinity of bone sialoprotein and several other bone and dentin acidic proteins to collagen fibrils. Calcif. Tissue Int. 51, 438–442 (1992)

    Google Scholar 

  224. Tye, C.E., Hunter, G.K., Goldberg, H.A.: Identification of the type I collagen-binding domain of bone sialoprotein and characterization of the mechanism of interaction. J. Biol. Chem. 280, 13487–13492 (2005)

    Google Scholar 

  225. Karadag, A., Ogbureke, K.U.E., Fedarko, N.S., et al.: Bone sialoprotein, matrix metalloproteinase 2, and alpha (v) beta (3) integrin in osteotropic cancer cell invasion. J. Natl. Cancer Inst. 96, 956–965 (2004)

    Google Scholar 

  226. Goldberg, H.A., Warner, K.J., Li, M.C., et al.: Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect. Tissue Res. 42, 25–37 (2001)

    Google Scholar 

  227. Byzova, T.V., Kim, W., Midura, R.J., et al.: Activation of integrin alpha (V) beta (3) regulates cell adhesion and migration to bone sialoprotein. Exp. Cell Res. 254, 299–308 (2000)

    Google Scholar 

  228. Grzesik, W.J., Robey, P.G.: Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J. Bone Miner. Res. 9, 487–496 (1994)

    Google Scholar 

  229. Chen, J., Shapiro, H.S., Sodek, J.: Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J. Bone Miner. Res. 7, 987–997 (1992)

    Google Scholar 

  230. Cooper, L.F., Yliheikkila, P.K., Felton, D.A., et al.: Spatiotemporal assessment of fetal bovine osteoblast culture differentiation indicates a role for BSP in promoting differentiation. J. Bone Miner. Res. 13, 620–632 (1998)

    Google Scholar 

  231. Gordon, J.A., Tye, C.E., Sampaio, A.V., et al.: Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 41, 462–473 (2007)

    Google Scholar 

  232. Luo, G., Ducy, P., Mckee, M.D., et al.: Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78–81 (1997)

    ADS  Google Scholar 

  233. Beertsen, W., Vandenbos, T., Niehof, J.: Mineralization of dentinal collagen sheets complexed with alkaline-phosphatase and integration with newly formed bone following subperiosteal implantation over osseous defects in rat calvaria. Bone Miner. 20, 41–55 (1993)

    Google Scholar 

  234. Bellows, C.G., Aubin, J.E., Heersche, J.N.M.: Initiation and progression of mineralization of bone nodules formed invitro—the role of alkaline-phosphatase and organic phosphate. Bone Miner. 14, 27–40 (1991)

    Google Scholar 

  235. Termine, J.D., Kleinman, H.K., Whitson, S.W., et al.: Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26, 99–105 (1981)

    Google Scholar 

  236. Delany, A.M., Amling, M., Priemel, M., et al.: Osteopenia and decreased bone formation in osteonectin-deficient mice. J. Clin. Invest. 105, 1325–1325, 915 (2000)

    Google Scholar 

  237. Brogden, K.A.: Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrado Aparicio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, X., Li, Y., Aparicio, C. (2013). Biofunctional Coatings for Dental Implants. In: Nazarpour, S. (eds) Thin Films and Coatings in Biology. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2592-8_4

Download citation

Publish with us

Policies and ethics