Skip to main content

Assessing the Productivity Function of Soils

  • Chapter
  • First Online:
Sustainable Agriculture Volume 2

Abstract

The development and survival or disappearance of civilizations has been based on the performance of soils to provide food, fibre, and further essential goods for humans. Amongst soil functions, the capacity to produce plant biomass (productivity function) remains essential. This function is closely associated with the main global issues of the 21st century like food security, demands of energy and water, carbon balance and climate change. A standardised methodology for assessing the productivity function of the global soil resource consistently over different spatial scales will be demanded by a growing international community of land users and stakeholders for achieving high soil productivity in the context of sustainable multifunctional use of soils. We analysed available methods for assessing the soil productivity function. The aim was to find potentials, deficiencies and gaps in knowledge of current approaches towards a global reference framework. Our main findings were (i) that the soil moisture and thermal regime, which are climate-influenced, are the main constraints to the soil productivity potential on a global scale, and (ii) that most taxonomic soil classification systems including the World Reference Basis for Soil Resources provide little information on soil functionality in particular the productivity function. We found (iii) a multitude of approaches developed at the national and local scale in the last century for assessing mainly specific aspects of potential soil and land productivity. Their soil data inputs differ, evaluation ratings are not transferable and thus not applicable in international and global studies. At an international level or global scale, methods like agro-ecological zoning or ecosystem and crop modelling provide assessments of land productivity but contain little soil information. Those methods are not intended for field scale application to detect main soil constraints and thereby to derive soil management and conservation recommendations in situ. We found also that (iv) soil structure is a crucial criterion of agricultural soil quality and methods of visual soil assessment like the Peerlkamp scheme, the French method “Le profil cultural” and the New Zealand Visual Soil Assessment are powerful tools for recognising dynamic agricultural soil quality and controlling soil management processes at field scale. We concluded that these approaches have potential to be integrated into an internationally applicable assessment framework of the soil’s productivity function, working from field scale to the global level. This framework needs to serve as a reference base for ranking soil productivity potentials on a global scale and as an operational tool for controlling further soil degradation and desertification. Methods like the multi-indicator-based Muencheberg Soil Quality Rating meet most criteria of such a framework. This method has potential to act as a global overall assessment method of the soil productivity function for cropping land and pastoral grassland but needs further evolution by testing and amending its indicator thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AG Boden (2005) Bodenkundliche Kartieranleitung (KA5), 5th edition, Hannover, 432 p.

    Google Scholar 

  • Agronomic Interpretations Working Group (1995) Land Suitability Rating System for Agricultural Crops. 1. Spring-seeded small grains, in: Pettapiece W.W. (Ed.), Tech. Bull. 1995-6E, Centre for Land and Biological Resources Research, Agriculture and Agri-Food Canada, Ottawa, 90 p.

    Google Scholar 

  • Ahrens J.R., Rice T.J., Eswaran H. (2002) Soil Classification: Past and Present, NCSS Newslett. 19, 1–5.

    Google Scholar 

  • Alcamo J., Dronin N., Endejan M., Golubev G., Kirilenko A. (2007) A new assessment of climate change impacts on food production shortfalls and water availability in Russia, Global Environ. Change 17, 429–444.

    Google Scholar 

  • Andrews S.S., Karlen D.L., Cambardella C.A. (2004) The Soil Management Assessment Framework: A Quantitative Soil Quality Evaluation Method, Soil Sci. Soc. Am. J. 68, 1945–1962.

    CAS  Google Scholar 

  • Asner G.P., Heidebrecht K.B. (2005) Desertification alters regional ecosystem-climate Inter-actions, Glob. Change Biol. 11, 182–194.

    Google Scholar 

  • Bacic I.L.Z., Rossiter D.G., Bregt A.K. (2003) The use of land evaluation information by land use planners and decision-makers: a case study in Santa Catarina, Brazil, Soil Use Manage. 19, 12–18.

    Google Scholar 

  • Baisden W.T. (2006) Agricultural and forest productivity for modelling policy scenarios: evaluating approaches for New Zealand greenhouse gas mitigation, J. Roy. Soc. New Zeal. 36, 1–15.

    Google Scholar 

  • Ball B.C., Batey T., Munkholm L.J. (2007) Field assessment of soil structural quality - a development of the Peerlkamp test, Soil Use Manage. 23, 329–337.

    Google Scholar 

  • Barrios E., Delve R.J., Bekunda M., Mowo J., Agunda J., Ramisch J. (2006) Indicators of soil quality: A South–South development of a methodological guide for linking local and technical knowledge, Geoderma 135, 248–259.

    Google Scholar 

  • Batey T., McKenzie D.C. (2006) Soil compaction: identification directly in the field, Soil Use Manage. 22, 123–131.

    Google Scholar 

  • BBodSchG (1998) Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Federal Soil Protection Act of 17 March 1998, Federal Law Gazette I, p. 502.

    Google Scholar 

  • Begon M.R., Townsend R., Harper J.R. (2006) Ecology: from individuals to ecosystems, 4th ed., Blackwell.

    Google Scholar 

  • Beinroth F.H., Stahr K. (2005) Geschichte und Prinzipien der Bodenklassifikation, in: Blume H.-P., Felix-Henningsen P., Fischer W., Frede H.-G., Guggenberger G., Horn, R., Stahr K. (Eds.), Handbuch der Bodenkunde, Ecomed. 23. Erg. Lfg. 11/05, Section 3.2.1., 22 p.

    Google Scholar 

  • Bellocchi G., Rivington M., Donatelli M., Matthews K. (2009) Validation of biophysical models: issues and methodologies. A review, Agron. Sustain. Dev. 29, 1–22.

    Google Scholar 

  • Bibby J.S., Douglas H.A., Thomasson A.J., Robertson J.S. (1991) Land capability classification for agriculture, Macaulay Land Use Research Institute, Aberdeen.

    Google Scholar 

  • Blum W.E.H. (1993) Soil Protection Concept of the Council of Europe and Integrated Soil Research, in: Eijsackers H.J.P., Hamer T. (Eds.), Integrated Soil and Sediment Research: A basis for Proper Protection, Soil and Environment, Dordrecht: Kluwer Academic Publishers, Vol. 1, pp. 37–47.

    Google Scholar 

  • Blum W.E.H. (2006) Soil Resources - The basis of human society and the environment, Bodenkultur 57, 197–202.

    Google Scholar 

  • Bockstaller C., Guichard L., Keichinger O., Girardin P., Galan M.-B., Gaillard G. (2009) Comparison of methods to assess the sustainability of agricultural systems. A review, Agron. Sustain. Dev. 29, 223–235.

    Google Scholar 

  • Bodenaufnahmesysteme in Österreich (2001) Bodeninformationen für Land-, Forst-, Wasser- und Abfallwirtschaft, Naturschutz-, Landschafts-, Landes- und Raumplanung, Agrarstrukurelle Planung, Bodensanierung und -regeneration sowie Universitäten, Schulen und Bürger. Mitteilungen der Österreichischen Bodenkundlichen Gesellschaft Heft 62, zugleich eine Publikation des Umweltbundesamtes Wien, 2001, 221 p.

    Google Scholar 

  • Bondeau A., Smith C.M., Zaehle S., Schaphoff S., Lucht W., Cramer W., Gerten D., Lotze-Campen H., Mueller C., Reichstein M., Smith B. (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. Change Biol. 13, 679–706.

    Google Scholar 

  • Borlaug N. (2007) Feeding a hungry world, Science 318, 359.

    PubMed  CAS  Google Scholar 

  • Buol S.W., Sanchez P.A., Cate R.B., Granger M.A. (1975) Soil fertility capability classification: a technical soil classification system for fertility management, in: Bornemisza E., Alvarado A. (Eds.), Soil Management in Tropical America, N.C. State Univ., Raleigh, NC, pp. 126–145.

    Google Scholar 

  • Bronick C.J., Lal R. (2005) Soil structure and management: a review, Geoderma 124, 3–22.

    CAS  Google Scholar 

  • Brown I., Towers W., Rivington M., Black H.I.J. (2008) The influence of climate change on agricultural land-use potential: adapting and updating the land capability system for Scotland, Climate Research 37, 43–57.

    Google Scholar 

  • Cannell R.Q., Davies D.B., Mackney D., Pidgeon J.D. (1978) The suitability of soils for sequential direct drilling of combine-harvested crops in Britain: a provisional classification, Outlook Agric. 9, 306–316.

    Google Scholar 

  • Cassman K.G., Dobermann A., Walters D.T., Yang, H. (2003) Meeting Cereal Demand While Protecting Natural Resources and Improving Environmental Quality, Ann. Rev. Environ. Res. 28, 315–358.

    Google Scholar 

  • Ceotto E. (2008) Grasslands for bioenergy production. A review, Agron. Sustain. Dev. 28, 47–55.

    Google Scholar 

  • Ciais P., Reichstein M., Viovy N., Granier A., Ogée J., Allard V., Aubinet M., Buchmann N., Bernhofer C., Carrara A., Chevallier F., De Noblet N.A., Friend D., Friedlingstein P., Grünwald T., Heinesch B., Keronen P., Knohl A., Krinner G., Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J.M., Papale D., Pilegaard K., Rambal S., Seufert G., Soussana J.F., Sanz M.J., Schulze E.D., Vesala T., Valentini R. (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature 437, 529–533.

    PubMed  CAS  Google Scholar 

  • Davis M.L., Masten S.J. (2003) Principles of Environmental Engineering and Science, McGraw-Hill Professional, ISBN 0072921862, 9780072921861, 704 p.

    Google Scholar 

  • Debaeke P., Aboudrare A. (2004) Adaptation of crop management to water-limited environments, Eur. J. Agron. 21, 433–446.

    Google Scholar 

  • De la Rosa, D. (2005) Soil quality evaluation and monitoring based on land evaluation, Land Degrad. Dev. 16, 551–559.

    Google Scholar 

  • De la Rosa D., Anaya-Romero M., Diaz-Pereira E., Heredia R., Shahbazi F. (2009) Soil-specific agro-ecological strategies for sustainable land use – A case study by using MicroLEIS DSS in Sevilla Province (Spain), Land Use Policy 26, 1055–1065.

    Google Scholar 

  • Del Grosso S.J., Mosier A.R., Parton W.J., Ojima D.S. (2005) DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA, Soil Tillage Res. 83, 9–24.

    Google Scholar 

  • Duan X.W., Xie Y., Feng Y.J., Yin S.Q. (2009) Study on the Method of Soil Productivity Assessment in Black Soil Region of Northeast China, Agric. Sci. China 8, 472–481.

    Google Scholar 

  • Durán Zuazo, V.H., Rodríguez Pleguezuelo C.R. (2008) Soil-erosion and runoff prevention by plant covers. A review, Agron. Sustain. Dev. 28, 65–86.

    Google Scholar 

  • EC (2006) COM 2006/231 2006, Communication from the Commission to the Council, the European Parliament, the European Economic and Sicial Committee and the Committee of the Regions- Thematic Strategy for Soil Protection, Commission of the European Communities, Brussels, 22.9.2006.

    Google Scholar 

  • Eswaran H., Almaraz R., van den Berg E., Reich P. (1997) An assessment of the soil resources of Africa in relation to productivity, Geoderma 77, 1–18.

    Google Scholar 

  • FAO (1976) A framework for land evaluation, FAO, Rome, FAO Soils Bull. 32.

    Google Scholar 

  • FAO (2006) Guidelines for Soil Description (4th ed.), FAO, Rome, 95 p.

    Google Scholar 

  • FAO (2007) Land evaluation, Towards a revised framework, Land and water discussion paper 6, 107 p.

    Google Scholar 

  • Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. (2009) Plant drought stress: effects, mechanisms and management, Agron. Sustain. Dev. 29, 185–212.

    Google Scholar 

  • Feller C.L., Thuries L.J.-M., Manlay R.J., Robin P., Frossard E. (2003) “The principles of rational agriculture” by Albrecht Daniel Thaer (1752–1828), An approach to the sustainability of cropping systems at the beginning of the 19th century, J. Plant Nutr. Soil Sci. 166, 687–698.

    CAS  Google Scholar 

  • Fischer G., Sun L. (2001) Model based analysis of future land-use development in China, Agric. Ecosyst. Environ. 85, 163–176.

    Google Scholar 

  • Fischer G., van Velthuizen H., Shah M., Nachtergaele F. (2002) Global Agro-ecological Assessment for Agriculture in the 21st Century: Methodology and Results, International Institute for Applied Systems Analysis, Laxenburg, Austria, 154 p.

    Google Scholar 

  • Flach K.W. (1986) Modeling of soil productivity and related land classification, in: Siderius W. (Ed.), Land evaluation for land- use planning and conservation in I sloping areas. International Workshop, Enschede, The Netherlands, 17–21 December 1984, Publication 40, International Institute for Land Reclamation and Improvement/ILRI, Wageningen, The Netherlands.

    Google Scholar 

  • Foley J.A., de Fries R., Asner G.P., Barford C., Bonan G., Carpenter S.R., Chapin F.S., Coe M.T., Daily G.C., Gibbs H.K., Helkowski J.H., Holloway T., Howard E.A., Kucharik C.J., Monfreda C., Patz J.A., Prentice I.C., Ramankutty N., Snyder P.K. (2005) Global consequences of land use, Science 309, 570–574.

    PubMed  CAS  Google Scholar 

  • Franko U., Oelschlägel B., Schenk S. (1995) Simulation of temperature-, water- and nitrogen dynamics using the model CANDY, Ecol. Model. 81, 213–222.

    CAS  Google Scholar 

  • Gavrilyuk F.Y. (1974) Bonitirovka pochv, Moskva, Vysshaya shkola, 270 p.

    Google Scholar 

  • Govaerts B., Sayre K.D., Deckers J. (2006) A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico, Soil Tillage Res. 87, 163–174.

    Google Scholar 

  • Hall R. (2008) Soil Essentials, Managing Your Farm’s Primary Asset, Landlinks Press, 1st ed., 192 p.

    Google Scholar 

  • Hansen S., Jensen H.E., Nielsen N.E., Svendsen H. (1990) DAISY: Soil Plant Atmoshere System Model, NPO Report No. A10, The National Agency for Environmental Protection, Copenhagen, 272 p.

    Google Scholar 

  • Harrach T. (1982) Ertragsfähigkeit erodierter Böden, Arbeiten der DLG, Bd. 174, Bodenerosion, 84–91.

    Google Scholar 

  • Hartmann K.-J., Finnern J., Cordsen E. (1999) Bewertung von Bodenfunktionen auf Grundlage der Bodenschätzung, ein Verfahrensvergleich, J. Plant Nutr. Soil Sci. 162, 179–181.

    CAS  Google Scholar 

  • Helming K., Tscherning K., König B., Sieber S., Wiggering H., Kuhlman T., Wascher D., Perez-Soba M., Smeets P., Tabbush P., Dilly O., Hüttl R.F., Bach H. (2008) Ex ante impact assessment of land use change in European regions: the SENSOR approach, in: Helming K., Pérez-Soba M., Tabbush P. (Eds.), Sustainability impact assessment of land use changes, Berlin, Springer, pp. 77–105.

    Google Scholar 

  • Helms D. (1992) Readings in the History of the Soil Conservation Service, Washington, DC, Soil Conservation Service, pp. 60–73.

    Google Scholar 

  • Hijmans R.J., Giuking-Lens I.M., van Diepen C.A. (1994) Useŕs guide for the WOFOST 6.0 crop growth simulation model, Technical Document 12, DLO Winand Staring Centre, Wageningen, 145 p.

    Google Scholar 

  • Hillel D. (2009) The mission of soil science in a changing world, J. Plant Nutr. Soil Sci. 172, 5–9.

    CAS  Google Scholar 

  • Hillel D., Rosenzweig C. (2002) Desertification in relation to climate variability and change, Adv. Agron. 77, 1–38.

    Google Scholar 

  • Huber S., Prokop G., Arrouays D., Banko G., Bispo A., Jones R.J.A., Kibblewhite M.G., Lexer W., Möller A., Rickson R.J., Shishkov T., Stephens M., Toth G., Van den Akker J.J.H., Varallyay G., Verheijen F.G.A., Jones A.R. (2008) Environmental Assessment of Soil for Monitoring: Volume I, Indicators & Criteria. EUR 23490 EN/1, Office for the Official Publications of the European Communities, Luxembourg, 339 p.

    Google Scholar 

  • Hulugalle N.R., Weaver T.B., Finlay L.A., Hare J., Entwistle P.C. (2007) Soil properties and crop yields in a dryland Vertisol sown with cotton-based crop rotations, Soil Tillage Res. 93, 356–369.

    Google Scholar 

  • Jackson L.E., Calderon F.J., Steenwerth K.L., Scow K.M., Rolston D.E. (2003) Responses of soil microbial processes and community structure to tillage events and implications for soil quality, Geoderma 114, 305–317.

    CAS  Google Scholar 

  • Jones A., Stolbovoy V., Rusco E., Gentile A.-R., Gardi C., Marechal B., Montanarella L., (2009) Climate change in Europe. 2. Impact on soil. A review, Agron. Sustain. Dev. 29, 423–432.

    CAS  Google Scholar 

  • Karlen D.L. (2004) Soil quality as an indicator of sustainable tillage practices, Soil Tillage Res. 78, 129–130.

    Google Scholar 

  • Karlen D.L., Mausbach M.J., Doran J.W., Cline R.G., Harris R.F., Schuman G.E. (1997). Soil quality: a concept, definition and framework for evaluation, Soil Sci. Soc. Am. J. 61, 4–10.

    CAS  Google Scholar 

  • Karmanov I.I., Bulgakov D.S., Karmanova L.A., Putilin E.I. (2002) Modern aspects of the assessment of land quality and soil fertility, Eurasian Soil Sci. 35, 7, 754–760.

    Google Scholar 

  • Kavdir Y., Smucker A.J.M. (2005) Soil aggregate sequestration of cover crop root and shoot-derived nitrogen, Plant Soil 272, 263–276.

    CAS  Google Scholar 

  • Kay B.D., Hajabbasi M.A., Ying J., Tollenaar M. (2006) Optimum versus non-limiting water contents for root growth, biomass accumulation, gas exchange and the rate of development of maize (Zea mays L.), Soil Tillage Res. 88, 42–54.

    Google Scholar 

  • Kersebaum K.-C. (2007) Modelling nitrogen dynamics in soil–crop systems with HERMES, Nutr. Cycl. Agroecosys. 77, 39–52.

    Google Scholar 

  • Kersebaum K.-C., Wurbs A., Jong R. de, Campbell C.A., Yang J., Zentner R.P. (2008) Long-term simulation of soil–crop interactions in semiarid southwestern Saskatchewan, Canada, Eur. J. Agron. 29, 1–12.

    CAS  Google Scholar 

  • Keys to Soil Taxonomy (2006) Tenth Edition United States Department of Agriculture, Natural Resources Conservation Service, 333 p.

    Google Scholar 

  • Klingebiel A.A., Montgomery P.H. (1961) Land capability classification. USDA Agricultural Handbook 210, US Government Printing Office, Washington, DC.

    Google Scholar 

  • Kopp D., Schwanecke W. (2003) Standörtlich-naturräumliche Grundlagen ökologiegerechter Forstwirtschaft, Kessel Verlag, 2. ed., 262 p.

    Google Scholar 

  • Kundler P. (1989) Erhöhung der Bodenfruchtbarkeit, VEB Deutscher Landwirtschaftsverlag Berlin, 1st ed., 452 p.

    Google Scholar 

  • Kurtz D., Schellberg J., Braun M. (2009) Ground and Satellite Based Assessment of Rangeland Management in Sub-Tropical Argentina, Appl. Geogr. 29, in press.

    Google Scholar 

  • Lal R. (2006) Enhancing crop yield in the developing countries through restoration of soil organic carbon pool in agricultural lands, Land Degrad. Dev. 17, 187–209.

    Google Scholar 

  • Lal R. (2008) Soils and sustainable agriculture. A review, Agron. Sustain. Dev. 28, 57–64.

    Google Scholar 

  • Lal R. (2009) Soils and food sufficiency, A review, Agron. Sustain. Dev. 29, 113–133.

    Google Scholar 

  • Lavalle C., Micale F., Houston T.D., Camia A., Hiederer R., Lazar C., Conte C., Amatulli G., Genovese G. (2009) Climate change in Europe. 3. Impact on agriculture and forestry. A review, Agron. Sustain. Dev. 29, 433–446.

    Google Scholar 

  • Lichtfouse E., Navarrete M., Debaeke P., Souchère V., Alberola C. (2009) Sustainable Agriculture, Springer, 1st ed., 645 p., ISBN: 978-90-481-2665-1.

    Google Scholar 

  • Lieth H. (1975) Modeling the primary productivity of the world, in: Lieth H., Whittaker R.H. (Eds.), Primary Productivity of the Biosphere, Springer, Berlin, pp. 237–263.

    Google Scholar 

  • Lin H., Bouma J., Wilding L.P., Richardson J.L., Kutilek M., Nielsen D.R. (2005) Advances in hydropedology, in: Sparks D.L. (Ed.), Adv. Agron. 85, 2–76.

    Google Scholar 

  • Louwagie G., Gay S.H., Burrell A. (2009) Addressing soil degradation in EU agriculture: relevant processes, practices and policies, Report on the project ’Sustainable Agriculture and Soil Conservation (SoCo)’, JRC Scientific and Technical Reports, ISSN 1018 5593, 209 p.

    Google Scholar 

  • Lukas V., Neudert L., Kren J. (2009) Mapping of soil conditions in precision agriculture, Acta Agrophys. 13, 393–405.

    Google Scholar 

  • Lynn I., Manderson A., Page M., Harmsworth G., Eyles G., Douglas G., Mackay A., Newsome P. (2009) Land Use Capability Survey Handbook - a New Zealand handbook for the classification of land, 3rd ed., 164 p.

    Google Scholar 

  • Martin-Rueda I., Munoz-Guerra L.M., Yunta F., Esteban E., Tenorio J.L., Lucena J.J. (2007) Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf, Soil Tillage Res. 92, 1–9.

    Google Scholar 

  • Mausel P.W., Carmer S.G., Runge E.C.A. (1975) Soil productivity indexes for Illinois counties and soil associations. Bulletin 752, University of Illinois at Urbana-Champaign, College of Agriculture, Agricultural Experiment Station, 51 p.

    Google Scholar 

  • McKenzie D.C. (2001) Rapid assessment of soil compaction damage. I. The SOILpak score, a semi-quantitative measure of soil structural form, Aust. J. Soil Res. 39, 117–125.

    Google Scholar 

  • Medvedev V.V., Bulygin S. Yu, Laktionova T.N., Derevyanko R.G. (2002) Criteria for the Evaluation of Ukrainian Land Suitability for Growing Cereal Crops, Eurasian Soil Sci. 35, 192–202 (Pochvovedenie, 2002, No. 2, 216–227).

    Google Scholar 

  • Mermut A.R., Eswaran, H. (2001) Some major developments of soil science since the mid-1960s, Geoderma 100, 403–426.

    Google Scholar 

  • Meyers Lexikon (1925) Bodenbonitierung, Meyers Lexikon, Bibliographisches Institut Leipzig, 7. Auflage, 2. Band, p. 567.

    Google Scholar 

  • Mirschel, W., Wenkel, K.-O. (2007) Modelling soil-crop interactions with AGROSIM model family, in: Kersebaum K.-C., Hecker J.-M., Mirschel W., Wegehenkel M. (Eds.), Modelling water and nutrient dynamics in soil crop systems: Proceedings of the workshop on ”Modelling water and nutrient dynamics in soil-crop systems” held on 14–16 June 2004 in Müncheberg, Germany, Dordrecht Springer, pp. 59–73.

    Google Scholar 

  • Mueller L., Kay B.D., Hu C., Li Y., Schindler U., Behrendt A., Shepherd T.G., Ball B.C. (2009) Visual assessment of soil structure: Evaluation of methodologies on sites in Canada, China and Germany: Part I: Comparing visual methods and linking them with soil physical data and grain yield of cereals, Soil Tillage Res. 103, 178–187.

    Google Scholar 

  • Mueller L., Schindler U., Behrendt A., Eulenstein F., Dannowski R. (2007) Das Muencheberger Soil Quality Rating (SQR): ein einfaches Verfahren zur Bewertung der Eignung von Boeden als Farmland, Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 110, 515–516.

    Google Scholar 

  • Mulengera M.K., Payton R.W. (1999) Modification of the productivity index model, Soil Tillage Res. 52, 11–19.

    Google Scholar 

  • Munkholm L.J., Schjonning P., Rasmussen K.J., Tanderup K. (2003) Spatial and temporal effects of direct drilling on soil structure in the seedling environment, Soil Tillage Res. 71, 163–173.

    Google Scholar 

  • Murray W.G., Harris D.G., Miller G.A., Thompson N.S. (1983) Farm appraisal and valuation, Iowa State University Press, 6th ed., 304 p.

    Google Scholar 

  • Nortcliff S. (2002) Standardisation of soil quality attributes, Agric. Ecosyst. Environ. 88, 161–168.

    Google Scholar 

  • Ochola W.D., Mwonya R., Mwarasomba L.I., Wambua M.M. (2006) Farm-level Indicators of Sustainable Agriculture, Classification and description of farm recommendation units for extension impact assessment in Koru, Kenya, in: Häni F.J., Pintér L., Herrens H.R. (Eds.), From Common Principles to Common Practice, Proceedings and outputs of the first Symposium of the International Forum on Assessing Sustainability in Agriculture (INFASA), March 16, 2006, Bern, Switzerland, pp. 49–76.

    Google Scholar 

  • Pan G., Smith P., Weinan Pan W. (2009) The role of soil organic matter in maintaining the productivity and yield stability of cereals in China, Agric. Ecosyst. Environ. 129, 344–348.

    Google Scholar 

  • Pease J., Coughlin R. (1996) Land Evaluation and Site Assessment: A Guidebook for Rating Agricultural Lands, Second Edition, prepared for the USDA Natural Resources Conservation Service, Soil and Water Conservation Society, Ankeny, IA.

    Google Scholar 

  • Peerlkamp P.K. (1967) Visual estimation of soil structure, in: de Boodt M., de Leenherr D.E., Frese H., Low A.J., Peerlkamp P.K. (Eds.), West European Methods for Soil Structure Determination, Vol. 2 (11), State Faculty Agricultural Science, Ghent, Belgium, pp. 216–223.

    Google Scholar 

  • Pehamberger A. (1992) Die Bodenschätzung in Österreich, Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 67, S. 235–240.

    Google Scholar 

  • Peng L., Zhanbin L., Zhong Z. (2002) An Index System and Method for Soil Productivity Evaluation on the Hillsides in the Loess Plateau, 12th ISCO Conference Beijing 2002, Proceedings, pp. 330–342.

    Google Scholar 

  • Pierce F.J., Larson W.E., Dowdy R.H., Graham W.A.P. (1983) Productivity of soils: assessing long term changes due to erosion’s long term effects, J. Soil Water Conserv. 38, 39–44.

    Google Scholar 

  • Poluektov R.A., Fintushal S.M., Oparina I.V., Shatskikh D.V., Terleev V.V., Zakharova E.T. (2002) AGROTOOL – A system for crop simulation, Arch. Agron. Soil Sci. 48, 609–635.

    CAS  Google Scholar 

  • Preetz H. (2003) Bewertung von Bodenfunktionen für die praktische Umsetzung des Boden-schutzes (dargestellt am Beispiel eines Untersuchungsgebiets in Sachsen-Anhalt), Ph-D thesis Halle-Wittenberg, 196 p.

    Google Scholar 

  • Prieto-Blanco A., North P.R.J., Barnsley M.J., Fox N. (2009) Satellite-driven modelling of Net Primary Productivity (NPP): Theoretical analysis, Remote Sens. Environ. 113, 137–147.

    Google Scholar 

  • Rao N.H., Rogers P.P. (2006) Assessment of agricultural sustainability, Curr. Sci. 91, 43–448.

    Google Scholar 

  • Reidsma P., Ewert F., Boogaard H., v. Diepen K. (2009) Regional crop modelling in Europe: The impact of climatic conditions and farm characteristics on maize yields, Agric. Syst. 100, 51–60.

    Google Scholar 

  • Reuter H.I., Kersebaum K.-C., Wendroth O. (2005) Modelling of solar radiation influenced by topographic shading: evaluation and application for precision farming, Phys. Chem. Earth 30, 143–149.

    Google Scholar 

  • Ritchie J.T., Godwin D.C. (1993) Simulation of Nitrogen Dynamics in the Soil Plant System with the CERES-models, Agrarinformatik 24, 215–230.

    Google Scholar 

  • Ritter C., Dicke D., Weis M., Oebel H., Piepho H.P., Büchse A., Gerhards R. (2008) An on-farm approach to quantify yield variation and to derive decision rules for site-specific weed management, Precis. Agric. 9, 133–146.

    Google Scholar 

  • Rogasik J., Schroetter S., Schnug E., Kundler P. (2001) Langzeiteffekte ackerbaulicher Massnahmen auf die Bodenfruchtbarkeit, Arch. Agron. Soil Sci. 47, 3–17.

    Google Scholar 

  • Roger-Estrade J., Richard G., Caneill J., Boizard H., Coquet Y., De’ Fossez P., Manichon H. (2004) Morphological characterisation of soil structure in tilled fields. From a diagnosis method to the modelling of structural changes over time, Soil Tillage Res. 79, 33–49.

    Google Scholar 

  • Roger-Estrade J., Richard G., Dexter A.R., Boizard H., De Tourdonnet S., Bertrand M., Caneill J. (2009) Integration of soil structure variations with time and space into models for crop management. A review, Agron. Sustain. Dev. 29, 135–142.

    Google Scholar 

  • Rossiter D.G. (1996) A theoretical framework for land evaluation, Geoderma 72, 165–202.

    Google Scholar 

  • Rothkegel W. (1950) Geschichtliche Entwicklung der Bodenbonitierungen und Wesen und Bedeutung der deutschen Bodenschätzung, Stuttgart, Ulmer, 147 p.

    Google Scholar 

  • Rust I. (2006) Aktualisierung der Bodenschätzung unter Berücksichtigung klimatischer Bedingungen, Ph-D Thesis, Göttingen, 281 p.

    Google Scholar 

  • Sanchez P.A., Couto W., Buol S.W. (1982) The fertility capability soil classification system: Interpretation, application and modification, Geoderma 27, 283–309.

    Google Scholar 

  • Sanchez P.A., Palm C.A., Buol S.W. (2003) Fertility capability soil classification: a tool to help assess soil quality in the tropics, Geoderma 114, 157–185.

    CAS  Google Scholar 

  • Schellberg J., Hill M., Gerhards R., Rothmund M., Braun M. (2008) Precision agriculture on grassland: applications, perspectives and constraints - a review, Eur. J. Agron. 29, 59–71.

    Google Scholar 

  • Scherr S.J. (1999) Soil Degradation. A Threat to Developing-Country Food Security by 2020? Food, Agriculture, and the Environment Discussion Paper 27, International Food Policy Research Institute, Washington, DC 20006-1002, USA.

    Google Scholar 

  • Schindelbeck R.S., van Es H.M., Abawi G.S., Wolfe D.W., Whitlow T.L., Gugino B.K., Idowu O.J., Moebius-Clune B.N. (2008) Comprehensive assessment of soil quality for landscape and urban management, Landsc. Urban Plan. 88, 73–80.

    Google Scholar 

  • Schroeder D., Lamp J. (1976) Prinzipien der Aufstellung von Bodenklassifikationssystemen, Z. Pflanzenernaehr. Bodenk. 5, 617–630.

    Google Scholar 

  • Shaxson T.S. (2006) Re-thinking the conservation of carbon, water and soil: a different perspective, Agron. Sustain. Dev. 26, 9–19.

    CAS  Google Scholar 

  • Shepherd T.G. (2000) Visual soil assessment, Volume 1, Field guide for cropping and pastoral grazing on flat to rolling country, Horizons.mw/Landcare Research, Palmerston North, 84 p.

    Google Scholar 

  • Shepherd T.G. (2009) Visual Soil Assessment. Volume 1. Field guide for pastoral grazing and cropping on flat to rolling country, 2nd ed., Horizons Regional Council, Palmerston North, New Zealand, 118 p.

    Google Scholar 

  • Smit H.J., Metzger M.J., Ewert F. (2008) Spatial distribution of grassland productivity and land use in Europe, Agric. Syst. 98, 208–219.

    Google Scholar 

  • Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O. (2007) Agriculture, In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Sparling G., Lilburne L., Vojvodić-Vuković M. (2008) Provisional Targets for Soil Quality Indicators in New Zealand, Landcare Research Science Series No. 34, Lincoln, Canterbury, New Zealand.

    Google Scholar 

  • Sparling G., Parfitt R.L., Hewitt A.E., Schipper L.A. (2003) Three Approaches to Define Desired Soil Organic Matter Contents, J. Environ. Qual. 32, 760–766.

    PubMed  CAS  Google Scholar 

  • SPSS Inc. (1993) Handbooks SPSS for Windows, Release 6.0, Advanced statistics, 578 p., Professional statistics, 385 p.

    Google Scholar 

  • Stehfest E., Heistermann M., Priess J.A., Ojima D.S., Alcamo J. (2007) Simulation of global crop production with the ecosystem model DayCent, Ecol. Model. 209, 203–219.

    Google Scholar 

  • Stenitzer E., Murer E. (2003) Impact of soil compaction upon soil water balance and maize yield estimated by the SIMWASER model, Soil Tillage Res. 73, 43–56.

    Google Scholar 

  • Storie R.E. (1933) An index for rating the agricultural value of soils, Agricultural Experiment, Station Bulletin 556, University of California Agricultural Experiment Station, Berkley, CA.

    Google Scholar 

  • Supit I., Hooijer A.A., van Diepen C.A. (1994) EUR 15956 - System description of the WOFOST 6.0 crop simulation model implemented in CGMS (Volume 1: Theory and Algorithms), European Commission, Luxembourg: Office for Official Publications of the European Communities, Agricultural series, Catalogue number: CL-NA-15956-EN-C, 146 p.

    Google Scholar 

  • Tan G.X., Shibasaki R. (2003) Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration, Ecol. Model. 168, 357–370.

    Google Scholar 

  • Tang H., van Ranst E., Sys C. (1992) An Approach to Predict Land Production Potential for Irrigated and Rainfed Winter Wheat in Pinan County, China, Soil Technol. 5, 213–224.

    Google Scholar 

  • Tóth G., Stolbovoy V., Montanarella L. (2007) Institute for Environment and Sustainability, Soil quality and sustainability evaluation, An integrated approach to support soil-related policies of the European Union, A JRC position paper, 40 p.

    Google Scholar 

  • Tóth T., Pásztor L., Várallyay G., Tóth G. (2007) Overview of soil information and soil protection policies in Hungary, in: Hengl T., Panagos P., Jones A., Tóth G. (Eds.), Status and prospect of soil information in southeastern europe: soil databases, projects and applications, Institute for Environment and Sustainability, 189 p., pp. 77–86.

    Google Scholar 

  • Van de Steeg J. (2003) Land evaluation for agrarian reform. A case study for Brasil, Landbauforschung Völkenrode, FAL Agricultural Research, Special Issue No. 246, 108 p.

    Google Scholar 

  • Van Diepen C.A., van Keulen H., Wolf J., Berkhout J.A.A. (1991) Land evaluation: From intuition to quantification, in: Stewart B.A. (Ed.), New York: Springer, Adv. Soil Sci. 15, 139–204.

    Google Scholar 

  • Verdoodt A., van Ranst E. (2006) Environmental assessment tools for multi-scale land resources information systems. A case study of Rwanda, Agric. Ecosyst. Environ. 114, 170–184.

    Google Scholar 

  • Verhulst N., Govaerts B., Sayre K.D., Deckers J., François I.M., Dendooven L. (2009) Using NDVI and soil quality analysis to assess influence of agronomic management on within-plot spatial variability and factors limiting production, Plant Soil 317, 41–59.

    CAS  Google Scholar 

  • Walter C., Stützel H. (2009) A new method for assessing the sustainability of land-use systems (I): Identifying the relevant issues, Ecol. Econ. 68, 1275–1287.

    Google Scholar 

  • Wegehenkel M., Mirschel W., Wenkel K.-O. (2004) Predictions of soil water and crop growth dynamics using the agroecosystem models THESEUS and OPUS, J. Plant Nutr. Soil Sci. 167, 736–744.

    CAS  Google Scholar 

  • Wendroth O., Reuter H.I., Kersebaum K.C. (2003) Predicting yield of barley across a landscape: a state-space modeling approach, J. Hydrol. 272, 250–263.

    Google Scholar 

  • Wienhold B.J., Andrews S.S., Karlen D.L. (2004) Soil quality: a review of the science and experiences in the USA, Environ. Geochem. Health 26, 89–95.

    PubMed  CAS  Google Scholar 

  • Wiggering H., Dalchow C., Glemnitz M., Helming K., Mueller K., Schultz A., Stachow U., Zander P. (2006) Indicators for multifunctional land use: linking socio-economic requirements with landscape potentials, Ecol. Ind. 6, 238–249.

    Google Scholar 

  • Williams J.R., Dyke P.T., Jones C.A. (1983) EPIC – a model for assessing the effects of erosion on soil productivity, in: The Third International Conference on State of the Art Ecological Modelling, Elsevier, Amsterdam, pp. 553–572.

    Google Scholar 

  • Wong M.T.F., Asseng S. (2006) Determining the causes of spatial and temporal variability of wheat yields at sub-field scale using a new method of upscaling a crop model, Plant Soil 283, 203–215.

    CAS  Google Scholar 

  • WRB (2006) World Reference Base for Soil Resources 2006, A Framework for International Classification, Correlation and Communication, FAO Rome, 2006, World Soil Resources Reports 103, 145 p.

    Google Scholar 

  • Xiong W., Conway D., Holman I., Lin E. (2008) Evaluation of CERES-Wheat simulation of Wheat Production in China, Agron. J. 100, 1720–1728. **

    Google Scholar 

  • Yakovlev A.S., Loiko P.F., Sazonov N.V., Prokhorov A.N., Sapozhnikov P.M. (2006) Legal Aspects of Soil Conservation and Land Cadaster Works, Eurasian Soil Sci. 39, 693–698.

    Google Scholar 

  • Zhang B., Zhang Y., Chen D., White R.E., Li Y. (2004) A quantitative evaluation system of soil productivity for intensive agriculture in China, Geoderma 123, 319–331.

    Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Eric Lichtfouse and two anonymous reviewers for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Mueller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mueller, L. et al. (2011). Assessing the Productivity Function of Soils. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_33

Download citation

Publish with us

Policies and ethics