Skip to main content

Production of Monoclonal Antibodies in Glycoengineered Pichia pastoris

  • Chapter
  • First Online:
Antibody Expression and Production

Part of the book series: Cell Engineering ((CEEN,volume 7))

  • 2915 Accesses

Abstract

Although improvements in antibody expression by mammalian cells are nearing maturation, efforts to improve antibody efficacy through glycoengineering are rapidly expanding. For example, the production of full length monoclonal antibodies with uniform human N-linked glycans by glycoengineered yeast has been used to optimize antibody effector function. The glycoengineered yeast expression platform not only enables elucidation of structure function relationships but also offers a robust and economically viable alternative to mammalian cell expression. This chapter provides an overview of glycobiology, engineering of P. pastoris to secrete recombinant proteins with uniform human N-linked glycans as well as bioprocess considerations in the production of full length monoclonal antibodies by a yeast based expression system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anspach, F. B. C., R. Hartmann, et al. (1999). “Expanded-bed chromatography in primary protein purification.” J Chromatogr 865:129–144.

    Article  CAS  Google Scholar 

  • Azevedo, A. M., P. A. J. Rosa, et al. (2009). “Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing.” Trends Biotechnol 27:240.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, J., D. Ollis (1986). Biochemical Engineering Fundamentals, New York, NY, McGraw-Hill.

    Google Scholar 

  • Barnard, G. C., A. R. Kull, et al. (2010). “High-throughput screening and selection of yeast cell lines expressing monoclonal antibodies.” J Ind Microbiol Biotechnol 37:961–971.

    Article  PubMed  CAS  Google Scholar 

  • Barton, N. W., R. O. Brady, et al. (1991). “Replacement therapy for inherited enzyme defficiency – macrophage targetted glucocerebrosidase for Gaucher’s disease.” N Eng J Med 324(May 23, 1991):1464.

    Article  CAS  Google Scholar 

  • Beck, A., O. Cochet, et al. (2010). “GlycoFi’s technology to control the glycosylation of recombinant therapeutic proteins.” Expert Opin Drug Discov 5(1):95–111.

    Article  CAS  Google Scholar 

  • Beck, A., T. Wurch, et al. (2008). “Therapeutic antibodies and derivatives: from the bench to the clinic.” Curr Pharm Biotechnol 9(6):421–422.

    Article  PubMed  CAS  Google Scholar 

  • Bobrowicz, P., R. C. Davidson, et al. (2004). “Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose.” Glycobiology 14(9):757–766.

    Article  PubMed  CAS  Google Scholar 

  • Boettner, M., C. Lang (2004). “High-throughput expression in microplate format in Pichia pastoris.” Methods Mol Biol 267:277–286.

    CAS  Google Scholar 

  • Boettner, M., B. Prinz, et al. (2002). “Highthroughput screening for expression of heterologous proteins in the yeast Pichia pastoris.” J Biotechnol 99:51–62.

    Article  PubMed  CAS  Google Scholar 

  • Brankamp, R. G., K. Sreekrishna, et al. (1995). “Expression of a synthetic gene encoding the anticoagulant-antimetastatic protein ghilanten by the methylotropic yeast Pichia pastoris.” Protein Expr Purif 6(6):813–820.

    Article  PubMed  CAS  Google Scholar 

  • Brief, B. (2010). “Deal watch: BMS acquires rights for IL-6 inhibitor.” Nat Rev Drug Discov 9:10.

    Google Scholar 

  • Browne, S. M., M. Al-Rubeai (2007). “Selection methods for high producing cell lines.” Trends Biotechnol 25:425–432.

    Article  PubMed  CAS  Google Scholar 

  • Ceaglio, N., et al. (2008). “Novel long-lasting interferon alpha derivatives designed by glycoengineering.” Biochimie 90:437–449.

    Article  PubMed  CAS  Google Scholar 

  • Choi, B. K., P. Bobrowicz, et al. (2003). “Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris.” Proc Natl Acad Sci USA 100(9):5022–5027.

    Article  PubMed  CAS  Google Scholar 

  • Cooney, C. L., D. I. C. Wang, et al. (1968). “Measurement of heat evolution and correlation with oxygen consumption during microbial growth.” Biotechnol Bioeng 11:269–281.

    Article  Google Scholar 

  • Cox, K. M., J. D. Sterling, et al. (2006). “Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor.“ Nat Biotechnol 24(12):1591–1597.

    Article  PubMed  CAS  Google Scholar 

  • Cunha, A. E., J. J. Clemente, R. Gomes, F. Pinto, M. Thomaz, S. Miranda, R. Pinto, D. Moosmayer, P. Donner, M. J. Carrondo (2004). “Methanol induction optimization for scFv antibody fragment production in Pichia pastoris.” Biotechnol Bioeng 86(4):458–467.

    Article  PubMed  CAS  Google Scholar 

  • Damasceno, L. M., K. A. Anderson, et al. (2007). “Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris.” Appl Microbiol Biotechnol 74(2):381–389.

    Article  PubMed  CAS  Google Scholar 

  • Durocher, Y., M. Butler (2009). “Expression systems for therapeutic glycoprotein production.” Curr Opin Biotechnol 20:700–707.

    Article  PubMed  CAS  Google Scholar 

  • Endo, T. (2004). “Structure, function and pathology of O-mannosyl glycans.” Glycoconj J 21:3–7.

    Article  PubMed  CAS  Google Scholar 

  • Fahrner, R. L., H. Iyer, et al. (1999). “The optimal flow rate and column length for maximum production rate of protein A affinity chromatography.“ Bioproc Eng 21(4):287–292.

    Article  CAS  Google Scholar 

  • Fahrner, R. L., H. L. Knudsen, et al. (2001). “Industrial purification of pharmaceutical antibodies: development, operation, and validation of chromatography processes.” Biotechnol Gen Eng Rev 18:301–327.

    CAS  Google Scholar 

  • Feldman, M. F., M. Wacker, et al. (2005). “Engineered N-linked protein glycosylation with diverse O antigen liposaccharide structures in Eschercichia coli.” Proc Natl Acad Sci USA 102(8):3016–3021.

    Article  PubMed  CAS  Google Scholar 

  • Gagnon, P. (1995). Purification Tools for Monoclonal Antibodies. Validated Biosystems, Vol. 33. Tucson, AZ, Omstead, Biopharm. Int.

    Google Scholar 

  • Gasser, B., M. Maurer, et al. (2006). “Engineering of Pichia pastoris for improved production of antibody fragments.” Biotechnol Bioeng 92(2):353–361.

    Article  Google Scholar 

  • Goto, M. (2007). “Protein O-glycosylation in fungi: diverse structures and multiple functions.” Biosci Biotechnol Biochem 71:1415–1427.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, S. R., P. Bobrowicz, et al. (2003). “Production of complex human glycoproteins in yeast.” Science 301(5637):1244–1246.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, S. R., R. C. Davidson, et al. (2006). “Humanization of yeast to produce complex terminally sialylated glycoproteins.” Science 313(5792):1441–1443.

    Article  PubMed  CAS  Google Scholar 

  • Harty, C., S. Strahl, et al. (2001). “O-mannosylation protects mutant alpha-factor precursor from endoplasmic reticulum-associated degradation.” Mol Biol Cell 12:1093–1101.

    PubMed  CAS  Google Scholar 

  • Hensing, M. C. M., R. J. Rouwenhorst, et al. (1995). “Physiological and technological aspects of large scale heterologous protein production with yeast.” Anton Leeuw Int J G 67(3):261–279.

    Article  CAS  Google Scholar 

  • Hjorth, R. (1997). “Expanded-bed adsorption in industrial bioprocessing: recent developments.” Trends Biotechnol 15:230–235.

    Article  PubMed  CAS  Google Scholar 

  • Holz, C., O. Hesse, et al. (2002). “A microscale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae.” Protein Expr Purif 25:372–378.

    Article  PubMed  CAS  Google Scholar 

  • Hossler, P., S. F. Khattak, et al. (2009). “Optimal and consistent protein glycosylation in mammalian cell culture.” Glycobiology 19(9):936–949.

    Article  PubMed  CAS  Google Scholar 

  • Huether, C. M., O. Lienhart, et al. (2005). “Glyco-engineering of moss lacking plant-specific sugar residues.” Plant Biology 7(3):292–299.

    Article  PubMed  CAS  Google Scholar 

  • Ihssen, J., M. Kowarik, et al. (2010). “Production of glycoprotein vaccines in Escherichia coli.” Microb Cell Fact 9:61.

    Article  PubMed  Google Scholar 

  • Jahic, M., J. Knoblechner, et al. (2006). “Interfacing Pichia pastoris cultivation with expanded bed adsorption.” Biotechnol Bioeng 93:1040–1049.

    Article  PubMed  CAS  Google Scholar 

  • Jeffries, R. (2005). “Glycosylation of recombinant antibody therapeutics.” Biotechnol Prog 21:11–16.

    Article  Google Scholar 

  • Jeffries, R. (2007). “Antibody therapeutics: isotype and glycoform selection.” Expert Opin Biol Ther 7:1401–1413.

    Article  Google Scholar 

  • Jenzch, M., M. Lange, et al. (2004). “Bioreactor retrofitting to avoid aeration with oxygen in Pichia pastoris cultivation processes for recombinant protein production.” Chem Eng Res Des 82(A9):1144–1152.

    Article  Google Scholar 

  • Jones, D., N. Kroos, et al. (2003). “High level expression of recombinant IgG in human cell line PER.C6.” Biotechnol Prog 19:163–168.

    Article  PubMed  CAS  Google Scholar 

  • Jungo, C., J. Schenk, et al. (2007). “A quantitative analysis of the benefits of mixed feeds of sorbitol and methanol for the production of recombinant avidin with Pichia pastoris.” J Biotechnol 131(1):57–66.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, B. (2007). “Very large-scale monoclonal antibody purification – the case for conventional unit operations.” Biotechnol Prog 23:995–1008.

    PubMed  CAS  Google Scholar 

  • Kelley, B. (2009). “Industrialization of mAb production technology – the bioprocessing industry at a crossroads.” MAbs 1:1–10.

    Article  Google Scholar 

  • Kobayashi, K., S. Kuwae, T. Ohya, T. Ohda, M. Ohyama, K. Tomomitsu (2000). “High level secretion of recombinant human serum albumin by fedbatch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy.” J Biosci Bioeng 90(3):280–288.

    PubMed  CAS  Google Scholar 

  • Kozlowski, S., P. Swann (2006). “Current and future issues in the manufacturing and development of monoclonal antibodies.” Adv Drug Deliv Rev 58:707–722.

    Article  PubMed  CAS  Google Scholar 

  • Kula, M. R. (1990). “Trends and future prospects of aqueous two-phase extraction.” Bioseparation 1:181–189.

    PubMed  CAS  Google Scholar 

  • Kuroda, K., K. Kobayashi, et al. (2008). “Efficient antibody production upon suppression of O mannosylation in the yeast Ogataea minuta.” Appl Environ Microbiol 74(2):446–453.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., N. Sethuraman, et al. (2006). “Optimization of humanized IgGs in glycoengineered Pichia pastoris.” Nat Biotechnol 24(2):210.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., M. d’Anjou (2009). “Pharmacological significance of glycosylation in therapeutic proteins.” Curr Opin Biotechnol 20:678–684.

    Article  PubMed  CAS  Google Scholar 

  • Linden, T., D. Roush, et al. (2010). Optimization and Scale-up of Downstream Processing of Biopharmaceutical Proteins Produced bv Glycoengineered Pichia Pastoris. Recovery of Biological Products XIV, Lake Tahoe, California, USA.

    Google Scholar 

  • Liu, C., W. Downey (2009). “Contract manufacturing demands remain strong.” GEN 29:53–59.

    Google Scholar 

  • Low, D., R. O’Learly, et al. (2007). “Future of antibody purification.” J Chromatogr B 848(1):48–63.

    Article  CAS  Google Scholar 

  • Malhotra, R., M. R. Wormald, et al. (1995). “Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose binding protein.” Nat Med 1:237–243.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsukasa, K., S. Okada, et al. (2004). “Roles of O-mannosylation of aberrant proteins in reduction of the load for endoplasmic reticulum chaperones in yeast.” J Biol Chem 279:49762–49772.

    Article  PubMed  CAS  Google Scholar 

  • Natsume, A., R. Niwa, et al. (2009). “Improving effector functions of antibodies for cancer treatment: enhancing ADCC and CDC.” Drug Des Devel Ther 3:7–16.

    PubMed  CAS  Google Scholar 

  • Nimmerjahn, F., J. V. Ravetch (2008). “Fc gamma receptors as regulators of immune responses.” Nat Rev Immunol 8:34–47.

    Article  PubMed  CAS  Google Scholar 

  • Petricciani, J., R. Sheets (2008). “An overview of animal cell substrates for biological products.” Biologicals 36:359–362.

    Article  PubMed  CAS  Google Scholar 

  • Plantz, B. A., J. Andersen, et al. (2003). “Detection of non-host viable contaminants in Pichia pastoris cultures and fermentation broths.” J Ind Microbiol Biotechnol 30(11):643–650.

    Article  PubMed  CAS  Google Scholar 

  • Potgieter, T. I., M. Cukan, et al. (2009). “Production of monoclonal antibodies by glycoengineered Pichia pastoris.” J Biotechnol 139(4):318–325.

    Article  PubMed  CAS  Google Scholar 

  • Potgieter, T. I., S. D. Kersey, et al. (2010). “Antibody Expression Kinetics in Glycoengineered Pichia Pastoris.” Biotechnol Bioeng 106(6):918.

    Article  PubMed  CAS  Google Scholar 

  • Raju, T. S. (2008). “Terminal Sugar of Fc glycans influence antibody effector functions of IgGs.” Curr Opin Immunol 20:471–478.

    Article  PubMed  CAS  Google Scholar 

  • Reitinger, S., T. Boroviak, et al. (2008). “High-yield recombinant expression of the extremophile enzyme, bee hyaluronidase in Pichia pastoris.” Protein Expr Purif 57(2):226–233.

    Article  PubMed  CAS  Google Scholar 

  • Rito-Palomares, M. (2004). “Practical application of aqueous two-phase partition to process development for the recovery of biological products.” J Chromatogr B 807(1):3–11.

    Article  CAS  Google Scholar 

  • Rosa, P. A. J., A. M. Azevedo, et al. (2007). “Application of central composite design to the optimisation of aqueous two-phase extraction of human antibodies.” J Chromatogr A 1141(2):50–60.

    Article  PubMed  CAS  Google Scholar 

  • Schenerman, M. A., J. N. Hope, et al. (1999). “Comparability testing of a humanized monoclonal antibody (synagis) to support cell line stability process validation and scale-up for manufacturing.” Biologicals 27:203–215.

    Article  PubMed  CAS  Google Scholar 

  • Schenk, J., K. Balazs, C. Jungo, J. Urfer, C. Wegmann, A. Zocchi, I. W. Marison, U. von Stockar (2008). “Influence of specific growth rate on specific productivity and glycosylation of a recombinant avidin produced by a Pichia pastoris mut+ strain.” Biotechnol Bioeng 99(2):368–377.

    Article  PubMed  CAS  Google Scholar 

  • Schilling, B. M., J. C. Goodrick, et al. (2001). “Scale-up of a high cell density continuous culture with Pichia pastoris X33 for the constitutive expression of rh-Chitinase.” Biotechnol Prog 17:629–633.

    Article  PubMed  CAS  Google Scholar 

  • Shepard, S. R. B., A. Gregory, et al. (2001). “Routine manufacture of recombinant proteins using expanded bed adsorption chromatography.” Bioseparation 10:51–56.

    Article  PubMed  CAS  Google Scholar 

  • Shepard, S. R., B. Robert, et al. (2000). “Large scale purification of recombinant human angiostatin.” Protein Expression Purif 20:216–227.

    Article  CAS  Google Scholar 

  • Sheridan, C. (2010). “Fresh from the biologic pipeline – 2009.” Nat Biotechnol 28(4):307–310.

    Article  PubMed  CAS  Google Scholar 

  • Shukla, A. (2007). “Downstream processing of monoclonal antibodies -application of platform approaches.” J Chromatogr B 848:28–39.

    Article  CAS  Google Scholar 

  • Shukla, A., J. Kandula (2008). “Harvest and recovery of monoclonal antibodies from large-scale mammalian cell culture.” Biopharm Int 7:34–45.

    Google Scholar 

  • Spiro, R. G. (2002). “Protein glycosylation: nature, distribution, enzymatic formation and disease implications of glycopeptide bonds.” Glycobiology 12(4):43R–56R.

    Article  PubMed  CAS  Google Scholar 

  • Srinivas, N. D., A. V. Narayan, et al. (2002). “Mass transfer in a spray column during two-phase extraction of horseradish peroxidase.” Process Biochem 38(3):387–391.

    Article  CAS  Google Scholar 

  • Thoemmes, J., M. Halfar, et al. (2001). “Human chymotrypsinogen B production from Pichia pastoris by integrated development of fermentation and downstream processing. Part 2.” Biotechnol Prog 17:503–512.

    Article  CAS  Google Scholar 

  • Trinh, L. N., B. Santosh, et al. (2000). “Recovery of mouse endostatin produced by Pichia pastoris using expanded bed adsorption.” Bioseparation 9:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Trousdale, R. K., et al. (2009). “Efficacy of native and hyperglycosylated follicle-stimulating hormone analogs for promoting fertility in female mice.” Fertil Steril 91:265–270.

    Article  PubMed  CAS  Google Scholar 

  • Umana, P., J. Jean-Mairet, et al. (1999). “Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody dependent cellular cytotoxicity activity.” Nat Biotechnol 17(2):176–180.

    Article  PubMed  CAS  Google Scholar 

  • Veide, A., L. Torgny, et al. (1984). “Continuous extraction of â-D-galactosidase from Escherichia coli in an aqueous two-phase system: effects of biomass concentration on partitioning and mass transfer.” Enzyme Microb Technol 6:325–330.

    Article  CAS  Google Scholar 

  • Walsh, G. (2010). “Biopharmaceutical benchmarks 2010.” Nat Biotechnol 28(9):917–924.

    Article  PubMed  CAS  Google Scholar 

  • Wang, A., R. Lewus, et al. (2006). “Comparison of different options for harvest of a therapeutic protein product from high cell density yeast fermentation broth.” Biotechnol Bioeng 94:91–104.

    Article  PubMed  CAS  Google Scholar 

  • Weis, R., R. Luiten, et al. (2004). “Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena.” FEMS Yeast Res 5:179–189.

    Article  PubMed  CAS  Google Scholar 

  • Wildt, S., T. U. Gerngross (2005). “The humanization of N-glycosylation pathways in yeast.” Nat Rev Microbiol 3(2):119–128.

    Article  PubMed  CAS  Google Scholar 

  • Willer, T., M. C. Valero, et al. (2003). “O-mannosyl glycans: from yeast to novel associations with human disease.” Curr Opin Struct Biol 13:621–630.

    Article  PubMed  CAS  Google Scholar 

  • Wright, A., S. L. Morrison (1997). “Effect of glycosylation on antibody function: implications for genetic engineering.” Trends Biotechnol 15:26–32.

    Article  PubMed  CAS  Google Scholar 

  • Yigzaw, Y. (2006). “Exploitation of the adsorptive properties of depth filters for host cell protein removal during monoclonal antibody purification.” Biotechnol Prog 22:288–296.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W. H., M. A. Bevins, B. A. Plantz, L. A. Smith, M. M. Meagher (2000b). “Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A.” Biotechnol Bioeng 70(1):1–8.

    Google Scholar 

  • Zhu, Y., et al. (2005). “Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6 phosphate receptor demonstrates improved delivery of muscles of Pompe mice.” Biochem J 389:619–628.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., et al. (2008). “Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease.” Mol Ther 17:954–963.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxing Zha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zha, D., Linden, T., Potgieter, T. (2011). Production of Monoclonal Antibodies in Glycoengineered Pichia pastoris . In: Al-Rubeai, M. (eds) Antibody Expression and Production. Cell Engineering, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1257-7_4

Download citation

Publish with us

Policies and ethics