Skip to main content

Nanoparticles Enhanced Hyperthermia

  • Chapter
  • First Online:
Intracellular Delivery

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 5))

Abstract

Nano-hyperthermia is regarded as a promising alternative to conventional thermal ablation. Many nanoparticles with specific physical properties in electrical, magnetic, acoustic, optical or thermal features have been tried to induce various enhanced hyperthermia, aiming to significantly improve the treatment efficiency of conventional heating. This article is dedicated to present a comprehensive review on the thermal properties, targeted heating mechanisms, and heat generation beha­viors of typical nanoparticles. In addition, potential combination of the nanoparticles with radiotherapy and/or chemotherapy will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNT:

Carbon nanotube

CVD:

Chemical vapor deposition

GNP:

Gold nanoparticle

HF:

High frequency

HIFU:

High intensity focused ultrasound

LF:

Low frequency

LITT:

Laser-induced thermotherapy

MF:

Middle frequency

MGC:

Magnetic glass-ceramic

MNP:

Magnetic nanoparticle

MRI:

Magnetic resonance imaging

MW:

Microwave

MWNT:

Multi-walled carbon nanotubes

NIR:

Near-infrared

PTT:

Photothermal therapy

PVA:

Polyvinyl alcohol

RF:

Radiofrequency

SAR:

Specific absorption rate

SPM:

Superparamagnetic

SWNT:

Single-walled carbon nanotube

UCA:

Ultrasound contrast agents

UHF:

Ultra high frequency

VHF:

Very high frequency

References

  • Liu J., Deng ZS. Physics of Tumor Hyperthermia (In Chinese). Beijing, Science Publisher, 2008.

    Google Scholar 

  • Alpard SK, Vertrees RA, Tao W, Deyo DJ, Brunston RL, Jr., Zwischenberger JB. Therapeutic hyperthermia. Perfusion (London) 11(6): 425–435, 1996.

    Google Scholar 

  • Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph nodes. Annals of Surgery 146(4): 596–606, 1957.

    PubMed  CAS  Google Scholar 

  • Duguet E, Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E. Magnetic nanoparticle design for medical applications. Progress in Solid State Chemistry 34(2–4): 237–47, 2006.

    Google Scholar 

  • Wetzel ED, Fink BK. Feasibility of Magnetic Particle Films for Curie Temperature-Controlled Processing of Composite Materials. Report supported by Storming Media. 2001.

    Google Scholar 

  • Classes of Magnetic Materials. http://www.irm.umn.edu/hg2m/hg2m_b/hg2m_b.html

  • Rishi W. Fabrication and characterization of granular magnetic gold nanoparticles. The University of Texas at Arlington, 2008.

    Google Scholar 

  • Kuznetsov OA, Kuznetsov AA, Leontiev VG, Brukvin VA, Vorozhtsov GN, Kogan BY, Shlyakhtin OA, Yunin AM, Tsybin OI. Local radiofrequency-induced hyperthermia using CuNi nano­particles with therapeutically suitable Curie temperature. Journal of Magnetism and Magnetic Materials 311(1): 197–203, 2007.

    CAS  Google Scholar 

  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials 252(1–3): 370–374, 2002.

    CAS  Google Scholar 

  • Hergt R, Dutz S, Muller R, Zeisberger M. Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. Journal of Physics-Condensed Matter 18(38): S2919–S2934, 2006.

    CAS  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry 14(14): 2161–2175, 2004.

    CAS  Google Scholar 

  • Hergt R, Dutz S, Roder M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. Journal of Physics: Condensed Matter 20(38): 385214 (12 pp.), 2008.

    Google Scholar 

  • de Chatel PF, Nandori I, Hakl J, Meszaros S, Vad K. Magnetic particle hyperthermia: Neel relaxation in magnetic nanoparticles under circularly polarized field. Journal of Physics: Condensed Matter 124202 (8 pp.), 2009.

    Google Scholar 

  • Chan DCF, Kirpotin DB, Bunn PA. Synthesis and evaluation of colloidal magnetic iron-oxides for the site-specific raduifrequency-induced hyperthermia of cancer. Journal of Magnetism and Magnetic Materials 122(1–3): 374–378, 1993.

    CAS  Google Scholar 

  • Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldofner N, Scholz R, Jung K, Jordan A, Wust P, Loening SA. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. International Journal of Hyperthermia 23(3): 315–323, 2007.

    PubMed  CAS  Google Scholar 

  • Varanda LC, Imaizumi M, Santos FJ, Jafelicci M. Iron oxide versus Fe55Pt45/Fe3O4: Improved magnetic properties of core/shell nanoparticles for biomedical applications. IEEE Transactions on Magnetics 44(11): 4448–4451, 2008.

    CAS  Google Scholar 

  • Gu YY, Tan XP, Liang SQ, Sang SB. Effects of La3+ doping on MnZn ferrite nanoscale particles synthesized by hydrothermal method. Journal of Central South University of Technology 11(2): 166–168, 2004.

    CAS  Google Scholar 

  • Uskokovic V, Kosak A, Drofenik M. Preparation of silica-coated lanthanum-strontium manganite particles with designable curie point, for application in hyperthermia treatments. International Journal of Applied Ceramic Technology 3(2): 134–143, 2006.

    CAS  Google Scholar 

  • Parekh K, Upadhyay RV, Belova L, Rao KV. Ternary monodispersed Mn0.5Zn0.5Fe2O4 ferrite nanoparticles: preparation and magnetic characterization. Nanotechnology 17(24): 5970–5975, 2006.

    Google Scholar 

  • Sithararnan B, Wilson LJ. Gadonanotubes as new high-performance MRI contrast agents. International Journal of Nanomedicine 1(3): 291–295, 2006.

    Google Scholar 

  • Pereira C, Pereira AM, Quaresma P, Tavares PB, Pereira E, Araujo JP, Freire C. Superparamagnetic gamma-Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of VO(acac)2. Dalton Trans 39(11): 2842–54, 2010.

    PubMed  CAS  Google Scholar 

  • Ravel B, Carpenter EE, Harris VG. Oxidation of iron in iron/gold core/shell nanoparticles. Journal of Applied Physics 91(10): 8195–8197, 2002.

    CAS  Google Scholar 

  • Tamer U, Gundogdu Y, Boyaci IH, Pekmez K. Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. Journal of Nanoparticle Research 12(4): 1187–1196, 2010.

    CAS  Google Scholar 

  • Choi JY, Kim K, Shin KS. Surface-enhanced Raman scattering inducible by recyclable Ag-coated magnetic particles. Vibrational Spectroscopy 53(1): 117–120, 2010.

    CAS  Google Scholar 

  • Ding H, Shen CM, Hui C, Xu ZC, Li C, Tian Y, Shi XZ, Gao HJ. Synthesis and properties of Au-Fe3O4 and Ag-Fe3O4 heterodimeric nanoparticles. Chinese Physics B 19(6): 066102 (6 pp.), 2010.

    Google Scholar 

  • De La Cruz-Montoya E, Rinaldi C. Synthesis and characterization of polymer nanocomposites containing magnetic nanoparticles. Journal of Applied Physics 107(9): 2010.

    Google Scholar 

  • Zhou L, Gao C, Xu WJ. Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers. Langmuir 26(13): 11217–11225, 2010.

    PubMed  CAS  Google Scholar 

  • Zelenakova A, Zelenak V, Degmova J, Kovac J, Sedlackova K, Kusy M, Sitek J. The iron-gold magnetic nanoparticles: preparation,characterization and magnetic properties. Reviews on Advanced Materials Science 18(6): 501–504, 2008.

    CAS  Google Scholar 

  • Ban ZH, Barnakov YA, Golub VO, O’Connor CJ. The synthesis of core-shell iron@gold nano­particles and their characterization. Journal of Materials Chemistry 15(43): 4660–4662, 2005.

    CAS  Google Scholar 

  • Jafari T, Simchi A, Khakpash N. Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol. Journal of Colloid and Interface Science 345(1): 64–71, 2010.

    PubMed  CAS  Google Scholar 

  • Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small 1(5): 482–501, 2005.

    PubMed  CAS  Google Scholar 

  • Klingeler R, Hampel S, Buchner B. Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. International Journal of Hyperthermia 24(6): 496–505, 2008.

    PubMed  CAS  Google Scholar 

  • Shi DL, Cho HS, Huth C, Wang F, Dong ZY, Pauletti GM, Lian J, Wang W, Liu GK, Bud’ko SL, Wang LM, Ewing RC. Conjugation of quantum dots and Fe3O4 on carbon nanotubes for medical diagnosis and treatment. Applied Physics Letters 95(22): 2009.

    Google Scholar 

  • Krupskaya Y, Mahn C, Parameswaran A, Taylor A, Kramer K, Hampel S, Leonhardt A, Ritschel M, Buchner B, Klingeler R. Magnetic study of iron-containing carbon nanotubes: Feasibility for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials 321(24): 4067–4071, 2009.

    CAS  Google Scholar 

  • Tang NJ, Lu LY, Zhong W. Synthesis and magnetic properties of carbon-coated Ni/SiO2 core/shell nanocomposites. Science in China Series G (Physics, Mechanics and Astronomy) 31–4, 2009.

    Google Scholar 

  • El-Gendy AA, Ibrahim EMM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, Buchner B, Klingeler R. The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47(12): 2821–2828, 2009.

    CAS  Google Scholar 

  • Liu Y, Ling J, Wei U, Zhang XG. Effective synthesis of carbon-coated Co and Ni nanocrystallites with improved magnetic properties by AC arc discharge under an N-2 atmosphere. Nanote­chnology 15(1): 43–47, 2004.

    Google Scholar 

  • Dumé B. Carbon nanotubes go magnetic. Physicsworld.com, 2004.

    Google Scholar 

  • Gneveckow U, Jordan A, Scholz R, Bruss V, Waldofner N, Ricke J, Feussner A, Hildebrandt B, Rau B, Wust P. Description and characterization of the novel hyperthermia- and thermoablation-system MFH (R) 300 F for clinical magnetic fluid hyperthermia. Medical Physics 31(6): 1444–1451, 2004.

    PubMed  Google Scholar 

  • Johannsen M, Gneueckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, Wust P. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. European Urology 52(6): 1653–1662, 2007.

    PubMed  Google Scholar 

  • Wust P, Gneveckow U, Johannsen M, Bohmer D, Henkel T, Kahmann F, Sehouli J, Felix R, Ricke J, Jordan A. Magnetic nanoparticles for interstitial thermotherapy - feasibility, tolerance and achieved temperatures. International Journal of Hyperthermia 22(8): 673–685, 2006.

    PubMed  CAS  Google Scholar 

  • van Landeghem FKH, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow U, Scholz R, Thiesen B, Bruck W, von Deimling A. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30(1): 52–57, 2009.

    PubMed  Google Scholar 

  • Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. Journal of Neuro-Oncology 81(1): 53–60, 2007.

    PubMed  CAS  Google Scholar 

  • Zhou JH, Liu J. Numerical study on 3-D light and heat transport in biological tissues embedded with large blood vessels during laser-induced thermotherapy. Numerical Heat Transfer Part a-Applications 45(5): 415–449, 2004.

    Google Scholar 

  • W.R.Chen RLA, K.E.Bartels et al. Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study. Cancer Lett. 94(125–131, 1995.

    PubMed  CAS  Google Scholar 

  • Zhou FF, Xing D, Ou ZM, Wu BY, Resasco DE, Chen WR. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. Journal of Biomedical Optics 14(2): 2009.

    Google Scholar 

  • Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings DS, Kamen BA. Cellular-localization of the folate receptor-potential role in drug toxicity and folate homeostasis. Cancer Research 52(23): 6708–6711, 1992.

    PubMed  CAS  Google Scholar 

  • Bagnoli M, Canevari S, Figini M, Mezzanzanica D, Raspagliesi F, Tomassetti A, Miotti S. A step further in understanding the biology of the folate receptor in ovarian carcinoma. Gynecologic Oncology 88(1): S140–S144, 2003.

    PubMed  CAS  Google Scholar 

  • Chen JY, Wang DL, Xi JF, Au L, Siekkinen A, Warsen A, Li ZY, Zhang H, Xia YN, Li XD. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters 7: 1318–1322, 2007.

    PubMed  CAS  Google Scholar 

  • Au L, Zheng DS, Zhou F, Li ZY, Li XD, Xia YN. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. Acs Nano 2(8): 1645–1652, 2008.

    PubMed  CAS  Google Scholar 

  • Eck W, Craig G, Sigdel A, Ritter G, Old LJ, Tang L, Brennan MF, Allen PJ, Mason MD. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano 2(11): 2263–2272, 2008.

    PubMed  CAS  Google Scholar 

  • Copland JA, Eghtedari M, Popov VL, Kotov N, Mamedova N, Motamedi M, Oraevsky AA. Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography. Molecular Imaging and Biology 6(5): 341–349, 2004.

    PubMed  Google Scholar 

  • Chakravarty P, Marches R, Zimmerman NS, Swafford ADE, Bajaj P, Musselman IH, Pantano P, Draper RK, Vitetta ES. Thermal ablation of tumor cells with anti body-functionalized single-walled carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America 105(25): 8697–8702, 2008.

    PubMed  CAS  Google Scholar 

  • Villiers CL, Freitas H, Couderc R, Villiers MB, Marche PN. Analysis of the toxicity of gold nano particles on the immune system: Effect on dendritic cell functions. Journal of Nanoparticle Research 12(1): 55–60, 2010.

    CAS  Google Scholar 

  • Sabadell C, Casado E, Izquierdo J, Olive A. Pneumonitis by gold salts in psoriasic arthritis. Revista Espanola de Reumatologia 26(1): 27–28, 1999.

    Google Scholar 

  • Tarsy JM. Gold colloid and colloids of other heavy metals in the treatment of rheumatoid arthritis. Journal of Laboratory and Clinical Medicine 26: 1918–1924, 1941.

    CAS  Google Scholar 

  • Kam NWS, O’Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences of the United States of America 102: 11600–11605, 2005.

    PubMed  CAS  Google Scholar 

  • Kim JW, Galanzha EI, Shashkov EV, Moon HM, Zharov VP. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nature Nanotechnology 4(10): 688–694, 2009.

    PubMed  CAS  Google Scholar 

  • Karthikeyan S, Mahalingam P, Karthik M. Large scale synthesis of carbon nanotubes. E-Journal of Chemistry 6(1): 1–12, 2009.

    CAS  Google Scholar 

  • Sun X, Bao WR, Lv YK, Deng JQ, Wang XY. Synthesis of high quality single-walled carbon nano­tubes by arc discharge method in large scale. Materials Letters 61(18): 3956–3958 2007.

    CAS  Google Scholar 

  • Scott CD, Arepalli S, Nikolaev P, Smalley RE. Growth mechanisms for single-wall carbon nanotubes a laser ablation process (vol 72, pg 573, 2001). Applied Physics a-Materials Science & Processing 74(1): 11–11, 2002.

    CAS  Google Scholar 

  • Tao XY, Zhang XB, Sun FY, Cheng JP, Liu F, Luo ZQ. Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1-xMoO4 catalyst. Diamond and Related Materials 16(3): 425–430, 2007.

    CAS  Google Scholar 

  • Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science 306(5700): 1362–1364, 2004.

    PubMed  CAS  Google Scholar 

  • Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, Kissel T, Parak WJ, Kreyline WG. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 31(25): 6574–6581, 2010.

    PubMed  CAS  Google Scholar 

  • Cherukuri P, Glazer ES, Curleya SA. Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews 62(3): 339–345, 2010.

    PubMed  CAS  Google Scholar 

  • Lu XM, Au L, McLellan J, Li ZY, Marquez M, Xia YN. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)(3) or NH4OH. Nano Letters 7(6): 1764–1769, 2007.

    PubMed  CAS  Google Scholar 

  • Chen JY, McLellan JM, Siekkinen A, Xiong YJ, Li ZY, Xia YN. Facile synthesis of gold-silver nanocages with controllable pores on the surface. Journal of the American Chemical Society 128(46): 14776–14777, 2006.

    PubMed  CAS  Google Scholar 

  • Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y. Gold nanocages for biomedical applications. Advanced Materials 19(20): 3177–3184, 2007.

    PubMed  CAS  Google Scholar 

  • Skrabalak SE, Chen JY, Sun YG, Lu XM, Au L, Cobley CM, Xia YN. Gold Nanocages: Synthesis, Properties, and Applications. Accounts of Chemical Research 41(12): 1587–1595, 2008.

    PubMed  CAS  Google Scholar 

  • Jorio A., G. Dresselhaus, M. S., Dresselhaus G. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Springer, 2008.

    Google Scholar 

  • Manning TJ, Taylor L, Purcell J, Olsen K. Impact on the photothermal emission from single wall nanotubes by some alkali halide salts. Carbon 41(14): 2813–2818, 2003.

    CAS  Google Scholar 

  • Galanov BA, Galanov SB, Gogotsi Y. Stress-strain state of multiwall carbon nanotube under internal pressure. Journal of Nanoparticle Research 4(3): 207–214, 2002.

    CAS  Google Scholar 

  • Burlaka A, Lukin S, Prylutska S, Remeniak O, Prylutskyy Y, Shuba M, Maksimenko S, Ritter U, Scharff P. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infaraed irradiation for anticancer therapy: in vitro studies. Experimental Oncology 32(1): 48–50, 2010.

    PubMed  CAS  Google Scholar 

  • Minati L, Speranza G, Bernagozzi I, Torrengo S, Toniutti L, Rossi B, Ferrari M, Chiasera A. Investigation on the electronic and optical properties of short oxidized multiwalled carbon nanotubes. Journal of Physical Chemistry 114(25): 11068–11073, 2010.

    CAS  Google Scholar 

  • Zhang XL, Liu ZB, Zhao X, Zhou WY, Tian JG. Nonlinear optical properties of hydroxyl groups modified multi-walled carbon nanotubes. Chemical Physics Letters 494(1–3): 75–79, 2010.

    CAS  Google Scholar 

  • Lefrant S, Buisson JP, Mevellec JY, Baibarac M, Baltog I. Linear and Non-Linear Optical Properties of Carbon Nanotubes. Molecular Crystals and Liquid Crystals 522: 472–479, 2010.

    Google Scholar 

  • Savin AV, Hu BB, Kivshar YS. Thermal conductivity of single-walled carbon nanotubes. Physical Review B 80(19): 2009.

    Google Scholar 

  • M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y. J. Chabal. Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Materials 9: 840–845, 2010.

    PubMed  CAS  Google Scholar 

  • Hughes ME, Brandin E, Golovchenko JA. Optical absorption of DNA-carbon nanotube structures. Nano Letters 7(5): 1191–1194, 2007.

    PubMed  CAS  Google Scholar 

  • Ghosh S, Dutta S, Gomes E, Carroll D, D’Agostino R, Olson J, Guthold M, Gmeiner WH. Increased Heating Efficiency and Selective Thermal Ablation of Malignant Tissue with DNA-Encased Multiwalled Carbon Nanotubes. ACS Nano 3(9): 2667–2673, 2009.

    PubMed  CAS  Google Scholar 

  • Wang X, Gao X, Liu J. Monte-Carlo simulation on gold nanoshells enhanced laser interstitial thermal therapy on target tumor. Journal of Computational and Theoretical Nanoscience 7(6): 1025–1031, 2010.

    CAS  Google Scholar 

  • Lobo SM, Afzal KS, Ahmed M, Kruskal JB, Lenkinski RE, Goldberg SN. Radiofrequency ablation: Modeling the enhanced temperature response to adjuvant NaCl pretreatment. Radiology 230(1): 175–182, 2004.

    PubMed  Google Scholar 

  • Gach HM, Balachandrasekaran A, Nair T. RF hyperthermia using conductive nanoparticles. Proceedings of the SPIE-The International Society for Optical Engineering 754841 (11 pp.), 2010.

    Google Scholar 

  • Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE, Curley SA. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110(12): 2654–2665, 2007.

    PubMed  CAS  Google Scholar 

  • Cherukuri P, Glazer ES, Curleya SA. Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews 62(3): 2010.

    Google Scholar 

  • Day ES, Morton JG, West JL. Nanoparticles for Thermal Cancer Therapy. ASME Journal of Biomechanical Engineering 131(7): 2009.

    Google Scholar 

  • Cardinal J, Klune JR, Chory E, Jeyabalan G, Kanzius JS, Nalesnik M, Geller DA. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery 144(2): 125–132, 2008.

    PubMed  Google Scholar 

  • Gannon CJ, Patra CR, Bhattacharya R, Mukherjee P, Curley SA. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. Journal of Nanobiotechnology 6: 1–9, 2008.

    Google Scholar 

  • Curley SA, Cherukuri P, Briggs K, Patra CR, Upton M, Dolson E, Mukherjee P. Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. Journal of Exp Ther Oncol 7(4): 313–326, 2008.

    CAS  Google Scholar 

  • Glazer ES, Bs KLM, Zhu CH, Curley SA. Pancreatic carcinoma cells are susceptible to non­invasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery 148(2): 319–324, 2010.

    PubMed  Google Scholar 

  • Lynn JG, Zwemer RL, Chick AJ, Miller AE. A new method for the generation and use of focused ultrasound in experimental biology. Jour Gen Physiol 26((2)): 179–193, 1942.

    CAS  Google Scholar 

  • Zhu H, Zhou K, Zhang L, Jin CB, Peng S, Yang W, Li KQ, Su HB, Chen WZ, Bai J, Wu F, Wang ZBA. High intensity focused ultrasound (HIFU) therapy for local treatment of hepatocellular carcinoma: Role of partial rib resection. European Journal of Radiology 72(1): 160–166, 2009.

    PubMed  Google Scholar 

  • Calliada F, Campani R, Bottinelli O, Bozzini A, Sommaruga MG. Ultrasound contrast agents – Basic principles. European Journal of Radiology 27: S157–S160, 1998.

    PubMed  Google Scholar 

  • Kornmann LM, Reesink KD, Reneman RS, Hoeks APG. Critical appraisal of targeted ultrasound contrast agents for molecular imaging in lager arteries. Ultrasound in Medicine and Biology 36(2): 181–191, 2010.

    PubMed  Google Scholar 

  • Razansky D, Einziger PD, Adam DR. Enhanced heat deposition using ultrasound contrast agent - Modeling and experimental observations. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control 53(1): 137–147, 2006.

    Google Scholar 

  • Razansky D, Adam DR, Einziger PD. Experimental study of ultrasound contrast agent mediated heat transfer for therapeutic applications. AIP Conference Proceedings 829(1): 318–22, 2006.

    Google Scholar 

  • Jozefczak A, Skumiel A. Study of heating effect and acoustic properties of dextran stabilized magnetic fluid. Journal of Magnetism and Magnetic Materials 311(1): 193-196, 2007.

    CAS  Google Scholar 

  • Deng ZS, Liu J. Minimally invasive thermotherapy method for tumor treatment based on an exothermic chemical reaction. Minimally Invasive Therapy and Allied Technologies 16: 341–346, 2007.

    PubMed  Google Scholar 

  • Rao W, Liu J. Tumor thermal ablation therapy using alkali metals as powerful self-heating seeds. Minimally Invasive Therapy & Allied Technologies 17(1): 43–49, 2008.

    Google Scholar 

  • Bauer JC, Chen X, Liu QS, Phan TH, Schaak RE. Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis. Journal of Materials Chemistry 18(3): 275–282, 2008.

    CAS  Google Scholar 

  • Rao W, Liu J, Zhou YX, Yang Y, Zhang H. Anti-tumor effect of sodium-induced thermochemical ablation therapy. International Journal of Hyperthermia 24(8): 675–681, 2008.

    PubMed  CAS  Google Scholar 

  • Cressman ENK, Tseng HJ, Talaie R, Henderson BM. A new heat source for thermochemical ablation based on redox chemistry: Initial studies using permanganate. International Journal of Hyperthermia 26(4): 327–337, 2010.

    PubMed  CAS  Google Scholar 

  • Cao XD, Chen T, Wu Y, Zhang JF, Weng WZ, Wan HL. Preparation of Zr-promoted nano-NiO catalyst and its catalytic performance for oxidative dehydrogenation of ethane to ethylene. Chinese Journal of Catalysis 26(2): 148–152, 2005.

    CAS  Google Scholar 

  • Bennett. Application of Titanium Dioxide catlaysis. AdyCatal 36: 5–9, 1989.

    Google Scholar 

  • Yu TR, Zhou YX, Liu J. Development of a new mini-invasive tumour hyperthermia probe using high-temperature water vapour. Journal of Medical Engineering & Technology 28(4): 167–177, 2004.

    Google Scholar 

  • Wang XW, Xu XF, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. Journal of Thermophysics and Heat Transfer 13(4): 474–480, 1999.

    CAS  Google Scholar 

  • Shalkevich N, Escher W, Burgi T, Michel B, Si-Ahmed L, Poulikakos D. On the Thermal Conductivity of Gold Nanoparticle Colloids. Langmuir 26(2): 663–670, 2010.

    PubMed  CAS  Google Scholar 

  • Le Goff C, Ben-Abdallah P, Domingues G, El Moctar AO. Enhanced thermal conductivity in nanofluids under the action of oscillating force fields. Journal of Nanoparticle Research 10(7): 1115–1120, 2008.

    Google Scholar 

  • Tian WX, Yang RG. Phonon transport and thermal conductivity percolation in random nano­particle composites. Computer Modeling in Engineering & Sciences 123–41, 2008.

    Google Scholar 

  • Tsai TH, Kuo LS, Chen PH, Yang CT. Thermal conductivity of nanofluid with magnetic nano­particles. PIERS 2009 Beijing: Progress in Electromagnetics Research Symposium, Proceedings I and II 1344–1347, 2009

    Google Scholar 

  • Xuan Y, Li Q. Investigation on convetive heat transfer and flow features of nanofluids. Journal of Heat Transfer 125: 151–155, 2003.

    CAS  Google Scholar 

  • Li DJ, Hu ZS. Tumor Hyperthermia (In Chinese). Zhengzhou, Zhengzhou University Press, 1995.

    Google Scholar 

  • Lin SY, LI RY. Principles, Methods and Clinical of Modern Tumor Hyperthermia (In Chinese). Xueyuan Press, 1997.

    Google Scholar 

  • Peng N, Zhao BD. Clinical Tumor Hyperthermia (In Chinese). People’s Medical Press, 2002.

    Google Scholar 

  • Kuznetsov AA, Filippov VI, Alyautdin RN, Torshina NL, Kuznetsov OA. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs. Journal of Magnetism and Magnetic Materials 225(1–2): 95–100, 2001.

    CAS  Google Scholar 

  • Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Intracellular hyperthermia for cancer using magnetite cationic liposomes: Ex vivo study. Japanese Journal of Cancer Research 88(7): 630–632, 1997.

    PubMed  CAS  Google Scholar 

  • Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Intracellular hyperthermia for cancer using magnetite cationic liposomes: An in vivo study. Japanese Journal of Cancer Research 89(4): 463–469, 1998.

    PubMed  CAS  Google Scholar 

  • Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Japanese Journal of Cancer Research 89(7): 775–782, 1998.

    PubMed  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK. Application of magnetic nanoparticles in biomedicine. . Journal of Physics D:Applied Physics 36: 167–181, 2003.

    Google Scholar 

  • Moroz P, Jones SK, Gray BN. Magnetically mediated hyperthermia: current status and future directions. International Journal of Hyperthermia 18(4): 267–284, 2002.

    PubMed  CAS  Google Scholar 

  • Rabin Y. Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? International Journal of Hyperthermia 18(3): 194–202, 2002.

    PubMed  CAS  Google Scholar 

  • Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang MQ. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6): 785–792, 2006.

    PubMed  CAS  Google Scholar 

  • Sun C, Lee JSH, Zhang MQ. Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews 60(11): 1252–1265, 2008.

    PubMed  CAS  Google Scholar 

  • Sharma R, Chen CJ. Newer nanoparticles in hyperthermia treatment and thermometry. Journal of Nanoparticle Research 11(3): 671–689, 2009.

    CAS  Google Scholar 

  • Saniei N. Hyperthermia and cancer treatment. Heat Transfer Engineering 30(12): 915–917, 2009.

    CAS  Google Scholar 

  • Horsman MR, Overgaard J. Hyperthermia: A potent enhancer of radiotherapy. Clinical Oncology 19(6): 418–426, 2007.

    PubMed  CAS  Google Scholar 

  • Issels RD. Hyperthermia adds to chemotherapy. European Journal of Cancer 44(17): 2546–2554, 2008.

    PubMed  CAS  Google Scholar 

  • Ben-Yosef R, Vigler N, Inbar M, Vexler A. Hyperthermia combined with radiation therapy in the treatment of local recurrent breast cancer. Israel Medical Association Journal 6(7): 392–395, 2004.

    PubMed  Google Scholar 

  • Hurwitz ND, Hansen JL, Prokopios-Davos S, Manola J, Hynynen K, Bornstein BA, Topulos GP, Kaplan ID. Hyperthermia combined with radiation in treatment of locally advanced prostate cancer: Long-term results of DFCI 94–153. International Journal of Radiation Oncology Biology Physics 69(3): S318–S318, 2007.

    Google Scholar 

  • Li FR, Yan WH, Guo YH, Qi H, Zhou HX. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. International Journal of Hyperthermia 25(5): 383–391, 2009.

    PubMed  CAS  Google Scholar 

  • Du YQ, Zhang DS, Liu H, Lai RS. Thermochemotherapy effect of nanosized As2O3/Fe3O4 complex on experimental mouse tumors and its influence on the expression of CD44v6, VEGF-C and MMP-9. BMC Biotechnology 9(84): 2009.

    Google Scholar 

  • Diagaradjane P, Shetty A, Wang JC, Elliott AM, Schwartz J, Shentu S, Park HC, Deorukhkar A, Stafford RJ, Cho SH, Tunnell JW, Hazle JD, Krishnan S. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: Characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Letters 8(5): 1492–1500, 2008.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is partially supported by the NSFC under grant No.81071255 and Tsinghua-Yue-Yuen Medical Sciences Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wang, Q., Liu, J. (2011). Nanoparticles Enhanced Hyperthermia. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_20

Download citation

Publish with us

Policies and ethics