Skip to main content

Nanotechnology Environmental, Health, and Safety Issues

  • Chapter
  • First Online:
Nanotechnology Research Directions for Societal Needs in 2020

Abstract

The environmental, health, and safety (EHS) of nanomaterials has been defined as “the collection of fields associated with the terms ‘environmental health, human health, animal health, and safety’ when used in the context of risk assessment and risk management” ([1], p. 2). In this chapter, the term “nano-EHS” is used for convenience to refer specifically to environmental, health, and safety research and related activities as they apply to nanoscale science, technology, and engineering. This chapter outlines the major advances in nano EHS over the last 10 years and the major challenges, developments, and achievements that we can expect over the next 10 years without providing comprehensive coverage or a review of all the important issues in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     The nano-bio interface is defined here as the dynamic physicochemical interactions, kinetics, and thermodynamic exchanges between nanomaterial surfaces and the surfaces of biological components such as proteins, membranes, phospholipids, endocytic vesicles, organelles, DNA, and biological fluids.

  2. 2.

     For examples, see the OECD department website on Safety of Manufactured Nanomaterials http://www.oecd.org/department/0,3355,en_2649_37015404_1_1_1_1_1,00.html

  3. 3.

     For examples, see the ISO catalog website for standards devised by its Technical Committee 229 on Nanotechnologies: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=381983

  4. 4.

     For examples of specific nanotechnology-based products, see the Project for Emerging Nanotechnologies (PEN) consumer products inventory at http://www.nanotechproject.org/inventories/consumer.

  5. 5.

     See http://www.nanoandme.org/downloads/The Responsible Nano Code.pdf for examples of responsible risk management strategies.

References

  1. National Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology of the National Science and Technology Council, Environmental, health, and safety research needs for engineered nanoscale materials (NSET, Washington, DC, 2006), Available online: http://www.nano.gov/html/res/pubs.html

  2. V.L. Colvin, The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21(10), 1166–1170 (2003)

    Article  CAS  Google Scholar 

  3. A.D. Maynard, R.J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberdörster, M.A. Philbert, J. Ryan, A. Seaton, V. Stone, S.S. Tinkle, L. Tran, N.J. Walker, D.B. Warheit, Safe handling of nanotechnology. Nature 444(7117), 267–269 (2006)

    Article  CAS  Google Scholar 

  4. A.E. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel. Science 311(5761), 622–627 (2006)

    Article  CAS  Google Scholar 

  5. G. Oberdörster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. Monteiro-Riviere, D. Warheit, H. Yang, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group., Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Fibre Toxicol. 2, 8 (2005). doi:10.1186/1743-8977-2-8

    Article  CAS  Google Scholar 

  6. A. Seaton, L. Tran, R. Aitken, K. Donaldson, Nanoparticles, human health hazard and regulation. J. R. Soc. Interface 7, S119–S129 (2010)

    Article  CAS  Google Scholar 

  7. National Institute of Environmental Health Sciences (NIEHS), Toxicology in the 21st century: the role of the National Toxicology Program (NIEHS, Research Triangle Park, 2004), Available online: http://ntp.niehs.nih.gov/ntp/main_pages/NTPVision.pdf

  8. National Research Council, ToxicityTesting in the 21st Century: A Vision and a Strategy (National Academies Press, Washington, DC, 2007), Available online: http://www.nap.edu/catalog.php?record_id=11970#toc or http://dels.nas.edu/resources/static-assets/materials-based-on-reports/reports-in-brief/Toxicity_Testing_final.pdf

  9. N. Walker, J.R. Bucher, A 21st century paradigm for evaluating the health hazards of nanoscale materials? Toxicol. Sci. 110, 251–254 (2009)

    Article  CAS  Google Scholar 

  10. V.C. Abraham, D.L. Taylor, J.R. Haskins, High-content screening applied to large-scale cell biology. Trends Biotechnol. 22, 15–22 (2004)

    Article  CAS  Google Scholar 

  11. V.C. Abraham, D.L. Towne, J.F. Waring, U. Warrior, D.J. Burns, Application of a high-content multi-parameter cytotoxicity assay to prioritize compounds based on toxicity potential in humans. J. Biomol. Screen. 13, 527–537 (2008)

    Article  CAS  Google Scholar 

  12. S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K.A. Bradley, L. Mädler, A.E. Nel, Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4, 15–29 (2010)

    Article  CAS  Google Scholar 

  13. R.F. Service, Nanotechnology: can high-speed tests sort out which nanomaterials are safe? Science 321(5892), 1036–1037 (2008)

    Article  CAS  Google Scholar 

  14. T.M Benn, B. Cavanagh, B.K. Hristovski, J. Posner, P. Westerhoff, The release of (nano)silver from consumer products used in the home. J. Environ. Qual., published online 12 July 2010. doi:10.2134/jeq2009.0363

  15. T.M Benn, P. Westerhoff, P. Herckes, Detection of fullerenes (C60 and C70) in commercial cosmetics. Environ. Pollu. 159(5), 1334–1342 (2011) http://www.sciencedirect.com/science/article/

    Google Scholar 

  16. D.B. Warheit, C.M. Sayes, K.L. Reed, K.A. Swain, Health effects related to nanoparticle exposures: environmental, health, and safety considerations for assessing hazards and risks. Pharmacol. Ther. 120, 35–42 (2008)

    Article  CAS  Google Scholar 

  17. H. Meng, T. Xia, S. George, A.E. Nel, A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano 3, 1620–1627 (2009)

    Article  CAS  Google Scholar 

  18. National Toxicology Program (NTP), Toxicology in the 21st century: the role of the National Toxicology Program (Department of Health and Human Services, NIEHS/NTP, Research Triangle Park, 2004), Available online: http://ntp.niehs.nih.gov/ntp/main_pages/NTPVision.pdf

  19. J.E. Hutchinson, Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2, 395–402 (2008)

    Article  CAS  Google Scholar 

  20. A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009)

    Article  CAS  Google Scholar 

  21. M.C. Roco, Environmentally responsible development of nanotechnology. Environ. Sci. Technol. 39(5), 106A–112A (2005). doi:10.1021/es053199u

    Article  CAS  Google Scholar 

  22. M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 105, 14265–14270 (2008)

    Article  CAS  Google Scholar 

  23. C.W. Lam, J.T. James, R. McCluskey, R.L. Hunter, Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134 (2004)

    Article  CAS  Google Scholar 

  24. Z. Liu, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47–52 (2007)

    Article  CAS  Google Scholar 

  25. R. Mercer, R.J. Scabilloni, L. Wang, E. Kisin, A.R. Murray, D. Schwegler-Berry, A.A. Shvedova, V. Castranova, Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L87–L97 (2008)

    Article  CAS  Google Scholar 

  26. C.A. Poland, R. Duffin, I. Kinloch, A. Maynard, W.A.H. Wallace, A. Seaton, V. Stone, S. Brown, W. MacNee, K. Donaldson, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428 (2008)

    Article  CAS  Google Scholar 

  27. D.W. Porter, A.F. Hubbs, R.R. Mercer, N. Wu, M.G. Wolfarth, K. Sriram, S. Leon, L. Battelli, D. Schwegler-Berry, S. Friend, M. Andrew, B.T. Chen, S. Tsuruoka, M. Endo, V. Castranova, Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2–3), 136–147 (2010). 10

    Article  CAS  Google Scholar 

  28. A.A. Shvedova, V. Castranova, E.R. Kisin, D. Schwegler-Berry, A.R. Murray, V.Z. Gandelsman, A. Maynard, P. Baron, Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66, 1909–1926 (2003)

    Article  CAS  Google Scholar 

  29. A.A. Shvedova, E.R. Kisin, R. Mercer, A.R. Murray, V.J. Johnson, A.I. Potapovich, Y.Y. Tyurina, O. Gorelik, S. Arepalli, D. Schwegler-Berry, A.F. Hubbs, J.S. Antonini, D.E. Evans, B.K. Ku, D. Ramsey, A. Maynard, V.E. Kagan, V. Castranova, P. Baron, Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L698–L708 (2005)

    Article  CAS  Google Scholar 

  30. A. Takagi, A. Hirose, T. Nishimura, N. Fukumori, A. Ogata, N. Ohashi, S. Kitajima, J. Kanno, Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multiwall carbon nanotube. J. Toxicol. Sci. 33, 105–116 (2008)

    Article  CAS  Google Scholar 

  31. N.W.S. Kam, M. O’Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U. S. A. 102, 11600–11605 (2005)

    Article  CAS  Google Scholar 

  32. K. Kostarelos, The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26, 774–776 (2008)

    Article  CAS  Google Scholar 

  33. A.E. Porter, Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2, 713–717 (2007)

    Article  CAS  Google Scholar 

  34. U.S. Environmental Protection Agency (U.S. EPA), TSCA inventory status of nanoscale substances: general approach (2008), Available online: http://www.epa.gov/oppt/nano/nmsp-inventorypaper2008.pdf

  35. L. Research, The Nanotech Report, 5th edn. (Lux Research, New York, 2007)

    Google Scholar 

  36. T. Xia, M. Kovochich, M. Liong, L. Mäedler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121–2134 (2008)

    Article  CAS  Google Scholar 

  37. D.B. Warheit, T.R. Webb, C.M. Sayes, V.L. Colvin, K.L. Reed, Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 91, 227–236 (2006)

    Article  CAS  Google Scholar 

  38. D.D. Zhang, M.A. Hartsky, D.B. Warheit, Time course of quartz and TiO2 particle: induced pulmonary inflammation and neutrophil apoptotic responses in rats. Exp. Lung Res. 28, 641–670 (2002)

    Article  CAS  Google Scholar 

  39. National Institute for Occupational Safety and Health (NIOSH), Approaches to safe nanotechnology: managing the health and safety concerns associated with engineered nanomaterials (DHHS (NIOSH) publication 2009–125, Washington, DC, 2009), Available online: http://www.cdc.gov/niosh/topics/nanotech/safenano

  40. Environmental Defense Fund (EDF), NANO risk framework (2007), Available online: http://nanoriskframework.com/page.cfm?tagID=1083

  41. Environmental Working Group (EWG), Nanotechnology and sunscreens: EWG’s 2009 sunscreen investigation Sect. 4 (2009), Available online: http://www.ewg.org/cosmetics/report/sunscreen09/investigation/Nanotechnology-Sunscreens

  42. A. Kahru, H.-C. Dubourguier, From ecotoxicology to nanoecotoxicology. Toxicology 269, 105–119 (2010)

    Article  CAS  Google Scholar 

  43. U.S. Environmental Protection Agency (U.S. EPA), Federal insecticide, fungicide, and rodenticide act (FIFRA) (1996), Available online: http://www.epa.gov/oecaagct/lfra.html

  44. P.V. Asharani, Y.L. Wu, Z. Gong, S. Valiyaveettl, Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19, 255102–255110 (2008)

    Article  CAS  Google Scholar 

  45. N.C. Mueller, B. Nowack, Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447–4453 (2008)

    Article  CAS  Google Scholar 

  46. C.F. Jones, D.W. Grainger, In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 61, 438–456 (2009)

    Article  CAS  Google Scholar 

  47. C.M. Sayes, K.L. Reed, D.B. Warheit, Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 97, 163–180 (2007)

    Article  CAS  Google Scholar 

  48. K. Donaldson, P.J. Borm, G. Oberdörster, K.E. Pinkerton, V. Stone, C.L. Tran, Concordance between in vitro and in vivo dosimetry in the proinflammatory effects of low-toxicity, low-solubility particles: the key role of the proximal alveolar region. Inhal. Toxicol. 20, 53–62 (2008)

    Article  CAS  Google Scholar 

  49. E. Rushton, J. Jiang, S. Leonard, S. Eberly, V. Castranova, P. Biswas, A. Elder, X. Han, R. Gelein, J. Finkelstein, G. Oberdörster, Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response-metrics. J. Toxicol. Environ. Health A 73, 445–461 (2010)

    Article  CAS  Google Scholar 

  50. T.M. Sager, D.W. Porter, V.A. Robinson, W.G. Lindsley, D.E. Schwegler-Berry, V. Castranova, Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1, 118–129 (2007)

    Article  CAS  Google Scholar 

  51. J.G. Teeguarden, P.M. Hinderliter, G. Orr, B.D. Thrall, J.G. Pounds, Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 95, 300–312 (2007)

    Article  CAS  Google Scholar 

  52. R. Duffin, L. Tran, D. Brown, V. Stone, K. Donaldson, Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal. Toxicol. 19, 849–856 (2007)

    Article  CAS  Google Scholar 

  53. C. Monteiller, L. Tran, W. MacNee, S. Faux, A. Jones, B. Miller, K. Donaldson, The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup. Environ. Med. 64, 609–615 (2007)

    Article  CAS  Google Scholar 

  54. T. Xia, M. Kovochich, M. Liong, J.I. Zink, A.E. Nel, Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2, 85–96 (2008)

    Article  CAS  Google Scholar 

  55. G. Oberdörster, E. Oberdörster, J. Oberdörster, Concepts of nanoparticle dose metric and response metric. Environ. Health Perspect. 115, A290 (2007)

    Article  Google Scholar 

  56. T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J.I. Yeh, M.R. Wiesner, A.E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794–1807 (2006)

    Article  CAS  Google Scholar 

  57. S. Chellam, C.A. Serra, M.R. Wiesner, Life cycle cost assessment of operating conditions and pretreatment on integrated membrane systems. J. Am. Water Works Assn. 90(11) 96–104 (1998)

    Google Scholar 

  58. M. Widmer, C. Meili, E. Mantovani, A. Porcari, The framing nano governance platform: a new integrated approach to the responsible development of nanotechnologies (FP7: FramingNanoProject Consortium, 2010), Available online: http://www.framingnano.eu/index.php?option=com_content&task=view&id=161&Itemid=84

  59. A. Barnard, How can ab initio simulations address risks in nanotech. Nat. Nanotechnol. 4, 332–335 (2009)

    Article  CAS  Google Scholar 

  60. E.C. Butcher, E.L. Berg, E.J. Kunkel, Systems biology in drug discovery. Nat. Biotechnol. 22, 1253–1259 (2004)

    Article  CAS  Google Scholar 

  61. H.A. Godwin, K. Chopra, K.A. Bradley, Y. Cohen, B. Herr Harthorn, E.M.V. Hoek, P. Holden, A.A. Keller, H.S. Lenihan, R. Nisbet, A.E. Nel, The University of California Center for the Environmental Implications of Nanotechnology. Environ. Sci. Technol. 43, 6453–6457 (2009)

    Article  CAS  Google Scholar 

  62. Organisation for Economic Co-operation and Development (OECD), The UN principles for responsible investment and the OECD guidelines for multinational enterprises: complementarities and distinctive contributions. Annex II-A4, in Annual Report on the OECD Guidelines for Multinational Enterprises (OECD, Paris, 2007)

    Google Scholar 

  63. T. Puzyn, D. Leszczynska, J. Leszczynski, Toward the development of “nano-QSARs”: advances and challenges. Small 5, 2494–2509 (2009)

    Article  CAS  Google Scholar 

  64. M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5(3), 161–171 (2005)

    Article  CAS  Google Scholar 

  65. K. Riehemann, S.W. Schneider, T.A. Luger, B. Godwin, M. Ferrari, H. Fuchs, Nanomedicine – Challenge and perspective. Angew. Chem. Int. Ed Engl. 48(5), 872–897 (2010)

    Article  CAS  Google Scholar 

  66. J.H. Sakamoto, A.L. van de Ven, B. Godin, E. Bianco, R.E. Serda, A. Grattoni, A. Ziemys, A. Bouamrani, T. Hu, S.I. Ranganathan, E. De Rosa, J.O. Martinez, C.A. Smid, R.M. Buchanan, S.-Y. Lee, S. Srinivasan, M. Landry, A. Meyn, E. Tasciotti, X. Liu, P. Decuzzi, M. Ferrari, Enabling individualized therapy through nanotechnology. Pharm. Res. 62(2), 57–89 (2010)

    Article  CAS  Google Scholar 

  67. M. Ferrari, Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol. 28(4), 181–188 (2010)

    Article  CAS  Google Scholar 

  68. S.E. McNeill, Nanotechnology for the biologist. J. Leukoc. Biol. 78, 585–594 (2005)

    Article  CAS  Google Scholar 

  69. W.R. Sanhai, J. Spiegel, M. Ferrari, A critical path approach to advance nanoengineered medical products. Drug Discov. Today Technol. 4(2), 35–41 (2007)

    Article  Google Scholar 

  70. M. Ferrari, M. Philibert, W. Sanhai, Nanomedicine and society. Clin. Pharmacol. Ther. 85(5), 466–467 (2009)

    Article  CAS  Google Scholar 

  71. Food and Drug Administration (FDA), Fact sheet: FDA nanotechnology task force report outlines scientific, regulatory challenges (2007), Available online: http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/NanotechnologyTaskForce/ucm110934.htm. Also, the Nanotechnology task force report to which it refers, http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/NanotechnologyTaskForceReport2007/default.htm

  72. P. Decuzzi, M. Ferrari, Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 29(3), 377–384 (2008)

    Article  CAS  Google Scholar 

  73. P. Decuzzi, R. Pasqualani, W. Arap, M. Ferrari, Intravascular delivery of particulate systems. Pharm. Res. 2(1), 235–243 (2008)

    Google Scholar 

  74. X. Yu, L. Jin, Z.H. Zhou, A structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453, 415–419 (2008)

    Article  CAS  Google Scholar 

  75. W. Baumeister, A voyage to the inner space of cells. Protein Sci. 14, 257–269 (2005)

    Article  CAS  Google Scholar 

  76. B. Carragher, D. Fellmann, F. Guerra, R.A. Milligan, F. Mouche, J. Pulokas, B. Sheehan, J. Quispe, C. Suloway, Y. Zhu, C.S. Potter, Rapid routine structure determination of macromolecular assemblies using electron microscopy: current progress and further challenges. J. Synchrotron Radiat. 11, 83–85 (2004)

    Article  CAS  Google Scholar 

  77. V. Lucic, A.H. Kossel, T. Yang, T. Bonhoeffer, W. Baumeister, A. Sartori, Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography. J. Struct. Biol. 160, 146–156 (2007)

    Article  Google Scholar 

  78. A. Sartori, R. Gatz, F. Beck, A. Kossel, A. Leis, W. Baumeister, J.M. Plitzko, Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160, 135–145 (2007)

    Article  Google Scholar 

  79. A.C. Steven, W. Baumeister, The future is hybrid. J. Struct. Biol. 163, 186–195 (2008)

    Article  CAS  Google Scholar 

  80. J.A. Heymann, M. Hayles, I. Gestmann, L.A. Giannuzzi, B. Lich, S. Subramaniam, Site-specific 3D imaging of cells and tissues with a dual beam microscope. J. Struct. Biol. 155, 63–73 (2006)

    Article  Google Scholar 

  81. M. Marko, Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat. Methods. 4, 215–217 (2007)

    Article  CAS  Google Scholar 

  82. D.J. Stephens, V.J. Allan, Light microscopy techniques for live cell imaging. Science 300, 82–86 (2003)

    Article  CAS  Google Scholar 

  83. X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.N. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008)

    Article  CAS  Google Scholar 

  84. S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, S.S. Gambhir, Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 105, 5844–5849 (2008)

    Article  CAS  Google Scholar 

  85. D.J. Gentleman, W.C.W. Chan, A systematic nomenclature for codifying engineered nanostructures. Small 5, 426–431 (2009)

    Article  CAS  Google Scholar 

  86. R.J. Rowlett, An interpretation of Chemical Abstracts Service indexing policies. J. Chem. Inf. Comput. Sci. 24, 152–154 (1984)

    CAS  Google Scholar 

  87. L. Research, The Recession’s Ripple Effect on Nanotech: State of the Market Report (Lux Research, New York, 2009)

    Google Scholar 

  88. M.R. Wiesner, G.V. Lowry, K.L. Jones, M.F. Hochella, R.T. Di Guilio, E. Casman, E.S. Bernhardt, Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 43, 6458–6462 (2009)

    Article  CAS  Google Scholar 

  89. House of Lords of the UK Parliament, Science and Technology Committee, Nanotechnologies and food. 1st Report of Session 2009–10, vol I, HL Paper 22-I (The Stationery Office Limited, London, 2010), Available online: http://www.publications.parliament.uk/pa/ld/ldsctech.htm

  90. M. Widmer, The “Nano Information Pyramid” as an approach to the “no data, no market” problem of Nanotechnologies (The Innovation Society, St. Gallen, 2010), Available online: http://www.innovationsgesellschaft.ch/index.php?newsid=265&section=news&cmd=details

  91. Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42, 4591–4602 (2008)

    Article  CAS  Google Scholar 

  92. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008)

    Article  CAS  Google Scholar 

  93. P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice (Oxford University Press, New York, 1998)

    Google Scholar 

  94. P.J.J. Alvarez, V. Colvin, J. Lead, V. Stone, Research priorities to advance eco-responsible nanotechnology. ACS Nano 3, 1616–1619 (2009)

    Article  CAS  Google Scholar 

  95. W.A. Lee, N. Pernodet, B. Lin, C.H. Lin, E. Hatchwell, M.H. Rafailovich, Multicomponent polymer coating to block photocatalytic activity of TiO2 nanoparticles. Chem. Commun. Camb 45, 4815–4817 (2007)

    Article  CAS  Google Scholar 

  96. T.L. Kirschling, K.B. Gregory, E.G. Minkley, G.V. Lowry, R.D. Milton, Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ. Sci. Technol. 44, 3474–3480 (2010)

    Article  CAS  Google Scholar 

  97. Z. Xiu, Z. Jin, T. Li, S. Mahendra, G.V. Lowry, P.J.J. Alvarez, Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour. Technol. 101, 1141–1146 (2010)

    Article  CAS  Google Scholar 

  98. C. Kirchner, T. Liedl, S. Kurdera, T. Pellegrino, A. Muño Javier, H.E. Gaub, S. Stölzie, N. Fertig, W.J. Parak, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331–338 (2005)

    Article  CAS  Google Scholar 

  99. T.K. Jain, M.A. Morales, S.K. Sahoo, D.L. Leslie-Pelecky, V. Labhasetwar, Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. 2, 194–205 (2005)

    Article  CAS  Google Scholar 

  100. T.S. Hauck, A.A. Ghazani, W.C. Chan, Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4, 153–159 (2008)

    Article  CAS  Google Scholar 

  101. J.A. Khan, B. Pillai, T.K. Das, Y. Singh, S. Maiti, Molecular effects of uptake of gold nanoparticles in HeLa cells. Chembiochem 8, 1237–1240 (2007)

    Article  CAS  Google Scholar 

  102. N.R. Scott, H. Chen, Nanoscale Science and Engineering for Agriculture and Food Systems. Roadmap report of the national planning workshop, 18–19 November 2002 (USDA/CSREES, Washington, DC, 2003), Available online: http://www.nseafs.cornell.edu/web.roadmap.pdf

  103. P.R. Srinivas, M. Philbert, T.Q. Vu, Q. Huang, J.K. Kokini, E. Saos, H. Chen, C.M. Petersen, K.E. Friedl, C. McDade-Nguttet, V. Hubbard, P. Starke-Reed, N. Miller, J.M. Betz, J. Dwyer, J. Milner, S.A. Ross, Nanotechnology research: applications to nutritional sciences. J. Nutr. 140, 119–124 (2009)

    Google Scholar 

  104. T. Tarver, Food nanotechnology: a scientific status summary synopsis. Food Technol. 60(11), 22–26 (2006)

    Google Scholar 

  105. J. Weiss, P. Takhistov, J. McClement, Functional materials in food nanotechnology. J. Food Sci. 71(9), R107–R116 (2006)

    Article  CAS  Google Scholar 

  106. N.R. Scott, Impact of nanoscale technologies in animal management, in Animal Production and Animal Science Worldwide, ed. by A. Rosati, A. Tewolde, C. Mosconi (Wageningen Academic Publishers, Wageningen, 2007), pp. 283–291

    Google Scholar 

  107. N. Pidgeon, B. Herr Harthorn, K. Bryant, T. Rogers-Hayden, Deliberating the risks of nanotechnologies for energy and health applications in the United States and United Kingdom. Nat. Nanotechnol. 4, 95–98 (2009)

    Article  CAS  Google Scholar 

  108. H.S. Rosenkrantz, A.R. Cunningham, Y.P. Zhang, H.G. Claycamp, O.T. Macina, N.B. Sussman, S.G. Grant, G. Klopman, Development, characterization and application of predictive-toxicology models SAR. QSAR Environ. Res. 10, 277–298 (1999)

    Article  Google Scholar 

  109. R. Benigni, T.I. Netzeva, E. Benfenati, C. Bossa, R. Franke, C. Helma, E. Hulzebos, C. Marchant, A. Richard, Y.-T. Woo, C. Yang, The expanding role of predictive toxicology: an update on the (Q)SAR models of mutagens and carcinogens. J. Environ. Sci. Health C 25, 53–97 (2007)

    Article  CAS  Google Scholar 

  110. B. Fubini, Surface reactivity in the pathogenic response to particulates. Environ. Health Perspect. 105, 1013–1020 (1997)

    Google Scholar 

  111. V. Vallyathan, S. Leonard, P. Kuppusamy, D. Pack, M. Chzhan, S.P. Sanders, J.L. Zweir, Oxidative stress in silicosis: evidence for the enhanced clearance of free radicals from whole lungs. Mol. Cell. Biochem. 168, 125–132 (1997)

    Article  CAS  Google Scholar 

  112. A. Nel, Atmosphere. Air pollution-related illness: biomolecular effects of particles. Science 308, 804 (2005)

    Article  CAS  Google Scholar 

  113. T. Xia, N. Li, A.E. Nel, Potential health impact of nanoparticles. Annu. Rev. Public Health 30, 21.1–21.14 (2009)

    Article  Google Scholar 

  114. R. Becher, R.B. Hetland, M. Refsnes, J.E. Dahl, H.J. Dahlman, P.E. Schwarze, Rat lung inflammatory responses after in vivo and in vitro exposure to various stone particles. Inhal. Toxicol. 13, 789–805 (2001)

    Article  CAS  Google Scholar 

  115. A. Keller, X. Wang, D. Zhou, H. Lenihan, G. Cherr, B. Cardinale, R.J. Miller, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44(6), 1962–1967 (2010)

    Article  CAS  Google Scholar 

  116. M.L. López-Moreno, G. de la Rosa, J.A. Hernández-Viezcas, J.R. Peralta-Videa, J.L. Gardea-Torresdey, XAS corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 58, 3689–3693 (2010)

    Article  CAS  Google Scholar 

  117. R.J. Miller, H.S. Lenihan, E.B. Muller, N. Tseng, S.K. Hanna, A.A. Keller, Impacts of metal oxide nanoparticles on marine phytoplankton. Environ. Sci. Technol (online publication 14 May 2010). doi:10.1021/es100247x

  118. Z. Ji, X. Jin, S. George, T. Xia, H. Meng, X. Wang, E. Suarez, H. Zhang, E.M.V. Hoek, H. Godwin, A.E. Nel, J.I. Zink, Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ. Sci. Technol (online publication 10 June2010). doi: 10.1021/es100417s

  119. P. Wang, A. Keller, Natural and engineered nano and collodial transport: role of zeta potential in prediction of particle distribution. Langmuir 25(12), 6856–6862 (2009)

    Article  CAS  Google Scholar 

  120. P. Wang, Q. Shi, H. Liang, D. Steuerman, G. Stucy, A.A. Keller, Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution. Small 4(12), 2166–2170 (2008)

    Article  CAS  Google Scholar 

  121. J. Priester, P. Stoimenov, R. Mielke, S. Webb, C. Ehrhardt, J. Zhang, G. Stucky, P. Holden, Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. Environ. Sci. Technol. 43(7), 2589–2594 (2009)

    Article  CAS  Google Scholar 

  122. M.A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Pérez-Rivera, K. Hristovski, Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 43, 6757–6763 (2009)

    Article  CAS  Google Scholar 

  123. T.M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 42, 4133–4139 (2008)

    Article  CAS  Google Scholar 

  124. A. Kiser, H. Ryu, G. Jang, K. Hristovski, P. Westerhoff, Biosorption of nanoparticles on heterotrophic wastewater biomass. Water Res. 44(14), 4105–4114 (2010). doi:10.1016/j.watres.2010.05.036

    Article  CAS  Google Scholar 

  125. P. Westerhoff, G. Song, K. Hristovski, M.A. Kiser, Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 Nanomaterials, J. Environ.Moni. DOI: 10.1039/C1EM10017C (2011)

    Google Scholar 

  126. ChemicalWatch, A range of tools are needed to communicate the risks of nanomaterials through the value chain. Monthly Briefing (CW Research, Shrewsbury, 2010), Available at: http://chemicalwatch.com/3311

  127. P. Aguar, J.J. Murcia Nicolás, EU Nanotechnology R&D in the Field of Health and Environmental Impact of Nanoparticles (European Commission Research Directorate-General (FP6/7), Brussels, 2008), Available online: ftp://ftp.cordis.europa.eu/pub/nanotechnology/docs/final-version.pdf

  128. National Institute of Standards and Technology (NIST), Advance Technology Program (ATP) economic studies, survey results, reports and working papers (2009) (online index), Available online: http://www.atp.nist.gov/eao/eao_pubs.htm

  129. Environmental Defense Fund (EDF), DuPont nano risk framework (2008), Available online: http://innovation.edf.org/page.cfm?tagID=30725

  130. DuPont, Position statement: DuPont NanoScale Science & Engineering (NS&E) (2010), Available online: http://www2.dupont.com/Media_Center/en_US/position_statements/nanotechnology.html

  131. International Organization for Standardization (ISO), Web site of ISO Technical Committee 229 (Nanotechnologies) (2010), http://www.iso.org/iso/iso_technical_committee?commid=381983

  132. National Institute for Occupational Safety and Health (NIOSH), Strategic plan for NIOSH nanotechnology research and guidance: filling the knowledge gaps (DHHS/CDC, Atlanta, 2008), Available online: http://www.cdc.gov/niosh/topics/nanotech/strat_plan.html

  133. National Institute for Occupational Safety and Health (NIOSH), Progress toward safe nanotechnology in the workplace (DHHS/CDC, Atlanta, 2007), Available online: http://www.cdc.gov/niosh/docs/2007-123

  134. M. Methner, L. Hodson, C. Geraci, Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials – Part A. J. Occup. Environ. Hyg. 7, 127–132 (2010)

    Article  CAS  Google Scholar 

  135. National Institute for Occupational Safety and Health (NIOSH), NIOSH current intelligence bulletin: evaluation of health hazards and recommendations for occupational exposure to titanium dioxide, in Final Policy Clearance for Full Publication (NIOSH, NIOSH Docket #100, Washington, DC, 2005), Available online: http://www.cdc.gov/niosh/review/public/tio2

  136. National Institute for Occupational Safety and Health (NIOSH), NIOSH current intelligence bulletin: occupational exposure to carbon nanotubes and nanofibers. Draft being evaluated for policy clearance for placement online on the NIOSH Web site for public comment. Approval anticipated by the end of 2010

    Google Scholar 

  137. M. Riedicker, G. Katalagarianakis (eds.), Compendium of projects in the European NanoSafety Cluster (2010), Available online: ftp://ftp.cordis.europa.eu/pub/nanotechnology/docs/compendium-nanosafety-cluster2010_en.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Nel .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business B.V.

About this chapter

Cite this chapter

Nel, A. et al. (2011). Nanotechnology Environmental, Health, and Safety Issues. In: Nanotechnology Research Directions for Societal Needs in 2020. Science Policy Reports, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1168-6_5

Download citation

Publish with us

Policies and ethics