Skip to main content

Synthesis and Design

  • Chapter
Biomateriomics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 165))

  • 1679 Accesses

Abstract

Understanding the “materiome” could provide a blueprint for bio-inspired, high performance functional materials. Successful synthesis and design—materiomic engineering—must extend beyond biomimitics and bio-inspired systems, exploit fundamental mechanisms of self-assembly and hierarchies, and integrate widely available building blocks such as amyloid proteins and DNA. The ultimate goal is not to produce one-off nanodevices or precision made materials, but rather materials that can self-assemble and adapt independently, befitting a range of functions from a common set of building blocks and molecular components.

Until man duplicates a blade of grass, Nature can laugh at his so-called scientific knowledge.

Thomas Edison (1847–1931)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Again, we note the rudimentary airplane of the Wright brothers in 1902 does not compare to the complicated design of a Boeing 787, but it flew nevertheless. In similar fashion, we can currently use the self-assembly processes of Nature in simple, single component or single function systems, with refinement and introduction of complexity in the future.

References

  1. T. Junno, K. Deppert, L. Montelius, L. Samuelson, Controlled manipulation of nanoparticles with an atomic-force microscope. Appl. Phys. Lett. 66(26), 3627–3629 (1995)

    Article  CAS  Google Scholar 

  2. D.M. Eigler, E.K. Schweizer, Positioning single atoms with a scanning tunneling microscope. Nature 344(6266), 524–526 (1990)

    Article  CAS  Google Scholar 

  3. A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler, Molecule cascades. Science 298(5597), 1381–1387 (2002)

    Article  CAS  Google Scholar 

  4. K.F. Kelly, G. Vives, J.H. Kang, J.M. Tour, Molecular machinery: synthesis of a “nanodragster”. Org. Lett. 11(24), 5602–5605 (2009)

    Article  Google Scholar 

  5. C.-I. Brndn, J. Tooze, Introduction to Protein Structure, 2nd edn. (Garland, New York, 2009)

    Google Scholar 

  6. S.G. Zhang, Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21(10), 1171–1178 (2003)

    Article  CAS  Google Scholar 

  7. N. Kol, L. Adler-Abramovich, D. Barlam, R.Z. Shneck, E. Gazit, I. Rousso, Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5(7), 1343–1346 (2005)

    Article  CAS  Google Scholar 

  8. W. Lu, C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater. 6(11), 841–850 (2007)

    Article  CAS  Google Scholar 

  9. T.P.J. Knowles, T.W. Oppenheim, A.K. Buell, D.Y. Chirgadze, M.E. Welland, Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat. Nanotechnol. 5(3), 204–207 (2010)

    Article  CAS  Google Scholar 

  10. M. Fandrich, M.A. Fletcher, C.M. Dobson, Amyloid fibrils from muscle myoglobin—even an ordinary globular protein can assume a rogue guise if conditions are right. Nature 410(6825), 165–166 (2001)

    Article  CAS  Google Scholar 

  11. C.M. Dobson, Protein folding and misfolding. Nature 426(6968), 884–890 (2003)

    Article  CAS  Google Scholar 

  12. R. Kayed, E. Head, J.L. Thompson, T.M. McIntire, S.C. Milton, C.W. Cotman, C.G. Glabe, Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618), 486–489 (2003)

    Article  CAS  Google Scholar 

  13. M. Stefani, Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim. Biophys. Acta, Mol. Basis Dis. 1739(1), 5–25 (2004)

    Article  CAS  Google Scholar 

  14. F. Chiti, C.M. Dobson, Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)

    Article  CAS  Google Scholar 

  15. R. Nelson, M.R. Sawaya, M. Balbirnie, A.O. Madsen, C. Riekel, R. Grothe, D. Eisenberg, Structure of the cross-beta spine of amyloid-like fibrils. Nature 435(7043), 773–778 (2005)

    Article  CAS  Google Scholar 

  16. I.W. Hamley, Peptide fibrillization. Angew. Chem., Int. Ed. 46(43), 8128–8147 (2007)

    Article  CAS  Google Scholar 

  17. T.P. Knowles, A.W. Fitzpatrick, S. Meehan, H.R. Mott, M. Vendruscolo, C.M. Dobson, M.E. Welland, Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318(5858), 1900–1903 (2007)

    Article  CAS  Google Scholar 

  18. R. Paparcone, S. Keten, M.J. Buehler, Atomistic simulation of nanomechanical properties of Alzheimer’s a beta(1-40) amyloid fibrils under compressive and tensile loading. J. Biomech. 43(6), 1196–1201 (2010)

    Article  Google Scholar 

  19. C. Sachse, N. Grigorieff, M. Fandrich, Nanoscale flexibility parameters of Alzheimer amyloid fibrils determined by electron cryo-microscopy. Angew. Chem., Int. Ed. 49(7), 1321–1323 (2010)

    Article  CAS  Google Scholar 

  20. T.P.J. Knowles, M.J. Buehler, Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 6(7), 469–479 (2011)

    Article  CAS  Google Scholar 

  21. A.T. Petkova, Y. Ishii, J.J. Balbach, O.N. Antzutkin, R.D. Leapman, F. Delaglio, R. Tycko, A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state nmr. Proc. Natl. Acad. Sci. USA 99(26), 16742–16747 (2002)

    Article  CAS  Google Scholar 

  22. A.K. Paravastu, R.D. Leapman, W.M. Yau, R. Tycko, Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc. Natl. Acad. Sci. USA 105(47), 18349–18354 (2008)

    Article  CAS  Google Scholar 

  23. R. Paparcone, M.J. Buehler, Microscale structural model of Alzheimer a beta(1-40) amyloid fibril. Appl. Phys. Lett. 94(24), (2009)

    Article  Google Scholar 

  24. L.C. Serpell, M. Sunde, M.D. Benson, G.A. Tennent, M.B. Pepys, P.E. Fraser, The protofilament substructure of amyloid fibrils. J. Mol. Biol. 300(5), 1033–1039 (2000)

    Article  CAS  Google Scholar 

  25. J.L. Jimenez, E.J. Nettleton, M. Bouchard, C.V. Robinson, C.M. Dobson, H.R. Saibil, The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA 99(14), 9196–9201 (2002)

    Article  CAS  Google Scholar 

  26. A. Aggeli, I.A. Nyrkova, M. Bell, R. Harding, L. Carrick, T.C.B. McLeish, A.N. Semenov, N. Boden, Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers. Proc. Natl. Acad. Sci. USA 98(21), 11857–11862 (2001)

    Article  CAS  Google Scholar 

  27. T.P.J. Knowles, J.F. Smith, A. Craig, C.M. Dobson, M.E. Welland, Spatial persistence of angular correlations in amyloid fibrils. Phys. Rev. Lett. 96(23), (2006)

    Google Scholar 

  28. T. Scheibel, R. Parthasarathy, G. Sawicki, X.M. Lin, H. Jaeger, S.L. Lindquist, Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. USA 100(8), 4527–4532 (2003)

    Article  CAS  Google Scholar 

  29. M.F. Perutz, J.T. Finch, J. Berriman, A. Lesk, Amyloid fibers are water filled nanotubes. Proc. Natl. Acad. Sci. USA 99, 5591–5595 (2002)

    Article  CAS  Google Scholar 

  30. A. Baldwin, R. Bader, J. Christodoulou, C. MacPhee, C. Dobson, P. Barker, Cytochrome display on amyloid fibrils. J. Am. Chem. Soc. 128(7), 2162–2163 (2006)

    Article  CAS  Google Scholar 

  31. M. Yemini, M. Reches, J. Risphon, E. Gazit, Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 5, 183–186 (2005)

    Article  CAS  Google Scholar 

  32. A. Corrigan, C. Mueller, M. Krebs, The formation of nematic liquid crystal phases by hen lysozyme amyloid fibrils. J. Am. Chem. Soc. 128(46), 14740–14741 (2006)

    Article  CAS  Google Scholar 

  33. A. Mostaert, M. Higgins, T. Fukuma, F. Rindi, S. Jarvis, Nanoscale mechanical characterisation of amyloid fibrils discovered in a natural adhesive. J. Biol. Phys. 32, 393–401 (2006)

    Article  CAS  Google Scholar 

  34. M.J. Buehler, Nanomaterials: strength in numbers. Nat. Nanotechnol. 5(3), 172–174 (2010)

    Article  CAS  Google Scholar 

  35. C.M. Dobson, J.F. Smith, T.P.J. Knowles, C.E. MacPhee, M.E. Welland, Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. USA 103(43), 15806–15811 (2006)

    Article  Google Scholar 

  36. R. Paparcone, M.A. Pires, M.J. Buehler, Mutations alter the geometry and mechanical properties of Alzheimer’s a beta(1-40) amyloid fibrils. Biochemistry 49(41), 8967–8977 (2010)

    Article  CAS  Google Scholar 

  37. R. Paparcone, S. Cranford, M.J. Buehler, Compressive deformation of ultralong amyloid fibrils. Acta Mech. Sin. 26(6), 977–986 (2010)

    Article  CAS  Google Scholar 

  38. R. Paparcone, M.J. Buehler, Failure of a beta(1-40) amyloid fibrils under tensile loading. Biomaterials 32(13), 3367–3374 (2011)

    Article  CAS  Google Scholar 

  39. R. Paparcone, S.W. Cranford, M.J. Buehler, Self-folding and aggregation of amyloid nanofibrils. Nanoscale 3(4), 1748–1755 (2011)

    Article  CAS  Google Scholar 

  40. J.W. Kelly, Towards an understanding of amyloidogenesis. Nat. Struct. Biol. 9(5), 323–325 (2002)

    Article  CAS  Google Scholar 

  41. R. Winter, R. Jansen, S. Grudzielanek, W. Dzwolak, High pressure promotes circularly shaped insulin amyloid. J. Mol. Biol. 338(2), 203–206 (2004)

    Article  Google Scholar 

  42. L.A. Morozova-Roche, M. Malisauskas, V. Zamotin, J. Jass, W. Noppe, C.M. Dobson, Amyloid protofilaments from the calcium-binding protein equine lysozyme: formation of ring and linear structures depends on ph and metal ion concentration. J. Mol. Biol. 330(4), 879–890 (2003)

    Article  Google Scholar 

  43. B.J. Papenburg, J. Liu, G.A. Higuera, A.M.C. Barradas, J. de Boer, C.A. van Blitterswijk, M. Wessling, D. Stamatialis, Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials 30(31), 6228–6239 (2009)

    Article  CAS  Google Scholar 

  44. T.S. Karande, J.L. Ong, C.M. Agrawal, Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann. Biomed. Eng. 32(12), 1728–1743 (2004)

    Article  Google Scholar 

  45. S. Keten, M.J. Buehler, Geometric confinement governs the rupture strength of h-bond assemblies at a critical length scale. Nano Lett. 8(2), 743–748 (2008)

    Article  CAS  Google Scholar 

  46. S. Keten, Z. Xu, B. Ihle, M.J. Buehler, Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat. Mater. 9(4), 359–367 (2010)

    Article  CAS  Google Scholar 

  47. C.E. MacPhee, C.M. Dobson, Formation of mixed fibrils demonstrates the generic nature and potential utility of amyloid nanostructures. J. Am. Chem. Soc. 122(51), 12707–12713 (2000)

    Article  CAS  Google Scholar 

  48. M. Reches, E. Gazit, Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619), 625–627 (2003)

    Article  CAS  Google Scholar 

  49. O. Carny, D.E. Shalev, E. Gazit, Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold. Nano Lett. 6(8), 1594–1597 (2006)

    Article  CAS  Google Scholar 

  50. Y.L. Sun, Z.P. Luo, A. Fertala, K.N. An, Stretching type ii collagen with optical tweezers. J. Biomech. 37(11), 1665–1669 (2004)

    Article  Google Scholar 

  51. M.J. Buehler, Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture, and self-assembly. J. Mater. Res. 21(8), 1947–1961 (2006)

    Article  CAS  Google Scholar 

  52. A. Valiaev, D.W. Lim, S. Schmidler, R.L. Clark, A. Chilkoti, S. Zauscher, Hydration and conformational mechanics of single, end-tethered elastin-like polypeptides. J. Am. Chem. Soc. 130(33), 10939–10946 (2008)

    Article  CAS  Google Scholar 

  53. J. Djajamuliadi, T.F. Kagawa, K. Ohgo, K.K. Kumashiro, Insights into a putative hinge region in elastin using molecular dynamics simulations. Matrix Biol. 28(2), 92–100 (2009)

    Article  CAS  Google Scholar 

  54. A.E.X. Brown, R.I. Litvinov, D.E. Discher, P.K. Purohit, J.W. Weisel, Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941), 741–744 (2009)

    Article  CAS  Google Scholar 

  55. H. Yan, C. Lin, Y. Liu, Designer DNA nanoarchitectures. Biochemistry 48(8), 1663–1674 (2009)

    Article  Google Scholar 

  56. H. Yan, T.H. LaBean, L.P. Feng, J.H. Reif, Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)

    Article  CAS  Google Scholar 

  57. P.W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  CAS  Google Scholar 

  58. A. Chworos, I. Severcan, A.Y. Koyfman, P. Weinkam, E. Oroudjev, H.G. Hansma, L. Jaeger, Building programmable jigsaw puzzles with RNA. Science 306(5704), 2068–2072 (2004)

    Article  CAS  Google Scholar 

  59. N.C. Seeman, P.S. Lukeman, Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale. Rep. Prog. Phys. 68(1), 237–270 (2005)

    Article  CAS  Google Scholar 

  60. S.H. Park, C. Pistol, S.J. Ahn, J.H. Reif, A.R. Lebeck, C. Dwyer, T.H. LaBean, Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew. Chem., Int. Ed. 45(5), 735–739 (2006)

    Article  CAS  Google Scholar 

  61. J.H. Chen, N.C. Seeman, Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350(6319), 631–633 (1991)

    Article  CAS  Google Scholar 

  62. Y.W. Zhang, N.C. Seeman, Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116(5), 1661–1669 (1994)

    Article  CAS  Google Scholar 

  63. N.C. Seeman, De novo design of sequences for nucleic-acid structural-engineering. J. Biomol. Struct. Dyn. 8(3), 573–581 (1990)

    Article  CAS  Google Scholar 

  64. D.R. Han, S. Pal, J. Nangreave, Z.T. Deng, Y. Liu, H. Yan, DNA origami with complex curvatures in three-dimensional space. Science 332(6027), 342–346 (2011)

    Article  CAS  Google Scholar 

  65. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes—the route toward applications. Science 297(5582), 787–792 (2002)

    Article  CAS  Google Scholar 

  66. R.P. Goodman, I.A.T. Schaap, C.F. Tardin, C.M. Erben, R.M. Berry, C.F. Schmidt, A.J. Turberfield, Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310(5754), 1661–1665 (2005)

    Article  CAS  Google Scholar 

  67. S.R. Bull, L.C. Palmer, N.J. Fry, M.A. Greenfield, B.W. Messmore, T.J. Meade, S.I. Stupp, A templating approach for monodisperse self-assembled organic nanostructures. J. Am. Chem. Soc. 130(9), 2742–2743 (2008)

    Article  CAS  Google Scholar 

  68. O. Ikkala, G. ten Brinke, Hierarchical self-assembly in polymeric complexes: towards functional materials. Chem. Commun., 2131–2137 (2004)

    Google Scholar 

  69. L. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, P. Samor, Electric-field-assisted alignment of supramolecular fibers. Adv. Mater. 18(10), 1276–1280 (2006)

    Article  CAS  Google Scholar 

  70. K. Tanaka, A. Tengeiji, T. Kato, N. Toyama, M. Shionoya, A discrete self-assembled metal array in artificial DNA. Science 299(5610), 1212–1213 (2003)

    Article  CAS  Google Scholar 

  71. M. Surin, P.G.A. Janssen, R. Lazzaroni, P. Leclere, E.W. Meijer, A.P.H.J. Schenning, Supramolecular organization of ssDNA-templated π-conjugated oligomers via hydrogen bonding. Adv. Mater. 21(10–11), 1126–1130 (2009)

    Article  CAS  Google Scholar 

  72. P.G.A. Janssen, J. Vandenbergh, J.L.J. van Dongen, E.W. Meijer, A.P.H.J. Schenning, ssDNA templated self-assembly of chromophores. J. Am. Chem. Soc. 129(19), 6078–6079 (2007)

    Article  CAS  Google Scholar 

  73. P. Jonkheijm, A. Miura, M. Zdanowska, F.J.M. Hoeben, S. De Feyter, A.P.H.J. Schenning, F.C. De Schryver, E.W. Meijer, p-conjugated oligo-(p-phenylenevinylene) rosettes and their tubular self-assembly. Angew. Chem., Int. Ed. 43(1), 74–78 (2004)

    Article  Google Scholar 

  74. F. Wurthner, Z. Chen, F.J.M. Hoeben, P. Osswald, C.-C. You, P. Jonkheijm, J.v. Herrikhuyzen, A.P.H.J. Schenning, P.P.A.M. van der Schoot, E.W. Meijer, E.H.A. Beckers, S.C.J. Meskers, R.A.J. Janssen, Supramolecular p-n-heterojunctions by co-self-organization of oligo(p-phenylene vinylene) and perylene bisimide dyes. J. Am. Chem. Soc. 126(34), 10611–10618 (2004)

    Article  Google Scholar 

  75. A. Furka, Combinatorial chemistry: 20 years on … . Drug Discov. Today 7(1), 1–4 (2002)

    Article  Google Scholar 

  76. M.H. Hecht, A. Das, A. Go, L.H. Bradley, Y.N. Wei, De novo proteins from designed combinatorial libraries. Protein Sci. 13(7), 1711–1723 (2004)

    Article  CAS  Google Scholar 

  77. S.E. Blondelle, E. Takahashi, R.A. Houghten, E. PerezPaya, Rapid identification of compounds with enhanced antimicrobial activity by using conformationally defined combinatorial libraries. Biochem. J. 313, 141–147 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cranford, S.W., Buehler, M.J. (2012). Synthesis and Design. In: Biomateriomics. Springer Series in Materials Science, vol 165. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1611-7_10

Download citation

Publish with us

Policies and ethics