Skip to main content

Light-Harvesting Systems in Algae

  • Chapter
Photosynthesis in Algae

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 14))

Summary

Light harvesting in algae is very diverse and reflects the broad spectrum of organisms involved and their long history of evolution compared to higher plants. This chapter concentrates on the chlorophylls (Chls) and their binding proteins, as they are the major photosynthetic pigments. Three chlorophylls occur in the algae, Chl a, Chl b and Chl c, attached to light-harvesting proteins, mainly in the CAB/CAC family. In classical Cyanobacteria typical CAB/CAC proteins are not found and the only member of the Chl c family present is Mg divinyl-2,4- pheoporphyrin methyl ester (MgDVP). In Cyanobacteria the light-harvesting proteins are typically phycobiliproteins (under nitrogen sufficient conditions) and isiA proteins (under nitrogen limiting conditions). In prochlorophytes and Acaryochoris marina, which are Cyanobacteria, a prochlorophyte chlorophyll binding protein (pcb protein) binds Chl a and Chl b, and sometimes MgDVP, or Chl d. The binding of Chl in these proteins and in other antenna proteins is discussed. These proteins serve to optimize energy distribution to the two photosystems, with controls at several levels of organization. A major problem in all oxygenic photosynthetic organisms (Cyanobacteria, algae and higher plants) is the generation of oxygen free radicals, particularly by Photosystem II. This leads to photoinhibitory damage, which is partially offset by mechanisms which down- regulate photosynthesis, particularly Photosystem II, and dissipate incoming energy as heat. The xanthophyll cycle is found in all algae, with the possible exception of red algae and cryptophytes, and, by processes which are only partially known, diverts light energy to heat energy when switched on. Algae can control their uptake of light energy in a variety of ways: by physiological mechanisms and by regulation of transcription and translation of proteins. These responses can be to both light quality and light quantity. Algae show a wide range of rearrangements of the light harvesting apparatus in relation to the photosystems, known as state transitions, which alter the optical cross-sectional areas of PS I and PS II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe S, Murakami A, Ohki K, Aruga Y and Fujita Y (1994) Changes in stoichiometry among PS I, PS II and Cyt b 6-f complexes in response to chromatic light for cell growth observed with the red alga Porphyra yezoensis—inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    PubMed  CAS  Google Scholar 

  • Allen JF and Raven JR (1996) Free-radical-induced mutation vs. redox regulation: Costs and benefits of genes in organelles. J Mol Evol 42: 482–492

    PubMed  CAS  Google Scholar 

  • Allen JF, Bennett J, Steinbeck KE and Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291: 25–29

    CAS  Google Scholar 

  • Anderson JM (1999) Insights into the consequences of grana stacking of thylakoid membranes in vascularplants: Apersonal perspective. Aust J Plant Physiol 26: 625–639

    CAS  Google Scholar 

  • Anderson JM and Aro EM (1994) Grana stacking and protection of Photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: An hypothesis. Photosynth Res 41: 315–326

    CAS  Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 426–440

    Google Scholar 

  • Andersson B and Aro EM (2001) Photodamage and D1 protein turnover in Photosystem II. In: Aro EM and Andersson B (eds) Regulation of Photosynthesis, pp 377-393. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Arsalane W, Rousseau B and Duval JC (1994) Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom: Competition between photoprotection and photoinhibition. Photochem Photobiol 60: 237–243

    CAS  Google Scholar 

  • Barbato R, Mulo P, Bergo E, Carbonera D, Maenpaa P, Giacometti GM, Barber J and Aro EM (1999) Substantial deletions in the DE loop of the Photosystem II D1 protein do not prevent its turnover or cross-linking with the alpha-subunit of cytochrome b559. A study using Synechocystis sp PCC 6803 mutants. J Plant Physiol 154: 591–596

    CAS  Google Scholar 

  • Barber J and Archer MD (2001) P680, the primary electron donor of Photosystem II. J Photochem Photobiol A 142: 97–106

    CAS  Google Scholar 

  • Baroli I and Melis A (1996) Photoinhibition and repair in Dunaliella salina acclimated to different growth irradiances. Planta 198: 640–646

    CAS  Google Scholar 

  • Baymann F, Brugna M, Muhlenhoff U and Nitschke W (2001) Daddy, where did (PS) I come from? Biochim Biophys Acta 1507: 291–310

    PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001a) Iron deficiency induces the formation of an antenna ring around trimeric Photosystem I in cyanobacteria. Nature 412: 713–715

    Google Scholar 

  • Bibby TS, Nield J, Partensky F and Barber J (2001b) Oxyphotobacteria—Antenna ring around Photosystem I. Nature 413: 590

    Google Scholar 

  • Blankenship RE and Hartmann H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 3: 94–97

    Google Scholar 

  • Boekema EJ, Hifney A, Yakusheska AE, Piotrowski H, Keegstra W, Berry S, Michael KP, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748

    PubMed  CAS  Google Scholar 

  • Bonaventura CJ and Myers J (1989) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 301: 227–248

    Google Scholar 

  • Brocks JJ, Logan GA, Buick R and Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285: 1033–1036

    PubMed  CAS  Google Scholar 

  • Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW, Cummings DG (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: Evidence for photoinhibition and photoprotection. Coral Reefs 18: 99–105

    Google Scholar 

  • Bruce D, Biggins J, Steiner T and Thewalt M (1986) Excitation energy transfer in the cryptophytes. Fluorescence excitation spectra and picosecond time-resolved emission spectra of intact alga at 77K. Photochem Photobiol 44: 519–525

    CAS  Google Scholar 

  • Büchel C and Wilhelm C (1990) Wavelength independent state transitions and light regulated chlororespiration as mechanisms to control the energy status in the chloroplast of Pleurochloris meiringensis. Plant Physiol Biochem 28: 307–314

    Google Scholar 

  • Büchel C and Wilhelm C (1993) In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae—progress, problems and perspectives. Photochem Photobiol 58: 137–148

    Google Scholar 

  • Bulté L, Gans P, Rebéille F and Wollan F-A (1990) ATP Control of state transitions in vivo in Chlamydomonas reinhardtii. Biochim Biophys Acta 1020: 72–80

    Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29: 345–378

    CAS  Google Scholar 

  • Campbell D, Clarke AK, Gustafsson P and Öquist G (1996) D1 exchange and the Photosystem II repair cycle in the cyanobacterium Synechococcus. Plant Sci 115: 83–190

    Google Scholar 

  • Chen M, Quinnell R and Larkum AWD (2002) The major lightharvesting protein of Acaryochloris marina. FEBS Lett 514: 149–152

    PubMed  CAS  Google Scholar 

  • Cogdell RJ, Howard TD, Bittl R, Schlodder E, Geisenheimer I and Lubitz W (2000) How carotenoids protect bacterial photosynthesis. Phil Trans Roy Soc London 355: 1345–1349

    CAS  Google Scholar 

  • Crofts AR and Yerkes CT (1994) A molecular mechanism for qE-quenching. FEBS Lett 352: 265–270

    PubMed  CAS  Google Scholar 

  • Delosme R, Olive J and Wollman FA (1996) Changes in light energy distribution upon state transitions: An in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta 1273: 150–158

    Google Scholar 

  • Delphin E, Duval JC and Kirilovsky D (1995) Comparison of state 1-state 2 transitions in the green alga Chlamydomonas reinhardtii and in the red alga Rhodeila violacea. Effect of kinase and phosphatase inhibitors. Biochim Biophys Acta 1232: 91–95

    Google Scholar 

  • Delphin E, Duval J, Etienne A and Kirilovsky D (1996) State transitions or ApH-dependent quenching of photosystem II fluorescence in red algae. Biochemistry 35, 9435-9443

    Google Scholar 

  • Demmig-Adams B and Adams III WW (1993) The xanthophyll cycle. In: Young A and Britton G (eds) Carotenoids in photosynthesis pp 206-251. Chapman and Hall, London

    Google Scholar 

  • Doege M, Ohmann E and Tschiersch H (2000) Chlorophyll fluorescence quenching in the alga Euglena gracilis. Photosynth Res 63: 159–170

    PubMed  CAS  Google Scholar 

  • Dolganov NA, M., Bhaya D and Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b bindingproteins of higher-plants—evolution and regulation. Proc Natl Acad Sci USA 92: 636–640

    PubMed  CAS  Google Scholar 

  • Durnford DG and Falkowski PG (1997) Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynth Res 53: 229–241

    CAS  Google Scholar 

  • Dwarte DM and Vesk M (1982) Freeze-fracture thylakoid ultrastructure of representative members of ‘chlorophyll c’ algae. Micron 13: 325–326

    Google Scholar 

  • Dwivedi U, Sharma M and Bhardwaj R (1996) Down regulation of photosynthesis in Artabotrys hexapetatus by high light. Photosynth Res 46: 393–397

    Google Scholar 

  • Eggink L, Park H and Hoober JK (2001) The role of Chlorophyll b in photosynthesis: A hypothesis. BMC Plant Biology 1: 2 (http:/www.biomedcentral.com/147-2229/l/2)

    Google Scholar 

  • Escoubas JM, Lomas M, Laroche J and Falkowski PG (1996) Light intensity regulation of CAB gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237–10241

    Google Scholar 

  • Falkowski PG and Raven JA (1997) Aquatic Photosynthesis. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Falkowski PG, Kolber Z and Fujita Y (1988) Effect of redox state in the dynamics Photosystem II during steady-state photosynthesis in eucaryotic algae. Biochim Biophys Acta 533: 432–443

    Google Scholar 

  • Fleischmann MM, Ravanel S, Delosme R, Olive J, Zito F, Wollman FA Rochaix JD (1999) Isolation and characterization of photoautotrophic mutants of Chlamydomonas reinhardtii deficient in state transition. J Biol Chem 274: 30987–30994

    PubMed  CAS  Google Scholar 

  • Fookes CJR and Jeffrey SW (1989) The structure of chlorophyll c 3: A novel photosynthetic pigment. J Chem Soc Chem Commun 1989: 1827

    Google Scholar 

  • Fork DC and Satoh K (1986) The control of state transitions of the distribution of excitation energy in photosynthesis. Ann Rev Plant Physiol 37: 335–361

    CAS  Google Scholar 

  • Fork DC, Herbert SK and Malkin S (1991) Light energy distribution in the brown alga Macrocystis pyrifera (giant kelp). Plant Physiol 95: 731–739

    PubMed  CAS  Google Scholar 

  • Forsberg J and Allen JF (2001a) Molecular recognition in thylakoid structure and function. Trends Plant Sci. 6: 317–326

    Google Scholar 

  • Forsberg J. and Allen JF (2001b) Protein tyrosine phosphorylation in the transition to light state 2 of chloroplast thylakoids. Photosynth Res 68, 71-79

    Google Scholar 

  • Frank HA and Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63: 257–264

    PubMed  CAS  Google Scholar 

  • Frank HA, Bautista JA, Josue JS and Young AJ (2000) Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39: 2831–2837

    PubMed  CAS  Google Scholar 

  • Franklin LA and Badger MR (2001) A comparison of photosynthetic electron transport rates in macroalgae measured by pulse amplitude modulated chlorophyll fluorometry and mass spectrometry. J Phycol 37: 756–767

    CAS  Google Scholar 

  • Franklin LA and Larkum AWD (1997) Multiple strategies for a high light existence in a tropical marine macroalga. Photosynth Res 53: 149–159

    CAS  Google Scholar 

  • Fraser NJ, Dominy PJ, Uckcr B, Simonin I, Scheer H and Cogdell RJ (1999) Selective release, removal, and reconstitution of bacteriochlorophyll a molecules into the B800 sites of LH2 complexes from Rhodopseudomonas acidophila 10050 Biochemistry 38: 9684–9692

    PubMed  CAS  Google Scholar 

  • Fromme P (1999) Biology of Photosystem I: Structural aspects. In: Singal G, Sopory S, Govindjee, Irrgang K-D and Renger G (eds) Photobiology, pp 181-220. Narosa Publishing House, New Delhi

    Google Scholar 

  • Funk C and Vermaas W (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the lightharvesting proteins from higher plants. Biochemistry 38: 9397–9404

    PubMed  CAS  Google Scholar 

  • Fyfe PK, Jones, MR and Heathcote P (2002) Insights into the evolution of the antenna domains of type-I and type-II photosynthetic reaction centres through homology modeling. FEBS Lett 530: 117–123

    PubMed  CAS  Google Scholar 

  • Garczarek L, Hess WR, Holtzendorff J, van der Staay GWM, and Partcnsky F (2000) Multiplication of antenna genes as a major adaptation to low light in a marine prokaryote. Proc Natl Acad Sci USA 97: 4098–4101

    PubMed  CAS  Google Scholar 

  • Garrido JL, Zapata M and Muniz S (1995) Spectral characterization of new chlorophyll c pigments isolated from Emiliania huxleyi (Prymnesiophyceae) by high-performance liquid chromatography. J Phycol 31: 761–768

    CAS  Google Scholar 

  • Gibbs SB and Biggins J (1989) Regulation of the distribution of excitation energy in Ochromonas danica, an organism containing a chlorophyll a/c/carotenoid light harvesting antenna. Photosynth Res 21: 81–91

    CAS  Google Scholar 

  • Gibbs SB and Biggins J (1991) In vivo and in vitro protein phosphorylation studies in Ochromonas danica, an alga with chlorophyll a/c/fucoxanthin binding protein. Plant Physiol 97: 388–395

    PubMed  CAS  Google Scholar 

  • Gilmore AM, Itoh S and Govindjee (2000) Global spectralkinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley. Phil Trans Royal Soc London 355: 1371–1384

    CAS  Google Scholar 

  • Glazer AN (1999) Phycobiliproteins. In: Cohen Z (ed) Chemicals from Microalgae, pp 261-280. Taylor and Francis, Ltd, London

    Google Scholar 

  • Goericke R and Repeta DJ (1992) The pigments of Prochlorococcus marinus: The presence of divinyl chlorophyll a and b in a marine procaryote. Limnol Oceanogr 37: 425–433

    CAS  Google Scholar 

  • Goss R, Bohme K and Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin—consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205: 613–621

    CAS  Google Scholar 

  • Grabowski B, Cunningham FX, and Gantt E (2001) Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines: Proc Natl Acad Sci USA 98: 2911–2916

    PubMed  CAS  Google Scholar 

  • Green BA and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Molec Biol 47: 685–714

    CAS  Google Scholar 

  • Green BG and Parson WP (eds) (2003) Light-Harvesting Antennas. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Green BG and Pichersky E (1994) Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light harvesting antenna proteins from two and four-helix ancestors. Photosynth Res 39: 149–162

    CAS  Google Scholar 

  • Gunning BES and Schwartz GM (1999) Confocal microscopy of thylakoid autofluorescence in relation to origin of grana and phylogeny in green algae. Austr J Plant Physiol 26: 695–710

    CAS  Google Scholar 

  • Haldrup A, Jensen PE, Lunde C and Scheller HV (2001) Balance of power: A view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6: 301–305

    PubMed  CAS  Google Scholar 

  • He QF Schlich T Paulsen H and Vermaas W (1999) Expression of a higher plant light-harvesting chlorophyll a/b-binding protein in Synechocystis sp PCC 6803. Eur. J Biochem 263: 561–570

    CAS  Google Scholar 

  • Hecks B, Wilhelm C and Trissl HW (1996) Functional organization of the photosynthetic apparatus of the primitive alga Mantoniella squamata. Biochim Biophys Acta 1274: 21–30

    Google Scholar 

  • Heddad M and Adamska I (2000) Light stress-regulated twohelix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc Natl Acad Sci USA 97: 3741–3746

    PubMed  CAS  Google Scholar 

  • Helfrich M, Ross A, King GC, Turner AG and Larkum AWD (1999) Identification of [8-vinyl]-protochlorophyllide a in phototrophic prokaryotes and algae: Chemical and spectroscopic properties. Biochim Biophys Acta 1410: 262–272

    PubMed  CAS  Google Scholar 

  • Hideg E, Spetea C and Vass I (1994) Singlet oxygen and free radical production during acceptor-and donor-side-induced photoinhibition. Studies with spin trapping EPR spectroscopy. Biochim Biophys Acta 1186: 143–152

    CAS  Google Scholar 

  • Hideg E, Kalai T, Hideg K and Vass I (1998) Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 33: 11405–11411

    Google Scholar 

  • Hiller RG (1999) Carotenoids as components of the lightharvesting proteins of eukaryotic algae. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds)Photochemistry of Carotenoids, pp 81-98. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hiller RG, Sharpies FP, Catmull J, Puskeiler R and Miller DJ (2001) Reconstitution of the peridinin-chlorophyll a protein (PCP) from heterologously expressed apoprotein and isolated pigments. In: PS 2001: Proceedings of the 12th International Photosynthesis Congress, S31-021. CSIRO, Brisbane (CD-ROM)

    Google Scholar 

  • Hofmann E, Wrench PM, Sharpies FP, Hiller RG, Weite W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–1791

    PubMed  CAS  Google Scholar 

  • Horton P and Ruban AV (1994) The role of light-harvesting complex II in light energy quenching. In: Baker N and Bowyer JR (eds) Photoinhibition of Photosynthesis—From Molecular to the Field, pp 111-128 Bios Scientific Publishers, Oxford

    Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Molec Biol 47: 655–684

    CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M and Itoh S (1998) A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95: 13319–13323

    PubMed  CAS  Google Scholar 

  • Jansson S, Andersson J, Jung Kim S and Jackowski G (2000) An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Mol Biol 42: 345–351

    PubMed  CAS  Google Scholar 

  • Jeffrey SW (1989) Chlorophyll c pigments and their distribution in the chromophytic algae. In: Green JC, Leadbetter BSC and Diver WL (eds) The Chromophyte Algae: Problems and Perspectives, pp 13-36. Clarendon Press, Oxford

    Google Scholar 

  • Jennings RC, Garlaschi FM, Finzi, L and Zucchelli, G (1996) Slow cxciton trapping in PhotoSystem II: A possible physiological role. Photosynth Res 47: 167–173

    CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Ã…ngstrom resolution. Nature 411: 909–917

    PubMed  CAS  Google Scholar 

  • Junge W (1977) Physical aspects of light-harvesting, electron transport and electrochemical potential generation in photosynthesis. In: Encyclopedia of Plant Physiology, pp 59-93 Springer Verlag, Berlin

    Google Scholar 

  • Kirchhoff H, Horstmann S and Weis E (2000) Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. Biochim Biophys Acta 1459: 148–168

    PubMed  CAS  Google Scholar 

  • Kochendoerfer GG, Lin SW, Sakmar TP and Matthies RA (1999) How colour visual pigments are tuned. Trends Biochem Sci 24: 300–306

    PubMed  CAS  Google Scholar 

  • Koka P and Song P-S (1977) The chromophore topology and the binding environment off peridinin-chlorophyll a protein complexes from marine dinoflagellate algae. Biochim Biophys Acta 495: 220–226

    PubMed  CAS  Google Scholar 

  • Krause-Jensen D and Sand-Jensen K (1998) Light attenuation and photosynthesis of aquatic plant communities. Limnol Oceanogr 43: 396–407

    CAS  Google Scholar 

  • Kruse O (2001) Light-induced short-term adaptation mechanisms under redox control in the PS II-LHCII supercomplex: LHC II state transitions and PS II repair cycle. Naturwiss 88: 284–292

    PubMed  CAS  Google Scholar 

  • Kruse O, Nixon PJ, Schmid GH and Mullineaux CW (1999) Isolation of state transition mutants of Chlamydomonas reinhardtii by fluorescence video imaging. Photosynth Res 61: 43–51

    CAS  Google Scholar 

  • Larkum AWD (1991) The evolution of chlorophylls. In: Scheer (ed) Chlorophylls, pp 367-383. CRC Publishers, Boca Raton

    Google Scholar 

  • Larkum AWD and Barrett J (1983) Light-harvesting processes in algae. Adv Bot Res 10: 1–219

    CAS  Google Scholar 

  • Larkum AWD and Howe CJ (1997) Molecular aspects of light harvesting processes in algae. Adv Bot Research 27: 257–330

    CAS  Google Scholar 

  • Larkum AWD, Scaramuzzi C, Hiller RG, Cox GC and Turner AC (1994) A light-harvesting chlorophyll c-like pigment in Prochloron. Proc Natl Acad Sci USA 91: 679–683

    PubMed  CAS  Google Scholar 

  • La Roche J, van der Staay GWM, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD and Green BR (1996) Sequences of prochlorophytes. Proc Natl Acad Sci USA 93: 15244–48

    Google Scholar 

  • Li XP, Björkman O, Shih C, Grossman AR, Rosenqvist M, Jansson S and Niyogi KK (2000) A pigment-binding protein essential for regulation of p hotosynthetic light harvesting. Nature 403: 391–395

    PubMed  CAS  Google Scholar 

  • Lichtlé C, Spilar A and Duval JC (1992) Immunogold localization of light-harvesting and photosystem I complexes in the thylakoids of Fucus serratus (Phaeophyceae). Protoplasma 166: 99–106

    Google Scholar 

  • Lichtlć C, Arsalane W, Duval JC and Passaquet C (1995) Characterization of the light-harvesting complex of Giraudyopsis stellifer (Chrysophyceae) and effects of light stress. J Phycology 31: 380–387

    Google Scholar 

  • Lohr, M and Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci USA 96: 8784–8789

    PubMed  CAS  Google Scholar 

  • Longstaff BJ, Kildea T, Runcie JW, Cheshire AC, Dennison WC, Hurd C, Kana T, Raven JA and Larkum AWD (2002) An in situ study of oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynth Res 74: 281–291

    PubMed  CAS  Google Scholar 

  • Lunde C, Jensen PE, Haldrup A, Knoetzel J and Scheller HV (2000) The PS I-H subunit of Photosystem I is essential for state transitions in plant photosynthesis. Nature 408: 613–615

    PubMed  CAS  Google Scholar 

  • Maxwell P, Laudenbach DE and Huner NPA (1995) Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 109: 787–795

    PubMed  CAS  Google Scholar 

  • Mimuro M, Hiyarama K, Uezona K, Miyashita H and Miyachi S (2000) Uphill energy transfer inAcaryochloris marina. Biochim Biophys Acta 1456: 27–34

    PubMed  CAS  Google Scholar 

  • Mishkind M and Mauzerall D (1980) Kinetic evidence for a common photosynthetic step in diverse seaweeds. Marine Biology 56: 262–265

    Google Scholar 

  • Mohanty, N, Gilmore AM and Yamamoto, HY (1995) Mechanism of non-photochemical chlorophyll fluorescence quenching. 2. Resolution of rapidly reversible absorbance changes at 530 nm and fluorescence quenching by the effects of antimycin, dibucaine and cation exchanger, A23187. Aust J Plant Physiol 22: 239–247

    CAS  Google Scholar 

  • Mulkidjanian AY and Junge W (1997) On the origin of photosynthesis as inferred from sequence analysis—a primordial UV-protector as common ancestor of reaction centers and antenna proteins. Photosynth Res 51: 27–42

    CAS  Google Scholar 

  • Mullineaux CW and Sarcina M (2002) Probing the dynamics of photosynthetic membranes with fluorescence recovery after photobleaching Trends Plant Sci 7: 237–240

    PubMed  CAS  Google Scholar 

  • Murakami 1 A, Adachi K, Sakawa T, Miyashita H, Kawai 1 H and Mimuro M (2001) Chlorophyll d in rhodophyceae: Presence and function. In: PS 2001: Proceedings of the 12th International Congress on Photosynthesis, S31-004. CSIRO, Melbourne (DC-ROM)

    Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced changes of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 189: 171–181

    PubMed  CAS  Google Scholar 

  • Murata N (1970) Control of excitation transfer in photosynthesis. IV. Kinetics of chlorophyll a fluorescence in Porphyra yezoensis. Biochim. Biophys. Acta 205: 379–389

    CAS  Google Scholar 

  • Nield J, Funk C, and Barber J (2000) Supermolecular structure of Photosystem II and location of the PsbS protein. Phil Trans Roy Soc London 355: 1337–1343

    CAS  Google Scholar 

  • Nishigaki A, Ohshima S and Nakayama K (2000) Characterization of three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II isolated from the green alga, Dunaliella salina. Plant Cell Physiol 41: 591–599

    PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50: 333–359

    PubMed  CAS  Google Scholar 

  • Ohki K and Honjho S (1997) Oceanic picophytoplankton having a high abundance of Chlorophyll b in the major light harvesting chlorophyll protein complex. Photosynth Res 52: 121–127

    Google Scholar 

  • Olaizola M, La Roche MJ, Kolber Z and Falkowski PG (1994) Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosynth Res 41: 357–370

    CAS  Google Scholar 

  • Park YI, Chow WS and Anderson JM (1995) Light inactivation of functional Photosystem II in leaves of peas grown in moderate light depends on photon exposure. Planta 196: 401–411

    CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A and Allen, JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397: 625–628

    CAS  Google Scholar 

  • Pursiheimo S, Rintamaki E, Baenagonzalez E and Aro E M (1998) Thylakoid Protein Phosphorylation In Evolutionally Divergent Species With Oxygenic Photosynthesis. FEBS Lett 423: 178–182

    PubMed  CAS  Google Scholar 

  • Pursiheimo S, Mulo P, Rintamaki E and Aro EM (2001) Coregulation of light-harvesting complex II phosphorylation and lhcb mRNA accumulation in winter rye. Plant J 26: 317–327

    PubMed  CAS  Google Scholar 

  • Pyszniak AK and Gibbs SP (1992) Immunocytochemical localization of photosystem I and the fucoxanthin-chlorophyll a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166: 208–217

    CAS  Google Scholar 

  • Ramus J (1978) Seaweed anatomy and photosynthetic performance: The ecological significance of light guides, heterogeneous absorption and multiple scatter. J Phycol 14: 352–362

    Google Scholar 

  • Rau HK, Snigula H, Struck A, Robert B, Scheer H, and Haehnel W (2001) Design, synthesis and properties of synthetic chlorophyll proteins: Eur J Biochem. 268: 3284–3295

    Google Scholar 

  • Raven JA (1984) A cost benefit analysis of photoabsorption by photosynthetic unicells. New Phytol 98: 593–625

    CAS  Google Scholar 

  • Raven JA (1996) The bigger the fewer: Size, taxonomic diversity and the range of chlorophyll(ide) pigments in oxygen-evolving marine photolithotrophs. J Mar Biol Assn UK 76: 211–217

    Google Scholar 

  • Reiskind JB, Beer S and Bowes G (1989) Photosynthesis, photorespiration and ecophysiological interactions in marine macroalgae. Aquat Bot 34: 131–152

    CAS  Google Scholar 

  • Rouag D and Dominy P (1994) State adaptation in the cyanobac terium Synechococcus 6301 (PCC). Dependence on light intensity or spectral composition? Photosynth Res 40: 107–117

    CAS  Google Scholar 

  • Rowan K (1989) Photosynthetic Pigments of Algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Sarcina M, Tobin MJ and Mullineaux CW (2001) Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942: Effects of phycobilisome size, temperature and membrane lipid composition. J Biol Chem 276: 46830–46834

    PubMed  CAS  Google Scholar 

  • Satoh K and Fork DC (1983) State I-state II transitions in the green alga Scenedesmus obliquas. Photochem Photobiol 37: 429–434

    CAS  Google Scholar 

  • Schreiber U, Endo T, Mi HL and Asada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method—particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 5: 873–882

    Google Scholar 

  • Silva P, Choi YJ, Hassan HAG and Nixon PJ (2002) Involvement of the Htra family proteins of protease protection of the cyanobacterium Synechocystis PCC6803 from light stress and in repair of Photosystem II. Phil Trans Roy Soc Lond Ser B 357: 1461–1467

    CAS  Google Scholar 

  • Song P-S, Koka P, Prezelin BB and Haxo FT (1976) Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates. Biochemistry 15: 4422–4427

    PubMed  CAS  Google Scholar 

  • Stransky H and Hager A (1970) Das Carotinoidmustcr und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. VI Chemosystematische Betrachtung. Arkiv Mikrobiol 73: 315–323

    CAS  Google Scholar 

  • Staehelin LA (1986) Chloroplast structure and supramolecular structure. In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III, pp 1-84. Springer Verlag, Berlin

    Google Scholar 

  • Summons RE, Jahnke LL, Hope JM and Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400: 554–557

    PubMed  CAS  Google Scholar 

  • Talarico L and Maranzana G (2000) Light and adaptive responses in red macroalgae: An overview. J Phytochem Phytobiol 56: 1–11

    CAS  Google Scholar 

  • Tandeau de Marsac N and Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanisms. FEMS Microbiol Rev 104: 119–190

    CAS  Google Scholar 

  • Telfer A, Oldham TC, Phillips D and Barber J (1999) Singlet oxygen formation detected by near-infrared emission from isolated photosystem II reaction centres: Direct correlation between P680 triplet decay and luminescence rise kinetics and its consequences for photoinhibition. J Photochem Photobiol B 48: 89–96

    CAS  Google Scholar 

  • ten Lohuis MR and Miller DJ (1998) Light-regulated transcription of genes encoding peridinin chlorophyll a proteins and the major intrinsic light-harvesting complex proteins in the dinoflagellate Amphidinium carterae Hulburt (Dinophycae)— changes in cytosine methylation accompany photoadaptation. Plant Physiol 117: 189–196

    PubMed  Google Scholar 

  • Ting CS and Owens TG (1994) The effects of excess irradiance on photosynthesis in the marine diatom Phaeodactylum tricornutum. Plant Physiol 106: 763–770

    PubMed  CAS  Google Scholar 

  • Ting CS, Rocap G, King J and Chisholm (2002) Cyanobacterial photosynthesis in the oceans: The origins and significance of divergent light-harvesting strategies. Trends Microbiol 10: 134–140

    PubMed  CAS  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159–162

    PubMed  CAS  Google Scholar 

  • Trissl HW and Wilhelm C (1993) Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci 18: 415–419

    PubMed  CAS  Google Scholar 

  • van der Staay GWM, Yurkova N and Green BR (1998) The 38 KDa Chlorophyll a/b protein of the prokaryote Prochlorothrix hollandica is encoded by a divergent pcb gene. Plant Mol Biol 36: 709–716

    PubMed  Google Scholar 

  • Vesk M, Dwarte D, Fowler S and Hiller RG (1992) Freezefracture immunocytochemistry of light havesting pigment complexes in a cryptophyte. Protoplasma 170: 166–176

    Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S and Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Pland Cell Physio 137: 889–893

    Google Scholar 

  • Wall MA, Socolich M and Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nature Structural Biology 7: 1133–1136

    PubMed  CAS  Google Scholar 

  • Wilhelm C and Lenartzt-Weiler I (1987) Energy transfer and pigment composition in three chlorophyll b-containing lightharvesting complexes isolated from Mantoniella squamata (Prasinophyceae), Chlorellafusca (Chlorophyceae) and Sinapis alba. Photosynth Res 13: 101–108

    CAS  Google Scholar 

  • Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20: 3623–3630

    PubMed  CAS  Google Scholar 

  • Xiong J, Inoue K and Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95: 14851–14856

    PubMed  CAS  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51: 639–648

    CAS  Google Scholar 

  • Zehetner A, Scheer H, Siffel P and Vacha F (2002) Photosystem II Reaction Center with altered pigment composition: Reconstitution of a complex containing five chlorophyll a per two pheophytin a with modified chlorophylls. Biochim Biophys Acta 1556: 21–28

    PubMed  CAS  Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauss N, Saenger Wand Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.Ã… resolution. Nature 409: 739–743

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Larkum, A.W.D. (2003). Light-Harvesting Systems in Algae. In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (eds) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1038-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1038-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3772-3

  • Online ISBN: 978-94-007-1038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics