Skip to main content

Gall Phenotypes – Product of Plant Cells Defensive Responses to the Inducers Attack

  • Chapter
  • First Online:
Plant Defence: Biological Control

Part of the book series: Progress in Biological Control ((PIBC,volume 12))

Abstract

The great variety of gall morphotypes found in nature indicates the wide range of associated herbivores as well as the potentialities of the host plant cells to respond to their stimuli. Even though the galls are commonly seen as the extended phenotype of the gall inducers, they are constituted of plant cells. Therefore, these cells must have their developmental program altered towards new shapes and functions. Some signalizing molecules are evidenced since the first contact of the gall inducer with its host tissues. The closest the stimuli is, the most intense are the responses, in such a way that cytological and histochemical gradients may be generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrahamson WG, Mc Crea KD (1985) Seasonal nutrient dynamics of Solidago altissima (Compositae). Bull Torr Bot Club 112:414–420

    Article  Google Scholar 

  2. Albrecht G, Mustroph A (2003) Localization of sucrose synthase in wheat roots: increased in situ of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 217:252–260

    PubMed  CAS  Google Scholar 

  3. Álvarez R, Encina A, Pérez Hidalgo N (2009) Histological aspects of three Pistacia terebinthus galls induced by three different aphids: Paracletus cimiciformis, Forda marginata and Forda formicaria. Plant Sci 176:133–144

    Article  CAS  Google Scholar 

  4. Arduin M, Kraus JE (1995) Anatomia e ontogenia de galhas foliares de Piptadenia gonoacantha (Fabales, Mimosaceae). Bol Bot Univ São Paulo 14:109–130

    Google Scholar 

  5. Arduin M, Fernandes GW, Kraus JE (2005) Morphogenesis of galls induced by Baccharopelma dracunculifoliae (Hemiptera: Psyllidae) on Baccharis dracunculifolia (Asteraceae) leaves. Braz J Biol 65:559–571

    Article  PubMed  CAS  Google Scholar 

  6. Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, MujinvT TF, Wu C, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed developmental: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14:619–628

    Article  PubMed  CAS  Google Scholar 

  7. Austin JT, Frost E, Vidi PA, Kessler F, Staehlin A (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and biossynthetic enzymes. Plant Cell 18:1693–1703

    Article  PubMed  CAS  Google Scholar 

  8. Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Physiol 141:311

    Article  PubMed  CAS  Google Scholar 

  9. Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    Article  PubMed  CAS  Google Scholar 

  10. Bennett RN, Wallgrosve RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    Article  CAS  Google Scholar 

  11. Bentur JS, Kalode MB (1985) Natural enemies of rice leaf and plant-hoppers in Andhra Pradesh. Entomology 10(4):271–274

    Google Scholar 

  12. Bernays EA, Chapman RF (1994) Hostplant selection by phytophagous insects. Chapman & Hall, London

    Google Scholar 

  13. Boczek J, Griffits DA (1994) Structure and systematics of eriophyid mites (Acari: Eriophyoidea) and their relationship to host plants. In: Williams MAJ (ed.) Plant galls, systematics association special volume, 49. Clarendon, Oxford

    Google Scholar 

  14. Bronner R (1992) The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse JD, Rohfritsch O (eds.) Biology of insect induced galls. Oxford University Press, Oxford

    Google Scholar 

  15. Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  16. Chen M (2008) Inducible direct plant defense against insect herbivores: a review. J Insect Sci 15:101–114. doi:10.1111/j.1744-7917.2008.00190.x

    Article  CAS  Google Scholar 

  17. Chen H, Gonzales-Vigil E, Wilkerson CG, Howe GA (2007) Stability of plant defense proteins in the gut of insect herbivores. Plant Physiol 143:1954–1967

    Article  PubMed  CAS  Google Scholar 

  18. Cook SP (1992) Influence of monoterpene vapors on spruce spider mite, Oligonychus ununguis, adult females. J Chem Ecol 18:1497–1504

    Article  CAS  Google Scholar 

  19. Cornell HV (1983) The secondary chemistry and complex morphology of galls formed by the Cynipinae (Hymenoptera): why and how? Am Midl Nat 110:225–234

    Article  Google Scholar 

  20. Coruh S, Ercisli S (2010) Interactions between galling insects and plant total phenolic contents in Rosa canina L. genotypes. Sci Res Essay 5(14):1935–1937

    Google Scholar 

  21. Crespi BJ, Worobey M (1998) Comparative analysis of gall morphology in Australian gall thrips: the evolution of extended phenotypes. Evolution 52:1686–1696

    Article  Google Scholar 

  22. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosette. Plant Cell Physiol 43:1407–1420

    Article  PubMed  CAS  Google Scholar 

  23. Dodson G (1991) Control of gall morphology: tephritid gallformers (Aciurina spp.) on rabbitbrush (Chrysothamnus). Ecol Entomol 16:177–181

    Article  Google Scholar 

  24. Doke N, Miura Y, Sanchez LM, Park H-J, Noritake T, Yoshokawa H, Kawakita K (1996) The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defense. Gene 179:45–51

    Article  PubMed  CAS  Google Scholar 

  25. Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In: Shorthouse JD, Rohfritsch O (eds.) Biology of insect-induced galls. Oxford University Press, New York

    Google Scholar 

  26. Edwards PJ, Wratten SD (1981) Ecologia das interações entre insetos e plantas. EDUSP, São Paulo

    Google Scholar 

  27. Espírito-Santo MM, Fernandes GW (2007) How many species of gall-inducing insects are there on earth, and where are they? Ann Entomol Soc Am 100:95–99

    Article  Google Scholar 

  28. Fahn A (1979) Secretory tissues in plants. Academic, London

    Google Scholar 

  29. Fahn A (1990) Plant anatomy, 4th edn. Pergamon, New York

    Google Scholar 

  30. Feeny PP (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581

    Article  Google Scholar 

  31. Fernandes GW (1994) Plant mechanical defenses against insect herbivory. Revta Bras Entomol 38(2):421–433

    Google Scholar 

  32. Fernandes GW, Cornelissen TG, Isaias RMS, Lara ACF (2000) Plants fight gall formation: hypersensitivity. Cienc Cult 52:49–54

    Google Scholar 

  33. Fernandes GW, Duarte H, Lüttge U (2003) Hypersensitivity of Fagus sylvatica L. against leaf galling insects. Trees 17:407–411

    Google Scholar 

  34. Floate KD, Fernandes GW, Nilsson JA (1996) Distinguishing intrapopulational categories of plants by their insect faunas: galls on rabbitbrush. Oecologia 105:221–229

    Google Scholar 

  35. Formiga AT, Gonçalves SJMR, Soares GLG, Isaias RMS (2009) Relação entre o teor de fenóis totais e o ciclo das galhas de Cecidomyiidae em Aspidosperma spruceanum Müll. Arg. (Apocynaceae). Acta Bot Bras 23:93–99. doi:10.1590/S0102-33062009000100012

    Article  Google Scholar 

  36. Fosket DE (1994) Plant growth and development: a molecular approach. Academic, San Diego

    Google Scholar 

  37. Garza R, Vera J, Cardona C, Barcenas N, Singh SP (2001) Hypersensitive response of beans to Apion godmani (Coleoptera: Curculionidae). Environ Entomol 94:958–962

    CAS  Google Scholar 

  38. Gershenzon J, Croteau R (1991) Herbivores: their interaction with secondary plant metabolites. Academic, San Diego

    Google Scholar 

  39. Gottlieb OR, Salatino A (1987) Funções e evolução dos óleos essenciais e de suas estruturas secretoras. Ciênc Cult 39:707–716

    CAS  Google Scholar 

  40. Gottlieb OR, Kaplan MAC, Borin MRMB (1996) Biodiversidade. Um Enfoque Químico-Biológico. Editora UFRJ, Rio de Janeiro

    Google Scholar 

  41. Harborne JB (1988) Phytochemical methods: a guide to modern techniques of plant analysis. Chapman & Hall, London

    Google Scholar 

  42. Harper LJ, Schönrogge K, Lim KY, Francis P, Lichtenstein CP (2004) Cynipid galls: insect-induced modifications or plant development create novel plant organs. Plant Cell Environ 27:327–335

    Article  CAS  Google Scholar 

  43. Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492–501

    Article  Google Scholar 

  44. Hartley SE (1999) Are gall insects large rhizobia? Oikos 84:333–342

    Article  Google Scholar 

  45. Hori K (1992) Insect secretions and their effect on plant growth, with special reference to hemipterans. In: Shorthouse JD, Rohfritsch O (eds.) Biology of insect-induced galls. Oxford University Press, Oxford

    Google Scholar 

  46. Inbar M, Wink M, Wool D (2004) The evolution of host plant manipulation by insects: molecular and ecological evidence from gall-forming aphids on Pistacia. Mol Phylogenet Evol 32:504–511

    Article  PubMed  CAS  Google Scholar 

  47. Isaias RMS, Soares GLG, Christiano JCS, Gonçalves SJM (2000) Análise comparativa entre as defesas mecânicas e químicas de Aspidosperma australe Müell. Arg. e Aspidosperma cylindrocarpon Müell. Arg. (Apocynaceae) contra herbivoria. Florest Ambient 7(1):19–30

    Google Scholar 

  48. Jankiewicz LS, Plich H, Antoszewski R (1970) Preliminary studies on the translocation of 14C-Iabelled assimilates and 32P03- towards the gall evoked by Cynips (Diplolepis) quercus-folii L. on oak leaves. Marcellia 36:163–172

    Google Scholar 

  49. Johnson HB (1975) Plant pubescence: an ecological perspective. Bot Rev 41:233–258

    Article  Google Scholar 

  50. Kane NA, Jones CS, Vuorisalo T (1997) Development of galls on leaves of Alnus glutinosa and Alnus incana (Betulaceae) caused by the Eriophyes laevis (Nalepa). Int J Plant Sci 158:13–23

    Article  Google Scholar 

  51. Koch K (1996) Carboydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  PubMed  CAS  Google Scholar 

  52. Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246. doi:10.1016/j.pbi.2004.03.014

    Article  PubMed  CAS  Google Scholar 

  53. Koch KE, Zeng Y (2002) Molecular approaches to altered C partitioning: gene for sucrose metabolism. J Am Soc Hortic Sci 127:474–483

    CAS  Google Scholar 

  54. Kolodziejek I, Koziol J, Waleza M, Mostowska A (2003) Ultrastructure of mesophyll cells and pigment content in senescing of maize and barley. J Plant Growth Regul 22:217–227

    Article  CAS  Google Scholar 

  55. Kraus JE (2009) Galhas: morfogênese, relações ecológicas e importância econômica. In: Tissot-Squalli ML (ed.) Interações ecológicas & biodiversidade. Editora Unijuí, Ijuí

    Google Scholar 

  56. Kraus JE, Arduin M, Venturelli M (2002) Anatomy and ontogenesis of hymenopteran leaf galls of Struthanthus vulgaris Mart. (Loranthaceae). Revta Bras Bot 25:449–458

    Article  Google Scholar 

  57. Levin DA (1973) The role of trichomes in plant defense. Q Rev Biol 48:3–15

    Article  Google Scholar 

  58. Lev-Yadun S (2003) Stem cells in plants are differentiated too. Curr Top Plant Biol 4:93–102

    Google Scholar 

  59. Lindquist EE, Oldfield GN (1996) Evolution of eriophyoid mites in relation to their host plants. In: Lindquist EE, Sabelis MW, Bruin J (eds.) Eriophyoid mites their biology, natural enemies and control. Elsevier Science Publisher, Amsterdam

    Google Scholar 

  60. Liu Z, Lin H, Ye S, Liu Q, Meng Z, Zhang C, Xia Y, Margoliash E, Rao Z, Liu X (2006) Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis. Proc Natl Acad Sci USA 103(24):8965–8970

    Article  PubMed  CAS  Google Scholar 

  61. Lucas PW, Turner IM, Dominy NJ, Yamashita N (2000) Mechanical defences to herbivory. Ann Bot 86:913–920

    Article  Google Scholar 

  62. Mani MS (1964) Ecology of plant galls. W Junk, The Hague

    Google Scholar 

  63. Meyer J (1957) Cécidogenêse comparée de quelques gal1es d’arthropodes et évolution cytologique des tissus nouriciers. Thesis, University of Strasbourg, Strasbourg

    Google Scholar 

  64. Meyer J (1987) Plant galls and gall inducers. Gebrüder Borntraeger, Berlin

    Google Scholar 

  65. Meyer J, Maresquelle HJ (1983) Anatomie des galles. Gerbrüder Borntraeger, Berlin

    Google Scholar 

  66. Mott KA, Gibson AC, O’leary JW (1982) The adaptive significance of amphistomatic leaves. Plant Cell Environ 5(6):455–460

    Article  Google Scholar 

  67. Moura MZD, Isaias RMS, Soares GLG (2005) Ontogenesis of internal secretory cells in leaves of Lantana camara L. (Verbenaceae). Bot J Linn Soc 148:427–431

    Article  Google Scholar 

  68. Moura MZD, Isaias RMS, Soares GLG (2008) Species-specific changes in tissue morphogenesis induced by two arthropod leaf gallers in Lantana camara L. (Verbenaceae). Aust J Bot 56:153–160

    Article  Google Scholar 

  69. Moura MZD, Soares GLG, Isaias RMS (2009) Ontogênese da folha e das galhas induzidas por Aceria lantanae Cook (Acarina: Eriophyidae) em Lantana camara L. (Verbenaceae). Revta Bras Bot 32(2):271–282

    Article  Google Scholar 

  70. Moura MZD, Alves TMA, Soares GLG, Isaias RMS (2009) Intra-specific phenotypic variations in Lantana camara leaves affect host selection by the gall maker Aceria lantanae. Biochem Syst Ecol 37:541–548

    Article  CAS  Google Scholar 

  71. Nyman T (2000) Phylogeny and ecological evolution of gall-inducing sawflies (Hymenoptera: Tenthredinidae). PhD dissertations in Biology. University of Joensuu, Joensuu

    Google Scholar 

  72. Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willow by gall-inducing sawflies. Proc Natl Acad Sci USA 97(24):13184–13187

    Article  PubMed  CAS  Google Scholar 

  73. Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  PubMed  Google Scholar 

  74. Obroucheva NV (2008) Cell elongation as an inseparable component of growth in terrestrial plants. Russ J Dev Biol 39:13–24

    Article  Google Scholar 

  75. Oliveira DC, Isaias RMS (2009) Influence of leaflet age in anatomy and possible adaptive values of the gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae). Revta Biol Trop 57:293–302

    Google Scholar 

  76. Oliveira DC, Isaias RMS (2010) Cytological and histochemical gradients induced by a sucking insect in galls of Aspidosperma australe Arg. Muell (Apocynaceae). Plant Sci 178:350–358

    Article  CAS  Google Scholar 

  77. Oliveira DC, Christiano JCS, Soares GLG, Isaias RMS (2006) Reações de defesas químicas e estruturais de Lonchocarpus muehlbergianus Hassl. (Fabaceae) à ação do galhador Euphalerus ostreoides Crawf. (Hemiptera: Psyllidae). Revta Bras Bot 29:657–667

    CAS  Google Scholar 

  78. Oliveira DC, Drummond MM, Moreira ASFP, Soares GLG, Isaias RMS (2008) Potencialidades morfogênicas de Copaifera langsdorffii Desf. (Fabaceae): super-hospedeira de herbívoros galhadores. Revta Biol Neotrop 5:31–39

    Google Scholar 

  79. Oliveira DC, Magalhães TA, Carneiro RGS, Alvim MN, Isaias RMS (2010) Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns? Protoplasma 242:81–93

    Article  PubMed  CAS  Google Scholar 

  80. Price PW, Fernandes GW, Waring GL (1987) Adaptive nature of insect galls. Environ Entomol 16:15–24

    Google Scholar 

  81. Queiroz CGS, Alonso A, Mares-Guia M, Magalhães AC (1998) Chilling-induced changes in membrane fluidity antioxidant enzyme actives in Coffea arabica L. roots. Biol Plant 41:403–413

    Article  CAS  Google Scholar 

  82. Rao MV, Paliyath G, Ormond DP (1996) Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Cell 8:1809–1819

    Google Scholar 

  83. Redfern M, Askew RR (1992) Plant galls. The Richmond Publishing, Slough

    Google Scholar 

  84. Rehill BJ, Schultz JC (2003) Enhanced invertase activities in the galls of Hormaphis hamamelidis. J Chem Ecol 29:2703–2720

    Article  PubMed  CAS  Google Scholar 

  85. Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds.) Biology of insect-induced galls. Oxford University Press, New York

    Google Scholar 

  86. Rohfritsch O, Shorthouse J (1982) Insect galls. In: Kahls G, Schell J (eds.) Molecular biology of plant tumors. Academic, New York

    Google Scholar 

  87. Rossetti S, Bonatti PM (2001) In situ histochemical monitoring of ozone- and TMV-induced reactive oxygen species in tobacco leaves. Plant Physiol Biochem 39:433–442

    Article  CAS  Google Scholar 

  88. Salnikov VV, Grimson MJ, Seagull RW, Haigler CH (2003) Localization of sucrose synthase and callose in freeze substituted secondary wall stage cotton fibers. Protoplasma 221:175–184

    PubMed  CAS  Google Scholar 

  89. Sánchez-Ramos I, Castañera P (2000) Acaricidal activity of natural monoterpenes on Tyrophagus putrescentiae (Schrank), a mite of stored food. J Stored Prod Res 37:93–101

    Article  PubMed  Google Scholar 

  90. Schönrogge K, Harper LJ, Lichtenstein CP (2000) The protein content of tissue in cynipid galls (Hymenoptera: Cynipidae): similarities between cynipid galls and seeds. Plant Cell Environ 23:215–222

    Article  Google Scholar 

  91. Shannon RE, Brewer JW (1980) Starch and sugar levels in 3 coniferous insect galls. J Appl Entomol 89:526–533

    CAS  Google Scholar 

  92. Shukle RH, Grover PB Jr, Mocelin G (1992) Responses of susceptible and resistant wheat associated with Hessian fly (Diptera: Cecidomyiidae) infestation. Environ Entomol 21:845–853

    Google Scholar 

  93. Soares GLG, Isaias RMS, Gonçalves SJMR, Christiano JCS (2000) Alterações químicas induzidas por coccideos galhadores (Coccoidea, Brachyscelidae) em folhas de Rollinia laurifolia Schdtl. (Annonaceae). Revta Bras Zool 2:103–116

    Google Scholar 

  94. Souza SCPM, Kraus JE, Isaias RMS, Neves LJ (2000) Anatomical and ultrastructural aspects of leaf galls in Ficus microcarpa L. (Moraceae) induced by Gynaikothrips ficorum Marchal (Thysanoptera). Acta Bot Bras 14:57–69

    Google Scholar 

  95. Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge

    Book  Google Scholar 

  96. Stern D (1995) Phylogenetic evidence that aphids, rather than plants, determine gall morphology. Proc R Soc Lond B 260:85–89. doi:10.1098/rspb.1995.0063

    Article  Google Scholar 

  97. Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522. doi:10.1016/S0169-5347(03)00247-7

    Article  Google Scholar 

  98. Subbaiah CC, Sachs MM (2001) Altered patterns of sucrose synthase phosphorylation and localization precede callose induction and root tip death in anoxic maize seedlings. Plant Physiol 125:585–594

    Article  PubMed  CAS  Google Scholar 

  99. Visser JH (1986) Host odor perception in phytophagous insects. Annu Rev Entomol 31:121–144

    Article  Google Scholar 

  100. Wachter R, Langhans M, Aloni R, Gotz S, Weilmunters A, Koops A, Temguia L, Mistrik I, Pavlovkin J, Rascher U (2003) Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens. Plant Physiol 133:1024–1037

    Article  PubMed  CAS  Google Scholar 

  101. Weis AE, Walton R, Crego LR (1988) Reactive plant tissue sites and the population biology of gall makers. Annu Rev Entomol 33:467–486

    Article  Google Scholar 

  102. Westphal E (1980) Responses of some Solanaceae to attack by the gall mite Eriophyes cladophthirus. Plant Dis 64:406–409

    Article  Google Scholar 

  103. Westphal E (1992) Cecidogenesis and resistance phenomena in mite-induced galls. In: Shorthouse JD, Rohfritsch O (eds.) Biology of insect-induced galls. Oxford University Press, New York

    Google Scholar 

  104. Williams MAJ (1994) Plant galls: organisms, interactions, populations. Clarendon, Oxford

    Google Scholar 

  105. Woodman RL, Fernandes GW (1991) Differential mechanical defense: herbivory, evapotranspiration, and leaf-hairs. Oikos 60:11–19

    Article  Google Scholar 

  106. Wu G, Shortt BJ, Lawrence EB, Léon J, Fitzsimmons KC, Levine EB, Raskin I (1995) Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115:427–443

    Google Scholar 

  107. Wu K, Rooney MF, Ferl RJ (1997) The Arabidopsis 14-3-3 multigene family. Plant Physiol 114:1421–1431

    Article  PubMed  CAS  Google Scholar 

  108. Zentgraf U (2007) Oxidative stress and leaf senescence. In: Gan S (ed.) Senescence processes in plants. Blackwell Publishing Ltd./CRC Press, Oxford

    Google Scholar 

  109. Zucker WV (1982) How aphids choose leaves: the roles of phenolics in host selection by a galling aphid. Ecology 63(4):972–981

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosy Mary dos Santos Isaias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Isaias, R.M.d.S., de Oliveira, D.C. (2012). Gall Phenotypes – Product of Plant Cells Defensive Responses to the Inducers Attack. In: Mérillon, J., Ramawat, K. (eds) Plant Defence: Biological Control. Progress in Biological Control, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1933-0_11

Download citation

Publish with us

Policies and ethics