Skip to main content

Heavy Metals, Trace Elements and Their Cellular Effects

  • Chapter
  • First Online:
Cellular Effects of Heavy Metals

Abstract

The book starts with the brief review of chapters. In this chapter heavy metals have been redefined as those trace elements that have ≥ 3 g/cm3 densities and may cause harmful biological effects. The chapter arrived to this definition by clarifying first the light elements on the basis of their electronic configurations and compatibility with those of bioelements (CHNOPS group) in constructing biomolecules. As compatibility criteria the chemical bond formation between s–p electrons and p–p electrons were taken, allowing the tetrahedral three dimensional construction of biological compounds with four bonding partners. The compatibility range ended at 1s22s22p63s23p64s2 electronic configuration corresponding to calcium, which is the 20th element in the periodic table. From element 21 (Sc) the wide range of redox behavior, high reactivity, rich coordination chemistry and complex formation of transition metals is due to the outer d and f electron subshells and explain their important catalytic role in enzyme reactions and toxicity at higher cellular concentrations. The chapter describes the most important cellular effects of heavy metals. The advantages of changing from in vivo to in vitro cellular systems have been pointed out. The methods for the detection and determination of heavy metals in cells are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams SC, Ginsberg P, Knox K (1964) Transition metal-hydrogen compounds. II. The crystal and molecular structure of potassium rhenium hydride, K2ReH9. Inorg Chem 3:558–567

    Article  CAS  Google Scholar 

  • Ames BN (1971) The detection of chemical mutagens with enteric bacteria. In: Hollaender A (ed) Chemical mutagens, principles and methods for their detection, vol 1. Plenum Press, New York, pp 267–282

    Chapter  Google Scholar 

  • Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A 70:2281–2285

    Article  PubMed  CAS  Google Scholar 

  • Appenroth K-J (2010) Definition of “Heavy Metals” and their role in biological systems. In: Sherameti A, Verma A (eds) Soil heavy metals. Springer, Berlin, pp 19–29

    Chapter  Google Scholar 

  • Ayers R, High W, Chandler J, Ranville J (2007) The detection and characterization of nanoparticulate heavy metals in epithelial tissues in patients with nephrogenic fibrosing dermopathy. MRS Fall Meeting. Symposium 00, 1063-0010-06. MRS Website: http://www.mrs.org/s_mrs/sec_subscribe.asp?CID = 11306&DID = 212403&action=detail

  • Banfalvi G (1991) Conversion of oxidation energy to reductive power in the citrate cycle. Biochem Educ 19:24–26

    Article  CAS  Google Scholar 

  • Banfalvi G (2009) Apoptotic chromatin changes. Springer, Holland, pp 269–293

    Google Scholar 

  • Banfalvi G, Sooki-Toth A, Sarkar N, Csuzi S, Antoni F (1984) Nascent DNA chains synthesized in reversibly permeable cells of mouse thymocytes. Eur J Biochem 139:553–559

    Article  PubMed  CAS  Google Scholar 

  • Banfalvi G, Gacsi M, Nagy G, Kiss ZB, Basnakian AG (2005) Cadmium induced apoptotic changes in chromatin structure and subphases of nuclear growth during the cell cycle in CHO cells. Apoptosis 10:631–642

    Article  PubMed  CAS  Google Scholar 

  • Banfalvi G, Ujvarosi K, Trencsenyi G, Somogyi C, Nagy G, Basnakaian AG (2007) Cell culture density dependent toxicity and chromatin changes upon cadmium treatment in murine pre-B-cells. Apoptosis 12:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Bird AJ (2008) Metallosensors, the ups and downs of gene regulation. Adv Microb Physiol 53:231–267

    Article  PubMed  CAS  Google Scholar 

  • Bjerrum N (1936) Bjerrum’s inorganic chemistry, 3rd Danish edn. Heinemann, London

    Google Scholar 

  • Blake DA, Jones RM, Blake RC II, Pavlov AR, Darwish IA, Yu H (2001) Antibody-based sensors for heavy metal ions. Biosensors Bioelectronics 16:799–809

    Article  PubMed  CAS  Google Scholar 

  • Bontidean I, Berggren C, Johansson G, Csöregi E, Mattiasson B, Lloyd JR, Jakeman KJ, Brown NL (1998) Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal Chem 70:4162–4169

    Article  PubMed  CAS  Google Scholar 

  • Bowen HJM (1976) Trace elements in biochemistry, 2nd edn. Academic, London

    Google Scholar 

  • Braeckman B, Raes H, Van Hoye D (1997) Heavy-metal toxicity in an insect cell line. Effects of cadmium chloride, mercuric chloride and methylmercuric chloride on cell viability and proliferation in Aedes albopictus cells. Cell Biol Toxicol 13:389–397

    Article  PubMed  CAS  Google Scholar 

  • Bridges JW, Benford DJ, Hubbard SA (2006) Mechanism of toxic injury. Ann N Y Acad Sci 407:42–63

    Article  Google Scholar 

  • Brown RS, Wahl RL (1993) Overexpression of GLUT-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72:2979–2985

    Article  PubMed  CAS  Google Scholar 

  • Davson H, Danielli JF (1938) Studies on the permeability of erythrocytes. Factors in cation permeability. Biochem J 32:991–1001

    PubMed  CAS  Google Scholar 

  • De Ruiter N, Mailänder V, Kappus H (1985) Effect of heavy metals on cellular growth, metabolism and integrity of cultured Chinese hamster kidney cells. Xenobiotica 15:665–671

    Article  PubMed  Google Scholar 

  • Demis DJ, Rothstein A (1955) Relationship of the cell surface to metabolism. XII. Effect of mercury and copper on glucose uptake and respiration of rat diaphragm. Am J Physiol 180:566–574

    PubMed  CAS  Google Scholar 

  • Duffus JH (2002) Heavy metals—a meaningless term? Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Dunkel VC (2006) Biological significance of end points. Ann N Y Acad Sci 407:34–41

    Article  Google Scholar 

  • Eksperiandova LP, Makarovska YN, Blank AB (1998) Determination of small quantities of heavy metals in water-soluble salts and natural water by X-ray fluorescence. Anal Chim Acta 371:1105–1108

    Article  Google Scholar 

  • Ekwall B (1980) Screening of toxic compounds in tissue culture. Toxicology 17:127–142

    Article  PubMed  CAS  Google Scholar 

  • Ekwall B (1983) Screening of toxic compounds in mammalian cell cultures. Ann N Y Acad Sci 407:64–77

    Article  PubMed  CAS  Google Scholar 

  • Elad T, Benovich E, Magrisso S, Belkin S (2008) Toxicant identification by a luminescent bacterial bioreporter panel: application of pattern classification algorithms. Environ Sci Technol 42:8486–8491

    Article  PubMed  CAS  Google Scholar 

  • Falbe JM, Regitz M (eds) (1996) Roempp Chemie Lexikon, Georg Thieme, Weinheim

    Google Scholar 

  • Farkas E, Ujvarosi K, Nagy G, Posta J, Banfalvi G (2010) Apoptogenic and necrogenic effects of mercuric acetate on the chromatin structure of K562 human erythroleukemia cells. Toxicol in Vitro 24:267–275

    Article  PubMed  CAS  Google Scholar 

  • Ganguly BB (1993) Cell division, chromosomal aberration, and micronuclei formation in human peripheral blood lymphocytes. Biol Trace Elem Res 38:55–62

    Article  PubMed  CAS  Google Scholar 

  • Gasiorek K, Bauchinger M (1981) Chromosome changes in human lymphocytes after separate and combined treatment with divalent salts of lead, cadmium, and zinc. Environ Mutagen 3:513–518

    Article  PubMed  CAS  Google Scholar 

  • Grant R, Grant C (eds) (1987) Grant and Hackh’s chemical dictionary, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 87:269–305

    PubMed  CAS  Google Scholar 

  • Haber F, Weiss J (1932) On the catalysis of hydroperoxide. Naturwissenschaften 20:948–950

    Article  CAS  Google Scholar 

  • Henriques V, Orskov SL (1936) Untersuchungen fiber die Schwankungen des Kationgehaltes.der roten Blutkörperchen. Skand Arch Physiol 74:63–78

    Article  CAS  Google Scholar 

  • Jacobs MH (1950) Surface properties of the erythrocyte. Ann N Y Acad Sci 50:824–834

    Article  Google Scholar 

  • Joyce CRB, Moore H, Weatherall M (1954) The effects of lead, mercury, and gold on the potassium turnover of rabbit blood cells. Br J Pharmacol Chemother 9:463–470

    Article  PubMed  CAS  Google Scholar 

  • Kasprzak KS (1995) Possible role of oxidative damage in metalinduced carcinogenesis. Cancer Invest 13:411–430

    Article  PubMed  CAS  Google Scholar 

  • Kehrer JP (2000) The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    Article  PubMed  CAS  Google Scholar 

  • Klein MA, Sekimoto H, Milner MJ, Kochian LV (2008) Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines. Plant Physiol 147:2006–2016

    Article  PubMed  CAS  Google Scholar 

  • Ko H, Roh H, Kim S, Choi C, Jang J, Shin J, Byun YS, Choi I-G (2009) KU Seoul team: integrated heavy metal detection system. http://2009.igem.org/files/poster/KU_Seoul.pdf

  • Koppenol WH (2001) The Haber–Weiss cycle—70 years later. Redox Report 6:229–234

    Article  PubMed  CAS  Google Scholar 

  • Kos V, Budie B, Hudnik V, Lobnik F, Zupan M (1996) Determination of heavy metal concentrations in plants exposed to different degrees of pollution using ICP-AES. Fresenius J Anal Chem 354:648–652

    CAS  Google Scholar 

  • Lesh RE, Somlyo AP, Owens GK, Somlyo AV (1995) Reversible permeabilization. A novel technique for the intracellular introduction of antisense oligodeoxynucleotides into intact smooth muscle. Circ Res 77:220–230

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Cai H, Xu Y, Xiao L, Yang M, Wang P (2007) Detection of heavy metal toxicity using cardiac cell-based biosensor. Biosens Bioelectron 22:3224–3229

    Article  PubMed  CAS  Google Scholar 

  • Lozet J, Mathieu C (1991) Dictionary of soil science, 2nd edn. Balkema, Rotterdam

    Google Scholar 

  • Marquès L, Cossegal M, Bodin S, Czernic P, Lebrun M (2004) Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens. New Phytologist 164:289–295

    Article  Google Scholar 

  • Mateuca R, Lombaert N, Aka PV, Decordier I, Kirsch-Volders M (2006) Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie 88:1515–1531

    Article  PubMed  CAS  Google Scholar 

  • McBrien DCH, Hassal KA (1965) The effect of toxic doses of copper upon respiration, photosynthesis and growth of Chlorella vulgaris. Physiol Plant 20:113–117

    Article  Google Scholar 

  • Miyamoto K, Yamashita T, Tsukiyama T, Kitamura N, Minami N, Yamada M, Imai H (2008) Reversible membrane permeabilization of mammalian cells treated with digitonin and its use for inducing nuclear reprogramming by Xenopus egg extracts. Cloning Stem Cells 10:535–542

    Article  PubMed  CAS  Google Scholar 

  • Morris C (ed) (1992) Academic press dictionary of science and technology. Academic Press, San Diego

    Google Scholar 

  • Mullins LJ, Fenn WO, Noonan TR, Haege L (1941) Permeability of erythrocytes to radioactive potassium. Am J Physiol 135:93–101

    CAS  Google Scholar 

  • Myrbäck K (1957) Inhibition of yeast invertase (saccharase) by metal ions. V. Inhibition by mercury compounds. Ark Kemi 11:471–479

    Google Scholar 

  • Nielsen SP (2004) The biological role of strontium. Bone 35:583–588

    Article  Google Scholar 

  • Nishioka T, Oda Y, Seino Y, Yamamoto T, Inagaki N, Yano H, Imura H, Shigemoto R, Kikuchi H (1992) Distribution of the glucose transporters in human brain tumors. Cancer Res 52:3972–3979

    PubMed  CAS  Google Scholar 

  • Osipova EA, Shapovalova EN, Ofitserova MN, Podlesnykh SV (2000) Amperometric detection of unithiol complexes of heavy metals in high-performance liquid chromatography. J Anal Chem 55:52–57

    Article  CAS  Google Scholar 

  • Overnell J (1975) The effect of heavy metals on photosynthesis and loss of cell potassium in two species of marine algae, Dunaliella tertiolecta and Phaeodactylum tricornutum. Mar Biol 29:99–103

    Article  CAS  Google Scholar 

  • Park JN, Sohn MJ, Oh DB, Kwon O, Rhee SK, Hur CG, Lee SY, Gellissen G, Kang HA (2007) Identification from transcriptome analysis and application to whole-cell heavy metal detection systems of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter. Appl Environ Microbiol 73:5990–6000

    Article  PubMed  CAS  Google Scholar 

  • Parker SP (ed) (1989) McGraw-Hill dictionary of scientific and technical terms, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Parry R, Plowman D, Delves HT, Roberts NB, Birchall JD, Bellia JP, Davenport A, Ahmad R, Fahal I, Altmann P (1998) Silicon and aluminium interactions in haemodialysis patients. Nephrol Dial Transplant 13:1759–1762

    Article  PubMed  CAS  Google Scholar 

  • Passow H, Rothstein A (1960) The binding of mercury by the yeast cell in relation to changes in permeability. J Gen Physiol 43:621–633

    Article  PubMed  CAS  Google Scholar 

  • Ramadan D, Rancy PC, Nagarkar RP, Schneider JP, Thorpe C (2009) Arsenic(III) species inhibit oxidative protein folding in vitro. Biochemistry 48:424–432

    Article  PubMed  CAS  Google Scholar 

  • Rastogi S, Banerjee S, Chellappan S, Simon GR (2007) GLUT-1 antibodies induce growth arrest and apoptosis in human cancer cell lines. Cancer Lett 257:244–251

    Article  PubMed  CAS  Google Scholar 

  • Scott DL, Ramanathan S, Shi W, Rosen BP, Daunert S (1997) Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Anal Chem 69:16–20

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Goloubinoff P, Christen P (2008) Heavy metal ions are potent inhibitors of protein folding. Biochem Biophys Res Commun 372:341–345

    Article  PubMed  CAS  Google Scholar 

  • Shastry BS (2005) On the functions of lithium: the mood stabilizer. Bioessays 19:199–200

    Article  Google Scholar 

  • Shetty RS, Deo SK, Shah P, Sun Y, Rosen BP, Daunert S (2003) Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Anal Bioanal Chem 376:11–17

    PubMed  CAS  Google Scholar 

  • Sørensen SJ, Burmølle M, Hansen LH (2006) Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr Opin Biotechnol 17:11–16

    Article  PubMed  Google Scholar 

  • Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151:1–8

    Article  PubMed  CAS  Google Scholar 

  • Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750

    Article  PubMed  CAS  Google Scholar 

  • Streit B (1994) Lexikon der Okotoxikologie. VCH, Weinheim

    Google Scholar 

  • Sun Y, Wong MD, Rosen BP (2001) Role of cysteinyl residues in sensing Pb(II), Cd(II), and Zn(II) by the plasmid pI258 CadC repressor. J Biol Chem 276:14955–14960

    Article  PubMed  CAS  Google Scholar 

  • Thornton I (1995) Metals in the global environment—facts and misconceptions. ICME, Ottawa

    Google Scholar 

  • Topashka-Ancheva M, Metcheva R, Teodorova S (2003) A comparative analysis of the heavy metal loading of small mammals in different regions of Bulgaria II: chromosomal aberrations and blood pathology. Ecotoxicol Environ Saf 54:188–193

    Article  PubMed  CAS  Google Scholar 

  • Trencsenyi G, Juhasz T, Bako F, Marian T, Pocsi I, Kertai P, Hunyadi J, Banfalvi G (2010) Comparison of the tumorigenic potential of liver and kidney tumors induced by N-nitrosodimethylamine. Histol Histopathol 25:309–320

    PubMed  CAS  Google Scholar 

  • Van Nostrand’s International Encyclopaedia of Chemical Science (1964) Van Nostrand, Princetown

    Google Scholar 

  • Voet JG, Voet D (1995) Biochemistry. Wiley, New York, p 675

    Google Scholar 

  • Vogl J, Heumann KG (1997) Determination of heavy metal complexes with humic substances by HPLC/ICP-MS coupling using on-line isotope dilution technique. Fresenius J Anal Chem 359:438–441

    Article  CAS  Google Scholar 

  • Waki A, Kato H, Yano R, Sadato N, Yokoyama A, Ishii Y, Yonekura Y, Fujibayashi Y (1998) The importance of glucose transport activity as the rate-limiting step of 2-eoxyglucose uptake in tumor cells in vitro. Nucl Med Biol 25:593–597

    Article  PubMed  CAS  Google Scholar 

  • Waters BM, Eide DJ (2002) Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen. J Biol Chem 277:33749–33757

    Article  PubMed  CAS  Google Scholar 

  • Wilbrandt W (1941) Die Wirkung von Schwermetallsalzen auf die Erythrocyten-permeabilität für Glycerin. Arch Ges Physiol (Pjlilgers). 244:637–643

    Article  CAS  Google Scholar 

  • Winge DR, Jensen LT, Srinivasan C (1998) Metal-ion regulation of gene expression in yeast. Curr Opin Chem Biol 2:216–221

    Article  PubMed  CAS  Google Scholar 

  • Wolfbeis OS, Preininger C (1995) Disposable cuvette test for enzymatic determination of heavy metals. In: Vo-Dinh T (ed) Environmental monitoring and hazardous waste site remediation, Proceedings SPIE, p 140

    Google Scholar 

  • Woods JS (1996) Altered porphyrin metabolism as a biomarker of mercury exposure and toxicity. Can J Physiol Pharmacol 74:210–215

    PubMed  CAS  Google Scholar 

  • Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N, Yamada Y, Inoue K, Manabe T, Imura H (1990) Overexpression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 170:223–230

    Article  PubMed  CAS  Google Scholar 

  • Zolotov YA, Malofeeva GI, Petrukhin OM, Timerbaev AR (1987) New methods for preconcentration and determination of heavy metals in natural water. Pure Appl Chem 59:497–504

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gáspár Bánfalvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bánfalvi, G. (2011). Heavy Metals, Trace Elements and Their Cellular Effects. In: Banfalvi, G. (eds) Cellular Effects of Heavy Metals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0428-2_1

Download citation

Publish with us

Policies and ethics