Skip to main content

Inferior Olive: All Ins and Outs

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

The inferior olive provides all climbing fibers to the Purkinje cells in the cerebellar cortex and thereby has a strong impact on cerebellar output. As a consequence, the integration of inputs to olivary neurons as well as their intrinsic properties are critical for cerebellar function. In this chapter, all issues that are relevant for their ultimate function are addressed. This chapter starts by reviewing developmental aspects such as the origin and migratory routes of inferior olivary neurons and a description of their axonal outgrowth into climbing fibers innervating Purkinje cells. Subsequently, a detailed description of the olivary subdivisions and the ultrastructure of their neuropil is provided. This is characterized by the presence of dendro-dendritic gap junctions located in glomeruli and by the consistently combined excitatory and inhibitory innervation of their coupled spines. Furthermore, the electrophysiological behavior of olivary neurons is described and discussed. Finally, these unique properties are integrated in cellular and system models. Both type of models show that the inferior olive is very well able to control both rate coding and spatiotemporal pattern coding of their postsynaptic target neurons in the cerebellar cortex, cerebellar nuclei, and vestibular nuclei. Abnormalities in their firing properties can contribute to syndromes such as ataxia, palatomyoclonus, and possibly also autism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    J.R. De Gruijl and L.W.J. Bosman contributed equally to this work

References

  • Abbaci M, Barberi-Heyob M, Blondel W, Guillemin F, Didelon J (2008) Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. Biotechniques 45(33–52):56–62

    Google Scholar 

  • Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brûlet P (1995) Forebrain and midbrain regions are deleted in Otx2 -/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290

    PubMed  CAS  Google Scholar 

  • Adams KA, Maida JM, Golden JA, Riddle RD (2000) The transcription factor Lmx1b maintains Wnt1 expression within the isthmic organizer. Development 127:1857–1867

    PubMed  CAS  Google Scholar 

  • Aizenman CD, Linden DJ (1999) Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol 82:1697–1709

    PubMed  CAS  Google Scholar 

  • Aizenman CD, Manis PB, Linden DJ (1998) Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21:827–835

    Article  PubMed  CAS  Google Scholar 

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  • Albus JS (1975) New approach to manipulator control: the cerebellar model articulation controller (CMAC). J Dyn Syst Meas Control 97:220–227

    Article  Google Scholar 

  • Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–463

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Anderson WJ (1972) Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of all microneurons with prolonged x-irradiation started at birth. J Comp Neurol 146:355–406

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1978a) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 179:23–48

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1978b) Prenatal development of the cerebellar system in the rat. II. Cytogenesis and histogenesis of the inferior olive, pontine gray, and the precerebellar reticular nuclei. J Comp Neurol 179:49–75

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1987) Development of the precerebellar nuclei in the rat: II. The intramural olivary migratory stream and the neurogenetic organization of the inferior olive. J Comp Neurol 257:490–512

    Article  PubMed  CAS  Google Scholar 

  • Ambrosiani J, Armengol JA, Martinez S, Puelles L (1996) The avian inferior olive derives from the alar neuroepithelium of the rhombomeres 7 and 8: an analysis by using chick-quail chimeric embryos. Neuroreport 7:1285–1288

    Article  PubMed  CAS  Google Scholar 

  • Amoyel M, Cheng YC, Jiang YJ, Wilkinson DG (2005) Wnt1 regulates neurogenesis and mediates lateral inhibition of boundary cell specification in the zebrafish hindbrain. Development 132:775–785

    Article  PubMed  CAS  Google Scholar 

  • Anderson BJ, Steinmetz JE (1994) Cerebellar and brainstem circuits involved in classical eyeblink conditioning. Rev Neurosci 5:251–273

    Article  PubMed  CAS  Google Scholar 

  • Andersson G, Armstrong DM (1987) Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. J Physiol 385:107–134

    PubMed  CAS  Google Scholar 

  • Aragón F, Vázquez-Echeverría C, Ulloa E, Reber M, Cereghini S, Alsina B, Giraldez F, Pujades C (2005) vHnf1 regulates specification of caudal rhombomere identity in the chick hindbrain. Dev Dyn 234:567–576

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM (1974) Functional significance of connections of the inferior olive. Physiol Rev 54:358–417

    PubMed  CAS  Google Scholar 

  • Armstrong DM, Eccles JC, Harvey RJ, Matthews PBC (1968) Responses in the dorsal accessory olive of the cat to stimulation of hind limb afferents. J Physiol 194:125–145

    PubMed  CAS  Google Scholar 

  • Avanzino L, Bove M, Tacchino A, Ruggeri P, Giannini A, Trompetto C, Abbruzzese G (2009) Cerebellar involvement in timing accuracy of rhythmic finger movements in essential tremor. Eur J Neurosci 30:1971–1979

    Article  PubMed  Google Scholar 

  • Axelrad JE, Louis ED, Honig LS, Flores I, Ross GW, Pahwa R, Lyons KE, Faust PL, Vonsattel JP (2008) Reduced Purkinje cell number in essential tremor: a postmortem study. Arch Neurol 65:101–107

    Article  PubMed  Google Scholar 

  • Ayuso Blanco T, Urriza Mena J, Caballero Martinez C, Iriarte Franco J, Munoz R, Garcia-Bragado F (2006) Insomnio letal familiar: Estudio clínico, neurofisiológico e histopatológico de dos casos. Neurologia 21:414–420

    PubMed  CAS  Google Scholar 

  • Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain 121:889–905

    Article  PubMed  Google Scholar 

  • Bal T, McCormick DA (1997) Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). J Neurophysiol 77:3145–3156

    PubMed  CAS  Google Scholar 

  • Barragan LA, Galindo-Morales JA, Delhaye-Bouchaud N (1983) The microiontophoretic sensitivity of the inferior olivary nucleus to serotonin and related drugs. Proc West Pharmacol Soc 26:151–154

    PubMed  CAS  Google Scholar 

  • Becker N, Seitanidou T, Murphy P, Mattéi MG, Topilko P, Nieto MA, Wilkinson DG, Charnay P, Gilardi-Hebenstreit P (1994) Several receptor tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain. Mech Dev 47:3–17

    Article  PubMed  CAS  Google Scholar 

  • Bell CC, Grimm RJ (1969) Discharge properties of Purkinje cells recorded on single and double microelectrodes. J Neurophysiol 32:1044–1055

    PubMed  CAS  Google Scholar 

  • Bell CC, Kawasaki T (1972) Relations among climbing fiber responses of nearby Purkinje Cells. J Neurophysiol 35:155–169

    PubMed  CAS  Google Scholar 

  • Benardo LS, Foster RE (1986) Oscillatory behavior in inferior olive neurons: mechanism, modulation, cell aggregates. Brain Res Bull 17:773–784

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson F, Jirenhed DA, Svensson P, Hesslow G (2007) Extinction of conditioned blink responses by cerebello-olivary pathway stimulation. Neuroreport 18:1479–1482

    Article  PubMed  Google Scholar 

  • Bergemann AD, Cheng HJ, Brambilla R, Klein R, Flanagan JG (1995) ELF-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites. Mol Cell Biol 15:4921–4929

    PubMed  CAS  Google Scholar 

  • Bernard JF, Buisseret-Delmas C, Compoint C, Laplante S (1984) Harmaline induced tremor. III. A combined simple units, horseradish peroxidase, and 2-deoxyglucose study of the olivocerebellar system in the rat. Exp Brain Res 57:128–137

    Article  PubMed  CAS  Google Scholar 

  • Bishop GA, Ho RH (1984) Substance P and serotonin immunoreactivity in the rat inferior olive. Brain Res Bull 12:105–113

    Article  PubMed  CAS  Google Scholar 

  • Bleasel AF, Pettigrew AG (1992) Development and properties of spontaneous oscillations of the membrane potential in inferior olivary neurons in the rat. Brain Res Dev Brain Res 65:43–50

    Article  PubMed  CAS  Google Scholar 

  • Bleckert A, Wong ROL (2011) Identifying roles for neurotransmission in circuit assembly: insights gained from multiple model systems and experimental approaches. Bioessays 33:61–72

    Article  PubMed  Google Scholar 

  • Blenkinsop TA, Lang EJ (2006) Block of inferior olive gap junctional coupling decreases Purkinje cell complex spike synchrony and rhythmicity. J Neurosci 26:1739–1748

    Article  PubMed  CAS  Google Scholar 

  • Bloch-Gallego E, Ezan F, Tessier-Lavigne M, Sotelo C (1999) Floor plate and netrin-1 are involved in the migration and survival of inferior olivary neurons. J Neurosci 19:4407–4420

    PubMed  CAS  Google Scholar 

  • Bosman LWJ, Konnerth A (2009) Activity-dependent plasticity of developing climbing fiber-Purkinje cell synapses. Neuroscience 162:612–623

    Article  PubMed  CAS  Google Scholar 

  • Bosman LWJ, Hartmann J, Barski JJ, Lepier A, Noll-Hussong M, Reichardt LF, Konnerth A (2006) Requirement of TrkB for synapse elimination in developing Purkinje cells. Brain Cell Biol 35:87–101

    Article  PubMed  CAS  Google Scholar 

  • Bosman LWJ, Takechi H, Hartmann J, Eilers J, Konnerth A (2008) Homosynaptic LTP of the “winner” climbing fiber synapse in developing Purkinje cells. J Neurosci 28:798–807

    Article  PubMed  CAS  Google Scholar 

  • Bosman LWJ, Koekkoek SK, Shapiro J, Rijken BF, Zandstra F, Van der Ende B, Owens CB, Potters JW, De Gruijl JR, Ruigrok TJH, De Zeeuw CI (2010) Encoding of whisker input by cerebellar Purkinje cells. J Physiol 588:3757–3783

    Article  PubMed  CAS  Google Scholar 

  • Bourrat F, Sotelo C (1988) Migratory pathways and neuritic differentiation of inferior olivary neurons in the rat embryo. Axonal tracing study using the in vitro slab technique. Brain Res Dev Brain Res 39:19–37

    Article  Google Scholar 

  • Bowman JP, Sladek JR Jr (1973) Morphology of the inferior olivary complex of the rhesus monkey (Macaca mulatta). J Comp Neurol 152:299–316

    Article  PubMed  CAS  Google Scholar 

  • Broccoli V, Boncinelli E, Wurst W (1999) The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401:164–168

    Article  PubMed  CAS  Google Scholar 

  • Carpenter EM, Goddard JM, Chisaka O, Manley NR, Capecchi MR (1993) Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118:1063–1075

    PubMed  CAS  Google Scholar 

  • Cesa R, Morando L, Strata P (2005) Purkinje cell spinogenesis during architectural rewiring in the mature cerebellum. Eur J Neurosci 22:579–586

    Article  PubMed  Google Scholar 

  • Cesa R, Scelfo B, Strata P (2007) Activity-dependent presynaptic and postsynaptic structural plasticity in the mature cerebellum. J Neurosci 27:4603–4611

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay V, Palay SL (1971) Tendril and glomerular collaterals of climbing fibers in the granular layer of the rat’s cerebellar cortex. Z Anat Entwicklungsgesch 133:247–273

    Article  PubMed  CAS  Google Scholar 

  • Chédotal A, Sotelo C (1992) Early development of olivocerebellar projections in the fetal rat ssing CGRP immunocytochemistry. Eur J Neurosci 4:1159–1179

    Article  PubMed  Google Scholar 

  • Chédotal A, Sotelo C (1993) The “creeper stage” in cerebellar climbing fiber synaptogenesis precedes the “pericellular nest” – ultrastructural evidence with parvalbumin immunocytochemistry. Brain Res Dev Brain Res 76:207–220

    Article  PubMed  Google Scholar 

  • Chi CL, Martinez S, Wurst W, Martin GR (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130:2633–2644

    Article  PubMed  CAS  Google Scholar 

  • Chizhikov VV, Lindgren AG, Mishima Y, Roberts RW, Aldinger KA, Miesegaes GR, Currle DS, Monuki ES, Millen KJ (2010) Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci U S A 107:10725–10730

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Yu E, Kim D, Urbano FJ, Makarenko V, Shin HS, Llinas RR (2010) Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice. J Physiol 588:3031–3043

    Article  PubMed  CAS  Google Scholar 

  • Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6:351–362

    Article  PubMed  CAS  Google Scholar 

  • Condorelli DF, Parenti R, Spinella F, Trovato Salinaro A, Belluardo N, Cardile V, Cicirata F (1998) Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur J Neurosci 10:1202–1208

    Article  PubMed  CAS  Google Scholar 

  • Crepel F (1971) Maturation of climbing fiber responses in the rat. Brain Res 35:272–276

    Article  PubMed  CAS  Google Scholar 

  • Crepel F (1982) Regression of functional synapses in the immature mammalian cerebellum. Trends Neurosci 5:266–269

    Article  Google Scholar 

  • Crepel F, Delhaye-Bouchaud N, Dupont JL (1981) Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, x-irradiated and hypothyroid rats. Brain Res Dev Brain Res 1:59–71

    Article  Google Scholar 

  • Crill WE (1970) Unitary multiple-spiked responses in cat inferior olive nucleus. J Neurophysiol 33:199–209

    PubMed  CAS  Google Scholar 

  • Crill WE, Kennedy TT (1967) Inferior olive of the cat: intracellular recording. Science 157:716–718 (New York)

    Article  PubMed  CAS  Google Scholar 

  • Czubayko U, Sultan F, Thier P, Schwarz C (2001) Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. J Neurophysiol 85:2017–2029

    PubMed  CAS  Google Scholar 

  • Dahmann C, Oates AC, Brand M (2011) Boundary formation and maintenance in tissue development. Nat Rev Genet 12:43–55

    Article  PubMed  CAS  Google Scholar 

  • Davies RR, Hodges JR, Kril JJ, Patterson K, Halliday GM, Xuereb JH (2005) The pathological basis of semantic dementia. Brain 128:1984–1995

    Article  PubMed  Google Scholar 

  • De Gruijl JR, van der Smagt P, De Zeeuw CI (2009) Anticipatory grip force control using a cerebellar model. Neuroscience 162:777–786

    Article  PubMed  CAS  Google Scholar 

  • De Jeu MTG, Van Der Giessen RS, Khosrovani S, De Zeeuw C, Bazzigaluppi P (2010) Olivary wavelets depend on the amplitude of the subthreshold oscillation. In: 7th Fens Forum of European Neuroscience, Amsterdam

    Google Scholar 

  • De Zeeuw C (1990) Ultrastructure of the cat inferior olive. Thesis, Erasmus, Rotterdam, p 198

    Google Scholar 

  • De Zeeuw CI, Ruigrok TJ (1994) Olivary projecting neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei. Brain Res 653:345–350

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Holstege JC, Calkoen F, Ruigrok TJ, Voogd J (1988) A new combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level. Brain Res 447:369–375

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J (1989) Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol 284:12–35

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J (1990a) Mesodiencephalic and cerebellar terminals terminate upon the same dendritic spines in the glomeruli of the cat and rat inferior olive: an ultrastructural study using a combination of [3H]leucine and wheat germ agglutinin coupled horseradish peroxidase anterograde tracing. Neuroscience 34:645–655

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Ruigrok TJ, Holstege JC, Jansen HG, Voogd J (1990b) Intracellular labeling of neurons in the medial accessory olive of the cat: II. Ultrastructure of dendritic spines and their GABAergic innervation. J Comp Neurol 300:478–494

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Ruigrok TJ, Holstege JC, Schalekamp MP, Voogd J (1990c) Intracellular labeling of neurons in the medial accessory olive of the cat: III. Ultrastructure of axon hillock and initial segment and their GABAergic innervation. J Comp Neurol 300:495–510

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Ruigrok TJ, Schalekamp MP, Boesten AJ, Voogd J (1990d) Ultrastructural study of the cat hypertrophic inferior olive following anterograde tracing, immunocytochemistry, and intracellular labeling. Eur J Morphol 28:240–255

    PubMed  Google Scholar 

  • De Zeeuw CI, Wentzel P, Mugnaini E (1993) Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. J Comp Neurol 327:63–82

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Gerrits NM, Voogd J, Leonard CS, Simpson JI (1994) The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group Y and the ventral dentate nucleus. J Comp Neurol 341:420–432

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Hertzberg EL, Mugnaini E (1995) The dendritic lamellar body: a new neuronal organelle putatively associated with dendrodendritic gap junctions. J Neurosci 15:1587–1604

    PubMed  Google Scholar 

  • De Zeeuw CI, Lang EJ, Sugihara I, Ruigrok TJH, Eisenman LM, Mugnaini E, Llinás R (1996) Morphological correlates of bilateral synchrony in the rat cerebellar cortex. J Neurosci 16:3412–3426

    PubMed  Google Scholar 

  • De Zeeuw CI, Koekkoek SKE, Wylie DRW, Simpson JI (1997a) Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system. J Neurophysiol 77:1747–1758

    PubMed  Google Scholar 

  • De Zeeuw CI, Hoogenraad CC, Goedknegt E, Hertzberg E, Neubauer A, Grosveld F, Galjart N (1997b) CLIP-115, a novel brain-specific cytoplasmic linker protein, mediates the localization of dendritic lamellar bodies. Neuron 19:1187–1199

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SKE, Ruigrok TJH (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 21:391–400

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Chorev E, Devor A, Manor Y, Van Der Giessen RS, De Jeu MT, Hoogenraad CC, Bijman J, Ruigrok TJH, French P, Jaarsma D, Kistler WM, Meier C, Petrasch-Parwez E, Dermietzel R, Sohl G, Gueldenagel M, Willecke K, Yarom Y (2003) Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J Neurosci 23:4700–4711

    PubMed  Google Scholar 

  • De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK (2011) Spatiotemporal patterns in the cerebellum. Nat Rev Neurosci 12:327–344

    Article  PubMed  CAS  Google Scholar 

  • Deuschl G, Elble R (2009) Essential tremor–neurodegenerative or nondegenerative disease towards a working definition of ET. Mov Disord 24:2033–2041

    Article  PubMed  Google Scholar 

  • Deuschl G, Toro C, Valls-Solé J, Zeffiro T, Zee DS, Hallett M (1994) Symptomatic and essential palatal tremor. 1. Clinical, physiological and MRI analysis. Brain 117:775–788

    Article  PubMed  Google Scholar 

  • Deuschl G, Wenzelburger R, Löffler K, Raethjen J, Stolze H (2000) Essential tremor and cerebellar dysfunction clinical and kinematic analysis of intention tremor. Brain 123:1568–1580

    Article  PubMed  Google Scholar 

  • Devor A, Yarom Y (2002a) Electrotonic coupling in the inferior olivary nucleus revealed by simultaneous double patch recordings. J Neurophysiol 87:3048–3058

    PubMed  Google Scholar 

  • Devor A, Yarom Y (2002b) Generation and propagation of subthreshold waves in a network of inferior olivary neurons. J Neurophysiol 87:3059–3069

    PubMed  Google Scholar 

  • Di Meglio T, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chédotal A (2008) Molecular mechanisms controlling midline crossing by precerebellar neurons. J Neurosci 28:6285–6294

    Article  PubMed  CAS  Google Scholar 

  • Dikranian K, Qin YQ, Labruyere J, Nemmers B, Olney JW (2005) Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures. Brain Res Dev Brain Res 155:1–13

    Article  PubMed  CAS  Google Scholar 

  • Duester G (2007) Retinoic acid regulation of the somitogenesis clock. Birth Defects Res C Embryo Today 81:84–92

    Article  PubMed  CAS  Google Scholar 

  • Duggan AW, Lodge D, Headley PM, Biscoe TJ (1973) Effects of excitants on neurones and cerebellar-evoked field potentials in the inferior olivary complex of the rat. Brain Res 64:397–401

    Article  PubMed  CAS  Google Scholar 

  • Eccles J, Llinás R, Sasaki K (1964) Excitation of cerebellar Purkinje cells by the climbing fibres. Nature 203:245–246

    Article  PubMed  CAS  Google Scholar 

  • Egea J, Klein R (2007) Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol 17:230–238

    Article  PubMed  CAS  Google Scholar 

  • Eilers J, Plant TD, Marandi N, Konnerth A (2001) GABA-mediated Ca2+ signalling in developing rat cerebellar Purkinje neurones. J Physiol 536:429–437

    Article  PubMed  CAS  Google Scholar 

  • Ekerot CF, Jorntell H (2001) Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur J Neurosci 13:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Ellenberger C Jr, Hanaway J, Netsky MG (1969) Embryogenesis of the inferior olivary nucleus in the rat: A radioautographic study and a re-evaluation of the rhombic lip. J Comp Neurol 137:71–79

    Article  PubMed  Google Scholar 

  • Essick CR (1912) The development of the nuclei pontis and the nucleus arcuatus in man. Am J Anat 13:25–54

    Article  Google Scholar 

  • Farkas Z, Szirmai I, Kamondi A (2006) Impaired rhythm generation in essential tremor. Mov Disord 21:1196–1199

    Article  PubMed  Google Scholar 

  • Foster RE, Peterson BE (1986) The inferior olivary complex of guinea pig: cytoarchitecture and cellular morphology. Brain Res Bull 17:785–800

    Article  PubMed  CAS  Google Scholar 

  • Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435

    Article  PubMed  CAS  Google Scholar 

  • Frens MA, Mathoera AL, van der Steen J (2001) Floccular complex spike response to transparent retinal slip. Neuron 30:795–801

    Article  PubMed  CAS  Google Scholar 

  • Frohman MA, Martin GR, Cordes SP, Halamek LP, Barsh GS (1993) Altered rhombomere-specific gene expression and hyoid bone differentiation in the mouse segmentation mutant, kreisler (kr). Development 117:925–936

    PubMed  CAS  Google Scholar 

  • Fujita M (1982) Adaptive filter model of the cerebellum. Biol Cybern 45:195–206

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Dominguez M, Gilardi-Hebenstreit P, Charnay P (2006) PIASxβ acts as an activator of Hoxb1 and is antagonized by Krox20 during hindbrain segmentation. EMBO J 25:2432–2442

    Article  PubMed  CAS  Google Scholar 

  • Gibson AR, Horn KM, Pong M (2004) Activation of climbing fibers. Cerebellum 3:212–221 (London, England)

    Article  PubMed  Google Scholar 

  • Granit R, Phillips CG (1956) Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J Physiol 133:520–547

    PubMed  CAS  Google Scholar 

  • Guo C, Qiu HY, Huang Y, Chen H, Yang RQ, Chen SD, Johnson RL, Chen ZF, Ding YQ (2007) Lmx1b is essential for Fgf8 and Wnt1 expression in the isthmic organizer during tectum and cerebellum development in mice. Development 134:317–325

    Article  PubMed  CAS  Google Scholar 

  • Gwyn DG, Nicholson GP, Flumerfelt BA (1977) The inferior olivary nucleus of the rat: a light and electron microscopic study. J Comp Neurol 174:489–520

    Article  PubMed  CAS  Google Scholar 

  • Hámori J, Szentágothai J (1966) Identification under the electron microscope of climbing fibers and their synaptic contacts. Exp Brain Res 1:65–81

    Article  PubMed  Google Scholar 

  • Hámori J, Szentágothai J (1980) Lack of evidence of synaptic contacts by climbing fibre collaterals to basket and stellate cells in developing rat cerebellar cortex. Brain Res 186:454–457

    Article  PubMed  Google Scholar 

  • Handforth A, Homanics GE, Covey DF, Krishnan K, Lee JY, Sakimura K, Martin FC, Quesada A (2010) T-type calcium channel antagonists suppress tremor in two mouse models of essential tremor. Neuropharmacology 59:380–387

    Article  PubMed  CAS  Google Scholar 

  • Hansel C (2009) Reading the clock: how Purkinje cells decode the phase of olivary oscillations. Neuron 62:308–309

    Article  PubMed  CAS  Google Scholar 

  • Harkmark W (1954) Cell migrations from the rhombic lip to the inferior olive, the nucleus raphe and the pons; a morphological and experimental investigation on chick embryos. J Comp Neurol 100:115–209

    Article  PubMed  CAS  Google Scholar 

  • Harper RM, Woo MA, Alger JR (2000) Visualization of sleep influences on cerebellar and brainstem cardiac and respiratory control mechanisms. Brain Res Bull 53:125–131

    Article  PubMed  CAS  Google Scholar 

  • Harvey JA, Romano AG (1993) Harmaline-induced impairment of Pavlovian conditioning in the rabbit. J Neurosci 13:1616–1623

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Kano M (2003) Functional differentiation of multiple climbing fiber inputs during synapse elimination in the developing cerebellum. Neuron 38:785–796

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Kano M (2005) Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neurosci Res 53:221–228

    Article  PubMed  Google Scholar 

  • Hashimoto K, Ichikawa R, Takechi H, Inoue Y, Aiba A, Sakimura K, Mishina M, Hashikawa T, Konnerth A, Watanabe M, Kano M (2001) Roles of glutamate receptor δ2 subunit (GluRδ2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J Neurosci 21:9701–9712

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Ichikawa R, Kitamura K, Watanabe M, Kano M (2009a) Translocation of a “winner” climbing fiber to the Purkinje cell dendrite and subsequent elimination of “losers” from the soma in developing cerebellum. Neuron 63:106–118

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M (2009b) Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum. Neuroscience 162:601–611

    Article  PubMed  CAS  Google Scholar 

  • Häusser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19:665–678

    Article  PubMed  Google Scholar 

  • Hernandez RE, Rikhof HA, Bachmann R, Moens CB (2004) vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish. Development 131:4511–4520

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo-Sánchez M, Millet S, Simeone A, Alvarado-Mallart RM (1999) Comparative analysis of Otx2, Gbx2, Pax2, Fgf8 and Wnt1 gene expressions during the formation of the chick midbrain/hindbrain domain. Mech Dev 81:175–178

    Article  PubMed  Google Scholar 

  • Hidalgo-Sánchez M, Millet S, Bloch-Gallego E, Alvarado-Mallart RM (2005) Specification of the meso-isthmo-cerebellar region: the Otx2/Gbx2 boundary. Brain Res Brain Res Rev 49:134–149

    Article  PubMed  Google Scholar 

  • Hilson JB, Merchant SN, Adams JC, Joseph JT (2009) Wolfram syndrome: a clinicopathologic correlation. Acta Neuropathol 118:415–428

    Article  PubMed  Google Scholar 

  • Hirai H, Pang Z, Bao D, Miyazaki T, Li L, Miura E, Parris J, Rong Y, Watanabe M, Yuzaki M, Morgan JI (2005) Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci 8:1534–1541

    Article  PubMed  CAS  Google Scholar 

  • His W (1891) Die Entwicklung des menschlichen Rautenhirns vom Ende des ersten bis zum Beginn des dritten Monats. Abhandlungen der mathematisch-physischen Classe der Königlichen Sachsischen Gesellschaft der Wissenschaften 17:1–74

    Google Scholar 

  • Hoffman DL, Sladek JR Jr (1973) The distribution of catecholamines within the inferior olivary complex of the gerbil and rabbit. J Comp Neurol 151:101–112

    Article  PubMed  CAS  Google Scholar 

  • Hoge G, Davidson KG, Yasumura T, Castillo PE, Rash JE, Pereda AE (2010) The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous. J Neurophysiol 105:1089–1101

    Article  PubMed  Google Scholar 

  • Holmberg M, Duyckaerts C, Dürr A, Cancel G, Gourfinkel-An I, Damier P, Faucheux B, Trottier Y, Hirsch EC, Agid Y, Brice A (1998) Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 7:913–918

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa R, Miyazaki T, Kano M, Hashikawa T, Tatsumi H, Sakimura K, Mishina M, Inoue Y, Watanabe M (2002) Distal extension of climbing fiber territory and multiple innervation caused by aberrant wiring to adjacent spiny branchlets in cerebellar Purkinje cells lacking glutamate receptor δ2. J Neurosci 22:8487–8503

    PubMed  CAS  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  • Ito M, Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33:253–258

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324:113–134

    PubMed  CAS  Google Scholar 

  • Izhikevic EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge, MA/London

    Google Scholar 

  • Jacobson GA, Rokni D, Yarom Y (2008a) A model of the olivo-cerebellar system as a temporal pattern generator. Trends Neurosci 31:617–625

    Article  PubMed  CAS  Google Scholar 

  • Jacobson SW, Stanton ME, Molteno CD, Burden MJ, Fuller DS, Hoyme HE, Robinson LK, Khaole N, Jacobson JL (2008b) Impaired eyeblink conditioning in children with fetal alcohol syndrome. Alcohol Clin Exp Res 32:365–372

    Article  PubMed  Google Scholar 

  • Jahnsen H (1986) Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol Lond 372:129–147

    PubMed  CAS  Google Scholar 

  • Joyner AL, Liu A, Millet S (2000) Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 12:736–741

    Article  PubMed  CAS  Google Scholar 

  • Kakizawa S, Miyazaki T, Yanagihara D, Iino M, Watanabe M, Kano M (2005) Maintenance of presynaptic function by AMPA receptor-mediated excitatory postsynaptic activity in adult brain. Proc Natl Acad Sci U S A 102:19180–19185

    Article  PubMed  CAS  Google Scholar 

  • Kamei I, Shiosaka S, Senba E, Takagi H, Sakanaka M, Inagaki S, Takatsuki K, Nakai K, Imai H, Itakura T, Komai N, Tohyama M (1981) Comparative anatomy of the distribution of catecholamines within the inferior olivary complex from teleosts to primates. J Comp Neurol 202:125–133

    Article  PubMed  CAS  Google Scholar 

  • Kano M, Hashimoto K (2009) Synapse elimination in the central nervous system. Curr Opin Neurobiol 19:154–161

    Article  PubMed  CAS  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Kazantsev VB, Nekorkin VI, Makarenko VI, Llinas R (2003) Olivo-cerebellar cluster-based universal control system. Proc Natl Acad Sci U S A 100:13064–13068

    Article  PubMed  CAS  Google Scholar 

  • Kemp HA, Cooke JE, Moens CB (2009) EphA4 and EfnB2a maintain rhombomere coherence by independently regulating intercalation of progenitor cells in the zebrafish neural keel. Dev Biol 327:313–326

    Article  PubMed  CAS  Google Scholar 

  • Kesner RP, Jackson-Smith P, Henry C, Amann K (1995) Effects of ibogaine on sensory-motor function, activity, and spatial learning in rats. Pharmacol Biochem Behav 51:103–109

    Article  PubMed  CAS  Google Scholar 

  • Khosrovani S, Van Der Giessen RS, De Zeeuw CI, De Jeu MTG (2007) In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns. Proc Natl Acad Sci U S A 104:15911–15916

    Article  PubMed  CAS  Google Scholar 

  • Kikuta H, Kanai M, Ito Y, Yamasu K (2003) gbx2 Homeobox gene is required for the maintenance of the isthmic region in the zebrafish embryonic brain. Dev Dyn 228:433–450

    Article  PubMed  CAS  Google Scholar 

  • Kim FA, Sing lA, Kaneko T, Bieman M, Stallwood N, Sadl VS, Cordes SP (2005) The vHNF1 homeodomain protein establishes early rhombomere identity by direct regulation of Kreisler expression. Mech Dev 122:1300–1309

    Article  PubMed  CAS  Google Scholar 

  • Kistler WM, De Zeeuw CI (2002) Dynamical working memory and timed responses: the role of reverberating loops in the olivo-cerebellar system. Neural Comput 14:2597–2626

    Article  PubMed  Google Scholar 

  • Kistler WM, De Jeu MT, Elgersma Y, Van Der Giessen RS, Hensbroek R, Luo C, Koekkoek SK, Hoogenraad CC, Hamers FP, Gueldenagel M, Sohl G, Willecke K, De Zeeuw CI (2002) Analysis of Cx36 knockout does not support tenet that olivary gap junctions are required for complex spike synchronization and normal motor performance. Ann N Y Acad Sci 978:391–404

    Article  PubMed  CAS  Google Scholar 

  • Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398

    Article  PubMed  CAS  Google Scholar 

  • Kooy FH (1917) The inferior olive in vertebrates. Folia Neurobiol 10:205–369

    Google Scholar 

  • Köster B, Deuschl G, Lauk M, Timmer J, Guschlbauer B, Lücking CH (2002) Essential tremor and cerebellar dysfunction: abnormal ballistic movements. J Neurol Neurosurg Psychiatry 73:400–405

    Article  PubMed  Google Scholar 

  • Kronenbuerger M, Gerwig M, Brol B, Block F, Timmann D (2007) Eyeblink conditioning is impaired in subjects with essential tremor. Brain 130:1538–1551

    Article  PubMed  Google Scholar 

  • Lampl I, Yarom Y (1993) Subthreshold oscillations of the membrane potential: a functional synchronizing and timing device. J Neurophysiol 70:2181–2186

    PubMed  CAS  Google Scholar 

  • Lampl I, Yarom Y (1997) Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism. Neuroscience 78:325–341

    Article  PubMed  CAS  Google Scholar 

  • Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, Dymecki SM (2005) Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron 48:933–947

    Article  PubMed  CAS  Google Scholar 

  • Lang EJ (2001) Organization of olivocerebellar activity in the absence of excitatory glutamatergic input. J Neurosci 21:1663–1675

    PubMed  CAS  Google Scholar 

  • Lang EJ (2002) GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. J Neurophysiol 87:1993–2008

    PubMed  CAS  Google Scholar 

  • Lang EJ, Sugihara I, Llinás R (1996) GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J Neurophysiol 76:255–275

    PubMed  CAS  Google Scholar 

  • Lang EJ, Sugihara I, Welsh JP, Llinas R (1999) Patterns of spontaneous Purkinje cell complex spike activity in the awake rat. J Neurosci 19:2728–2739

    PubMed  CAS  Google Scholar 

  • Lang EJ, Sugihara I, Llinás R (2006) Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat. J Physiol 571:101–120

    Article  PubMed  CAS  Google Scholar 

  • Larsell O (1947) The development of the cerebellum in man in relation to its comparative anatomy. J Comp Neurol 87:85–129

    Article  PubMed  CAS  Google Scholar 

  • Lecaudey V, Anselme I, Rosa F, Schneider-Maunoury S (2004) The zebrafish Iroquois gene iro7 positions the r4/r5 boundary and controls neurogenesis in the rostral hindbrain. Development 131:3121–3131

    Article  PubMed  CAS  Google Scholar 

  • Lee SMK, Danielian PS, Fritzsch B, McMahon AP (1997) Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124:959–969

    PubMed  CAS  Google Scholar 

  • Leznik E, Llinas R (2005) Role of gap junctions in synchronized neuronal oscillations in the inferior olive. J Neurophysiol 94:2447–2456

    Article  PubMed  Google Scholar 

  • Leznik E, Makarenko V, Llinas R (2002) Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye-imaging study in the inferior olive. J Neurosci 22:2804–2815

    PubMed  Google Scholar 

  • Li JY, Joyner AL (2001) Otx2 and Gbx2 are required for refinement and not induction of mid-hindbrain gene expression. Development 128:4979–4991

    PubMed  CAS  Google Scholar 

  • Liao K, Hong S, Zee DS, Optican LM, Leigh RJ (2008) Impulsive head rotation resets oculopalatal tremor: examination of a model. Prog Brain Res 171:227–234

    Article  PubMed  Google Scholar 

  • Lim CCT, Lim SA (2009) Pendular nystagmus and palatomyoclonus from hypertrophic olivary degeneration. New Engl J Med 360:e12

    Article  PubMed  Google Scholar 

  • Liu Z, Li H, Hu X, Yu L, Liu H, Han R, Colella R, Mower GD, Chen Y, Qiu M (2008) Control of precerebellar neuron development by Olig3 bHLH transcription factor. J Neurosci 28:10124–10133

    Article  PubMed  CAS  Google Scholar 

  • Llinás RR (2009) Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 162:797–804

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Muhlethaler M (1988) Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol 404:241–258

    PubMed  CAS  Google Scholar 

  • Llinás R, Sasaki K (1989) The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recordings. Eur J Neurosci 1:587–602

    Article  PubMed  Google Scholar 

  • Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305:171–195

    PubMed  Google Scholar 

  • Llinás R, Volkind RA (1973) The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res 18:69–87, Experimentelle Hirnforschung

    Article  PubMed  Google Scholar 

  • Llinás R, Yarom Y (1981a) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 315:549–567

    PubMed  Google Scholar 

  • Llinás R, Yarom Y (1981b) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol 315:569–584

    PubMed  Google Scholar 

  • Llinás R, Yarom Y (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol 376:163–182

    PubMed  Google Scholar 

  • Llinás R, Baker R, Sotelo C (1974) Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37:560–571

    PubMed  Google Scholar 

  • Long MA, Deans MR, Paul DL, Connors BW (2002) Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci 22:10898–10905

    PubMed  CAS  Google Scholar 

  • Louis ED, Ferreira JJ (2010) How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord 25:534–541

    Article  PubMed  Google Scholar 

  • Louis ED, Zheng W, Jurewicz EC, Watner D, Chen J, Factor-Litvak P, Parides M (2002) Elevation of blood β-carboline alkaloids in essential tremor. Neurology 59:1940–1944

    Article  PubMed  CAS  Google Scholar 

  • Luebke AE, Robinson DA (1994) Gain changes of the cat’s vestibulo-ocular reflex after flocculus deactivation. Exp Brain Res 98:379–390, Experimentelle Hirnforschung

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Mahmood R, Mason IJ, Morriss-Kay GM (1996) Expression of Fgf-3 in relation to hindbrain segmentation, otic pit position and pharyngeal arch morphology in normal and retinoic acid-exposed mouse embryos. Anat Embryol 194:13–22 (Berl)

    Article  PubMed  CAS  Google Scholar 

  • Manor Y, Rinzel J, Segev I, Yarom Y (1997) Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J Neurophysiol 77:2736–2752

    PubMed  CAS  Google Scholar 

  • Manzanares M, Cordes S, Kwan CT, Sham MH, Barsh GS, Krumlauf R (1997) Segmental regulation of Hoxb-3 by kreisler. Nature 387:191–195

    Article  PubMed  CAS  Google Scholar 

  • Manzanares M, Cordes S, Ariza-McNaughton L, Sadl V, Maruthainar K, Barsh G, Krumlauf R (1999) Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 126:759–769

    PubMed  CAS  Google Scholar 

  • Maqbool A, Batten TF, Berry PA, McWilliam PN (1993) Distribution of dopamine-containing neurons and fibres in the feline medulla oblongata: a comparative study using catecholamine-synthesizing enzyme and dopamine immunohistochemistry. Neuroscience 53:717–733

    Article  PubMed  CAS  Google Scholar 

  • Marcos S, Backer S, Causeret F, Tessier-Lavigne M, Bloch-Gallego E (2009) Differential roles of Netrin-1 and its receptor DCC in inferior olivary neuron migration. Mol Cell Neurosci 41:429–439

    Article  PubMed  CAS  Google Scholar 

  • Mariani J, Changeux JP (1981) Ontogenesis of olivocerebellar relationships. I. Studies by intracellular recordings of the multiple innervation of Purkinje cells by climbing fibers in the developing rat cerebellum. J Neurosci 1:696–702

    PubMed  CAS  Google Scholar 

  • Marillat V, Sabatier C, Failli V, Matsunaga E, Sotelo C, Tessier-Lavigne M, Chédotal A (2004) The slit receptor Rig-1/Robo3 controls midline crossing by hindbrain precerebellar neurons and axons. Neuron 43:69–79

    Article  PubMed  CAS  Google Scholar 

  • Marin F, Charnay P (2000) Hindbrain patterning: FGFs regulate Krox20 and mafB/kr expression in the otic/preotic region. Development 127:4925–4935

    PubMed  CAS  Google Scholar 

  • Mark M, Lufkin T, Vonesch JL, Ruberte E, Olivo JC, Dollé P, Gorry P, Lumsden A, Chambon P (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119:319–338

    PubMed  CAS  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    PubMed  CAS  Google Scholar 

  • Marshall SP, van der Giessen RS, de Zeeuw CI, Lang EJ (2007) Altered olivocerebellar activity patterns in the connexin36 knockout mouse. Cerebellum 6:287–299 (London, England)

    Google Scholar 

  • Martin GF, Dom R, King JS, RoBards M, Watson CRR (1975) The inferior olivary nucleus of the opossum (Didelphis marsupialis virginiana), its organization and connections. J Comp Neurol 160:507–533

    Article  PubMed  CAS  Google Scholar 

  • Martin FC, Le Thu A, Handforth A (2005) Harmaline-induced tremor as a potential preclinical screening method for essential tremor medications. Mov Disord 20:298–305

    Article  PubMed  Google Scholar 

  • Maruta J, Hensbroek RA, Simpson JI (2007) Intraburst and interburst signaling by climbing fibers. J Neurosci 27:11263–11270

    Article  PubMed  CAS  Google Scholar 

  • Mason CA, Christakos S, Catalano SM (1990) Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum. J Comp Neurol 297:77–90

    Article  PubMed  CAS  Google Scholar 

  • Mastick GS, Fan CM, Tessier-Lavigne M, Serbedzija GN, McMahon AP, Easter SS Jr (1996) Early deletion of neuromeres in Wnt-1 -/- mutant mice: evaluation by morphological and molecular markers. J Comp Neurol 374:246–258

    Article  PubMed  CAS  Google Scholar 

  • Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Hausser M (2009) Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62:388–399

    Article  PubMed  CAS  Google Scholar 

  • Matschke J, Laas R (2007) Sudden death due to central alveolar hypoventilation syndrome (Ondine’s curse) in a 39-year-old woman with heterotopia of the inferior olive. Am J Forensic Med Pathol 28:141–144

    Article  PubMed  Google Scholar 

  • Maves L, Jackman W, Kimmel CB (2002) FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 129:3825–3837

    PubMed  CAS  Google Scholar 

  • McCormick DA, Steinmetz JE, Thompson RF (1985) Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Res 359:120–130

    Article  PubMed  CAS  Google Scholar 

  • McKay BE, Turner RW (2005) Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol 567:829–850

    Article  PubMed  CAS  Google Scholar 

  • Mcmahon AP, Bradley A (1990) The Wnt-1 (Int-1) Protooncogene Is Required for Development of a Large Region of the Mouse-Brain. Cell 62:1073–1085

    Article  PubMed  CAS  Google Scholar 

  • Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD (2000) Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci 20:5516–5525

    PubMed  CAS  Google Scholar 

  • Medina JF, Nores WL, Mauk MD (2002) Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature 416:330–333

    Article  PubMed  CAS  Google Scholar 

  • Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM (1996) The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development 122:3785–3797

    PubMed  CAS  Google Scholar 

  • Millet S, Campbell K, Epstein DJ, Losos K, Harris E, Joyner AL (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401:161–164

    Article  PubMed  CAS  Google Scholar 

  • Miyashita Y, Nagao S (1984) Contribution of cerebellar intracortical inhibition to Purkinje cell response during vestibulo-ocular reflex of alert rabbits. J Physiol 351:251–262

    PubMed  CAS  Google Scholar 

  • Miyazaki T, Hashimoto K, Shin HS, Kano M, Watanabe M (2004) P/Q-type Ca2+ channel α1A regulates synaptic competition on developing cerebellar Purkinje cells. J Neurosci 24:1734–1743

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Yamasaki M, Takeuchi T, Sakimura K, Mishina M, Watanabe M (2010) Ablation of glutamate receptor GluRδ2 in adult Purkinje cells causes multiple innervation of climbing fibers by inducing aberrant invasion to parallel fiber innervation territory. J Neurosci 30:15196–15209

    Article  PubMed  CAS  Google Scholar 

  • Montagna P, Gambetti P, Cortelli P, Lugaresi E (2003) Familial and sporadic fatal insomnia. Lancet Neurol 2:167–176

    Article  PubMed  CAS  Google Scholar 

  • Morara S, van der Want JJL, de Weerd H, Provini L, Rosina A (2001) Ultrastructural analysis of climbing fiber-Purkinje cell synaptogenesis in the rat cerebellum. Neuroscience 108:655–671

    Article  PubMed  CAS  Google Scholar 

  • Mukamel EA, Nimmerjahn A, Schnitzer MJ (2009) Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63:747–760

    Article  PubMed  CAS  Google Scholar 

  • Nelson BJ, Mugnaini E (1988) The rat inferior olive as seen with immunostaining for glutamate decarboxylase. Anat Embryol 179:109–127 (Berl)

    Article  PubMed  CAS  Google Scholar 

  • Nemecek S, Wolff J (1969) Light and electron microscopic evidence of complex synapses (glomeruli) in oliva inferior (cat). Experientia 25:634–635

    Article  PubMed  CAS  Google Scholar 

  • Nishida K, Hoshino M, Kawaguchi Y, Murakami F (2010) Ptf1a directly controls expression of immunoglobulin superfamily molecules Nephrin and Neph3 in the developing central nervous system. J Biol Chem 285:373–380

    Article  PubMed  CAS  Google Scholar 

  • Nonchev S, Vesque C, Maconochie M, Seitanidou T, Ariza-McNaughton L, Frain M, Marshall H, Sham MH, Krumlauf R, Charnay P (1996) Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 122:543–554

    PubMed  CAS  Google Scholar 

  • O’Leary JL, Inukai J, Smith JM (1971) Histogenesis of the cerebellar climbing fiber in the rat. J Comp Neurol 142:377–391

    Article  PubMed  Google Scholar 

  • Ohtsuki G, Hirano T (2008) Bidirectional plasticity at developing climbing fiber-Purkinje neuron synapses. Eur J Neurosci 28:2393–2400

    Article  PubMed  Google Scholar 

  • Ohtsuki G, Kawaguchi SY, Mishina M, Hirano T (2004) Enhanced inhibitory synaptic transmission in the cerebellar molecular layer of the GluRδ2 knock-out mouse. J Neurosci 24:10900–10907

    Article  PubMed  CAS  Google Scholar 

  • Onodera S, Hicks TP (1995) Patterns of transmitter labelling and connectivity of the cat’s nucleus of Darkschewitsch: a wheat germ agglutinin-horseradish peroxidase and immunocytochemical study at light and electron microscopical levels. J Comp Neurol 361:553–573

    Article  PubMed  CAS  Google Scholar 

  • Osumi-Yamashita N, Ninomiya Y, Doi H, Eto K (1996) Rhombomere formation and hind-brain crest cell migration from prorhombomeric origins in mouse embryos. Dev Growth Differ 38:107–118

    Article  Google Scholar 

  • Oxtoby E, Jowett T (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res 21:1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Ozden I, Sullivan MR, Lee HM, Wang SS (2009) Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar Purkinje neurons. J Neurosci 29:10463–10473

    Article  PubMed  CAS  Google Scholar 

  • Packer AI, Crotty DA, Elwell VA, Wolgemuth DJ (1998) Expression of the murine Hoxa4 gene requires both autoregulation and a conserved retinoic acid response element. Development 125:1991–1998

    PubMed  CAS  Google Scholar 

  • Pare M, Descarries L, Wiklund L (1987) Innervation and reinnervation of rat inferior olive by neurons containing serotonin and substance P: an immunohistochemical study after 5,6-dihydroxytryptamine lesioning. J Neurocytol 16:155–167

    Article  PubMed  CAS  Google Scholar 

  • Park YG, Park HY, Lee CJ, Choi S, Jo S, Choi H, Kim YH, Shin HS, Llinas RR, Kim D (2010) Ca(V)3.1 is a tremor rhythm pacemaker in the inferior olive. Proc Natl Acad Sci U S A 107:10731–10736

    Article  PubMed  CAS  Google Scholar 

  • Placantonakis D, Welsh J (2001) Two distinct oscillatory states determined by the NMDA receptor in rat inferior olive. J Physiol 534:123–140

    Article  PubMed  CAS  Google Scholar 

  • Placantonakis DG, Schwarz C, Welsh JP (2000) Serotonin suppresses subthreshold and suprathreshold oscillatory activity of rat inferior olivary neurones in vitro. J Physiol 524(Pt 3):833–851

    Article  PubMed  CAS  Google Scholar 

  • Porrill J, Dean P, Stone JV (2004) Recurrent cerebellar architecture solves the motor-error problem. Proceedings 271:789–796

    Google Scholar 

  • Powers RE, O’Connor DT, Price DL (1990) Noradrenergic innervation of human inferior olivary complex. Brain Res 523:151–155

    Article  PubMed  CAS  Google Scholar 

  • Prandota J (2010) Neuropathological changes and clinical features of autism spectrum disorder participants are similar to that reported in congenital and chronic cerebral toxoplasmosis in humans and mice. Res Autism Spectrum Disord 4:103–118

    Article  Google Scholar 

  • Purves D, Lichtman JW (1980) Elimination of synapses in the developing nervous system. Science 210:153–157

    Article  PubMed  CAS  Google Scholar 

  • Raike RS, Jinnah HA, Hess EJ (2005) Animal models of generalized dystonia. NeuroRx 2:504–512

    Article  PubMed  Google Scholar 

  • Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19:1663–1674

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1909) Histologie du système nerveux de l’homme et des vertébrés. Maloine, Paris

    Google Scholar 

  • Ray RS, Dymecki SM (2009) Rautenlippe Redux – toward a unified view of the precerebellar rhombic lip. Curr Opin Cell Biol 21:741–747

    Article  PubMed  CAS  Google Scholar 

  • Renier N, Schonewille M, Giraudet F, Badura A, Tessier-Lavigne M, Avan P, De Zeeuw CI, Chédotal A (2010) Genetic dissection of the function of hindbrain axonal commissures. PLoS Biol 8:e1000325

    Article  PubMed  CAS  Google Scholar 

  • Robain O, Bideau I, Farkas E (1981) Developmental changes of synapses in the cerebellar cortex of the rat. A quantitative analysis. Brain Res 206:1–8

    Article  PubMed  CAS  Google Scholar 

  • Rondi-Reig L, Delhaye-Bouchaud N, Mariani J, Caston J (1997) Role of the inferior olivary complex in motor skills and motor learning in the adult rat. Neuroscience 77:955–963

    Article  PubMed  CAS  Google Scholar 

  • Rossel M, Capecchi MR (1999) Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126:5027–5040

    PubMed  CAS  Google Scholar 

  • Rubenstein JLR, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580

    Article  PubMed  CAS  Google Scholar 

  • Ruigrok TJ (1997) Cerebellar nuclei: the olivary connection. Prog Brain Res 114:167–192

    Article  PubMed  CAS  Google Scholar 

  • Ruigrok TJ, Voogd J (2000) Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J Comp Neurol 426:209–228

    Article  PubMed  CAS  Google Scholar 

  • Ruigrok TJ, de Zeeuw CI, van der Burg J, Voogd J (1990) Intracellular labeling of neurons in the medial accessory olive of the cat: I. Physiology and light microscopy. J Comp Neurol 300:462–477

    Article  PubMed  CAS  Google Scholar 

  • Sakurai Y, Kurokawa D, Kiyonari H, Kajikawa E, Suda Y, Aizawa S (2010) Otx2 and Otx1 protect diencephalon and mesencephalon from caudalization into metencephalon during early brain regionalization. Dev Biol 347:392–403

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Bower JM, Llinás R (1989) Multiple Purkinje cell recording in rodent cerebellar cortex. Eur J Neurosci 1:572–586

    Article  PubMed  Google Scholar 

  • Sato Y, Miura A, Fushiki H, Kawasaki T, Watanabe Y (1993) Complex spike responses of cerebellar Purkinje cells to constant velocity optokinetic stimuli in the cat flocculus. Acta Otolaryngol Suppl 504:13–16

    Article  PubMed  CAS  Google Scholar 

  • Scelfo B, Strata P (2005) Correlation between multiple climbing fibre regression and parallel fibre response development in the postnatal mouse cerebellum. Eur J Neurosci 21:971–978

    Article  PubMed  Google Scholar 

  • Scelfo B, Strata P, Knöpfel T (2003) Sodium imaging of climbing fiber innervation fields in developing mouse Purkinje cells. J Neurophysiol 89:2555–2563

    Article  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1954) Observations on the intracortical relations of the climbing fibers of the cerebellum; a Golgi study. J Comp Neurol 101:733–763

    Article  PubMed  CAS  Google Scholar 

  • Scheibel ME, Scheibel AB (1955) The inferior olive; a Golgi study. J Comp Neurol 102:77–131

    Article  PubMed  CAS  Google Scholar 

  • Schulman JA, Bloom FE (1981) Golgi cells of the cerebellum are inhibited by inferior olive activity. Brain Res 210:350–355

    Article  PubMed  CAS  Google Scholar 

  • Schultz SR, Kitamura K, Post-Uiterweer A, Krupic J, Häusser M (2009) Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring cerebellar Purkinje cells. J Neurosci 29:8005–8015

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer N, Spoelstra J, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Eur J Neurosci 10:95–105

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer N, Doya K, Kawato M (1999) Electrophysiological properties of inferior olive neurons: A compartmental model. J Neurophysiol 82:804–817

    PubMed  CAS  Google Scholar 

  • Schweighofer N, Doya K, Fukai H, Chiron JV, Furukawa T, Kawato M (2004) Chaos may enhance information transmission in the inferior olive. Proc Natl Acad Sci U S A 101:4655–4660

    Article  PubMed  CAS  Google Scholar 

  • Sham MH, Vesque C, Nonchev S, Marshall H, Frain M, Gupta RD, Whiting J, Wilkinson D, Charnay P, Krumlauf R (1993) The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. Cell 72:183–196

    Article  PubMed  CAS  Google Scholar 

  • Silver RA, Momiyama A, Cull-Candy SG (1998) Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses. J Physiol 510:881–902

    Article  PubMed  CAS  Google Scholar 

  • Simeone A (2000) Positioning the isthmic organizer where Otx2 and Gbx2 meet. Trends Genet 16:237–240

    Article  PubMed  CAS  Google Scholar 

  • Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E (1992) Nested expression domains of four homeobox genes in developing rostral brain. Nature 358:687–690

    Article  PubMed  CAS  Google Scholar 

  • Simpson JI, Wylie DR, De Zeeuw CI (1996) On climbing fiber signals and their consequence(s). BehBrain Sciences 19:380–394

    Google Scholar 

  • Sladek JR Jr, Bowman JP (1975) The distribution of catecholamines within the inferior olivary complex of the cat and rhesus monkey. J Comp Neurol 163:203–213

    Article  PubMed  CAS  Google Scholar 

  • Smirnow AE (1897) Ueber eine besondere Art von Nervenzellen der Molecularschicht des Kleinhirns bei erwachsenen Saugetieren und beim Menschen. Anat Anz 13:636–642

    Google Scholar 

  • Sotelo C, Chédotal A (2005) Development of the olivocerebellar system: migration and formation of cerebellar maps. Prog Brain Res 148:1–20

    Article  PubMed  Google Scholar 

  • Sotelo C, Llinás R, Baker R (1974) Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol 37:541–559

    PubMed  CAS  Google Scholar 

  • Sotelo C, Hillman DE, Zamora AJ, Llinás R (1975) Climbing fiber deafferentation: its action on Purkinje cell dendritic spines. Brain Res 98:574–581

    Article  PubMed  CAS  Google Scholar 

  • Spoelstra J, Schweighofer N, Arbib MA (2000) Cerebellar learning of accurate predictive control for fast-reaching movements. Biol Cybern 82:321–333

    Article  PubMed  CAS  Google Scholar 

  • Srinivas M, Rozental R, Kojima T, Dermietzel R, Mehler M, Condorelli DF, Kessler JA, Spray DC (1999) Functional properties of channels formed by the neuronal gap junction protein connexin36. J Neurosci 19:9848–9855

    PubMed  CAS  Google Scholar 

  • Stone LS, Lisberger SG (1986) Detection of tracking errors by visual climbing fiber inputs to monkey cerebellar flocculus during pursuit eye movements. Neurosci Lett 72:163–168

    Article  PubMed  CAS  Google Scholar 

  • Storm R, Cholewa-Waclaw J, Reuter K, Bröhl D, Sieber M, Treier M, Müller T, Birchmeier C (2009) The bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. Development 136:295–305

    Article  PubMed  CAS  Google Scholar 

  • Strata P (ed) (1989) The olivocerebellar system in motor control. Springer, Berlin

    Google Scholar 

  • Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli FM, Chambon P, Krumlauf R (1998) Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125:1025–1036

    PubMed  CAS  Google Scholar 

  • Sugihara I (2005) Microzonal projection and climbing fiber remodeling in single olivocerebellar axons of newborn rats at postnatal days 4–7. J Comp Neurol 487:93–106

    Article  PubMed  Google Scholar 

  • Sugihara I (2006) Organization and remodeling of the olivocerebellar climbing fiber projection. Cerebellum 5:15–22

    Article  PubMed  Google Scholar 

  • Sugihara I, Lang EJ, Llinas R (1993) Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. J Physiol 470:243–271

    PubMed  CAS  Google Scholar 

  • Sugihara I, Wu H, Shinoda Y (1999) Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol 414:131–148

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I, Wu HS, Shinoda Y (2001) The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci 21:7715–7723

    PubMed  CAS  Google Scholar 

  • Sugihara I, Marshall SP, Lang EJ (2007) Relationship of complex spike synchrony bands and climbing fiber projection determined by reference to aldolase C compartments in crus IIa of the rat cerebellar cortex. J Comp Neurol 501:13–29

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Hopkins N (2001) vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev 15:3217–3229

    Article  PubMed  CAS  Google Scholar 

  • Swayze VW 2nd, Johnson VP, Hanson JW, Piven J, Sato Y, Giedd JN, Mosnik D, Andreasen NC (1997) Magnetic resonance imaging of brain anomalies in fetal alcohol syndrome. Pediatrics 99:232–240

    Article  PubMed  Google Scholar 

  • Swenson C (1983) The afferent connections of the inferior olivary complex in rats. An anterograde study using autoradiografic and axonal degeneration techniques. Neuroscience 8:259–275

    Article  PubMed  CAS  Google Scholar 

  • Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10:735–742

    Article  PubMed  CAS  Google Scholar 

  • Takebayashi H, Ohtsuki T, Uchida T, Kawamoto S, Okubo K, Ikenaka K, Takeichi M, Chisaka O, Nabeshima Y (2002) Non-overlapping expression of Olig3 and Olig2 in the embryonic neural tube. Mech Dev 113:169–174

    Article  PubMed  CAS  Google Scholar 

  • ten Donkelaar HJ, Lammens M (2009) Development of the human cerebellum and its disorders. Clin Perinatol 36:513–530

    Article  PubMed  Google Scholar 

  • Toonen M, van Dijken H, Holstege JC, Ruigrok TJ, Koekkoek SK, Hawkins RK, Teune TM, vd Burg J, De Zeeuw CI (1998) Light microscopic and ultrastructural investigation of the dopaminergic innervation of the ventrolateral outgrowth of the rat inferior olive. Brain Res 802:267–273

    Article  PubMed  CAS  Google Scholar 

  • Tümpel S, Wiedemann LM, Krumlauf R (2009) Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 88:103–137

    Article  PubMed  CAS  Google Scholar 

  • Turker KS, Miles TS (1984) Harmaline disrupts acquisition of conditioned nictitating membrane responses. Brain Res Bull 13:229–233

    Article  PubMed  CAS  Google Scholar 

  • Turker KS, Miles TS (1986) Climbing fiber lesions disrupt conditioning of the nictitating membrane response in the rabbit. Brain Res 363:376–378

    Article  PubMed  CAS  Google Scholar 

  • Urbano FJ, Simpson JI, Llinas RR (2006) Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes. Proc Natl Acad Sci U S A 103:16550–16555

    Article  PubMed  CAS  Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. Ergeb Anat Entwicklungsgesch 41:3–87

    PubMed  CAS  Google Scholar 

  • Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, Dortland B, Wellershaus K, Degen J, Deuchars J, Fuchs EC, Monyer H, Willecke K, De Jeu MT, De Zeeuw CI (2008) Role of olivary electrical coupling in cerebellar motor learning. Neuron 58:599–612

    Article  CAS  Google Scholar 

  • Van der Want JJL, Wiklund L, Guegan M, Ruigrok T, Voogd J (1989) Anterograde tracing of the rat olivocerebellar system with Phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol 288:1–18

    Article  PubMed  Google Scholar 

  • van Essen TA, van der Giessen RS, Koekkoek SK, Vanderwerf F, Zeeuw CI, van Genderen PJ, Overbosch D, de Jeu MT (2010) Anti-malaria drug mefloquine induces motor learning deficits in humans. Front Neurosci 4:191

    Article  PubMed  CAS  Google Scholar 

  • Velarde MG, Nekorkin VI, Kazantsev VB, Makarenko VI, Llinas R (2002) Modeling inferior olive neuron dynamics. Neural Netw 15:5–10

    Article  PubMed  Google Scholar 

  • Verbeek DS (2009) Spinocerebellar ataxia type 23: a genetic update. Cerebellum 8:104–107

    Article  PubMed  CAS  Google Scholar 

  • Voneida TJ, Christie D, Bogdanski R, Chopko B (1990) Changes in instrumentally and classically conditioned limb-flexion responses following inferior olivary lesions and olivocerebellar tractotomy in the cat. J Neurosci 10:3583–3593

    PubMed  CAS  Google Scholar 

  • Wada N, Kishimoto Y, Watanabe D, Kano M, Hirano T, Funabiki K, Nakanishi S (2007) Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission. Proc Natl Acad Sci U S A 104:16690–16695

    Article  PubMed  CAS  Google Scholar 

  • Walberg F, Ottersen OP (1989) Demonstration of GABA immunoreactive cells in the inferior olive of baboons (Papio papio and Papio anubis). Neurosci Lett 101:149–155

    Article  PubMed  CAS  Google Scholar 

  • Walshe J, Maroon H, McGonnell IM, Dickson C, Mason I (2002) Establishment of hindbrain segmental identity requires signaling by FGF3 and FGF8. Curr Biol 12:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Chou AH, Lin AC, Chen SY, Weng YH, Yeh TH (2010a) Polyglutamine-expanded ataxin-7 upregulates Bax expression by activating p53 in cerebellar and inferior olivary neurons. Exp Neurol 224:486–494

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang H, Xia Y, Jiang H, Shen L, Wang S, Shen R, Xu Q, Luo X, Tang B (2010b) Spinocerebellar ataxia type 6: systematic patho-anatomical study reveals different phylogenetically defined regions of the cerebellum and neural pathways undergo different evolutions of the degenerative process. Neuropathology 30:501–514

    CAS  Google Scholar 

  • Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JLR, Martinez S, Martin GR (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124:2923–2934

    PubMed  CAS  Google Scholar 

  • Wassef M, Chédotal A, Cholley B, Thomasset M, Heizmann CW, Sotelo C (1992) Development of the olivocerebellar projection in the rat: I. Transient biochemical compartmentation of the inferior olive. J Comp Neurol 323:519–536

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M (2008) Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells. Tohoku J Exp Med 214:175–190

    Article  PubMed  CAS  Google Scholar 

  • Welsh JP (1998) Systemic harmaline blocks associative and motor learning by the actions of the inferior olive. Eur J Neurosci 10:3307–3320

    Article  PubMed  CAS  Google Scholar 

  • Welsh JP (2002) Functional significance of climbing-fiber synchrony: a population coding and behavioral analysis. Ann N Y Acad Sci 978:188–204

    Article  PubMed  Google Scholar 

  • Welsh JP, Harvey JA (1998) Acute inactivation of the inferior olive blocks associative learning. Eur J Neurosci 10:3321–3332

    Article  PubMed  CAS  Google Scholar 

  • Welsh JP, Lang EJ, Sugihara I, Llinás R (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374:453–457

    Article  PubMed  CAS  Google Scholar 

  • Welsh JP, Ahn ES, Placantonakis DG (2005) Is autism due to brain desynchronization? Int J Dev Neurosci 23:253–263

    Article  PubMed  Google Scholar 

  • White RJ, Schilling TF (2008) How degrading: Cyp26s in hindbrain development. Dev Dyn 237:2775–2790

    Article  PubMed  CAS  Google Scholar 

  • Wiellette EL, Sive H (2003) vhnf1 and Fgf signals synergize to specify rhombomere identity in the zebrafish hindbrain. Development 130:3821–3829

    Article  PubMed  CAS  Google Scholar 

  • Wiklund L, Bjorklund A, Sjolund B (1977) The indolaminergic innervation of the inferior olive. 1. Convergence with the direct spinal afferents in the areas projecting to the cerebellar anterior lobe. Brain Res 131:1–21

    Article  PubMed  CAS  Google Scholar 

  • Wiklund L, Toggenburger G, Cuénod M (1984) Selective retrograde labelling of the rat olivocerebellar climbing fiber system with D-[3H]aspartate. Neuroscience 13:441–468

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R (1989) Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341:405–409

    Article  PubMed  CAS  Google Scholar 

  • Wise AK, Cerminara NL, Marple-Horvat DE, Apps R (2010) Mechanisms of synchronous activity in cerebellar Purkinje cells. J Physiol 588:2373–2390

    Article  PubMed  CAS  Google Scholar 

  • Woodward DJ, Hoffer BJ, Siggins GR, Bloom FE (1971) The ontogenetic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar Purkinje cells. Brain Res 34:73–97

    Article  PubMed  CAS  Google Scholar 

  • Wulff P, Schonewille M, Renzi M, Viltono L, Sassoè-Pognetto M, Badura A, Gao Z, Hoebeek FE, van Dorp S, Wisden W, Farrant M, De Zeeuw CI (2009) Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci 12:1042–1049

    Article  PubMed  CAS  Google Scholar 

  • Wylie DR, De Zeeuw CI, Simpson JI (1995) Temporal relations of the complex spike activity of Purkinje cell pairs in the vestibulocerebellum of rabbits. J Neurosci 15:2875–2887

    PubMed  CAS  Google Scholar 

  • Xu W, Edgley SA (2008) Climbing fibre-dependent changes in Golgi cell responses to peripheral stimulation. J Physiol 586:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Terao M, Terashima T, Fujiyama T, Kawaguchi Y, Nabeshima Y, Hoshino M (2007) Origin of climbing fiber neurons and their developmental dependence on Ptf1a. J Neurosci 27:10924–10934

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Fujinuma M, Hirano S, Hayakawa Y, Clagett-Dame M, Zhang J, McCaffery P (2005) Retinoic acid influences the development of the inferior olivary nucleus in the rodent. Dev Biol 280:421–433

    Article  PubMed  CAS  Google Scholar 

  • Ye WL, Bouchard M, Stone D, Liu XD, Vella F, Lee J, Nakamura H, Ang SL, Busslinger M, Rosenthal A (2001) Distinct regulators control the expression of the mid-hindbrain organizer signal FGF8. Nat Neurosci 4:1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Yee KT, Simon HH, Tessier-Lavigne M, O’Leary DDM (1999) Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24:607–622

    Article  PubMed  CAS  Google Scholar 

  • Yeo CH, Hardiman MJ, Glickstein M (1986) Classical conditioning of the nictitating membrane response of the rabbit. IV. Lesions of the inferior olive. Exp Brain Res 63:81–92, Experimentelle Hirnforschung

    Article  PubMed  CAS  Google Scholar 

  • Ypsilanti AR, Zagar Y, Chedotal A (2010) Moving away from the midline: new developments for Slit and Robo. Development 137:1939–1952

    Article  PubMed  CAS  Google Scholar 

  • Zervas M, Millet S, Ahn S, Joyner AL (2004) Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345–357

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chris I. De Zeeuw or M. T. G. De Jeu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

De Gruijl, J.R., Bosman, L.W.J., De Zeeuw, C.I., De Jeu, M.T.G. (2013). Inferior Olive: All Ins and Outs. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_43

Download citation

Publish with us

Policies and ethics