Skip to main content

Fiber-Reinforced Cementitious Materials: From Intrinsic Isotropic Behavior to Fiber Alignment

  • Conference paper
  • First Online:

Part of the book series: RILEM Bookseries ((RILEM,volume 1))

Abstract

Fiber addition may lead to a strong modification of a cementitious material rheological behavior. First, the existence of a transition in the evolution of the material rheological behavior is shown relatively to the fiber volume fraction, in isotropic state. This transition occurs at a critical fiber volume fraction between a regime in which hydrodynamic effects govern the rheological behavior and a regime in which direct mechanical contacts between fibers are predominant. Then the orientation process induced by a casting flow is highlighted. The effect of yield stress on the orientation process is specially studied. Orientation of large amount of fibers is derived from the equation describing a single fiber orientation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grünewald, S. (2004), PhD Thesis, DTU, the Netherlands.

    Google Scholar 

  2. Rossi, P. (1992), Cem. Concr. Compos., vol. 14, n. 16, p. 3.

    Article  Google Scholar 

  3. Mohammadi, Y., Singh, S.P. and Kaushik, S.K. (2008), Constr. & Build. Mater., vol. 22, n. 5, p. 956.

    Article  Google Scholar 

  4. Bayasi, M.Z. and Soroushian, P. (1992), ACI Mater. J., vol. 89, n. 4, p. 369.

    Google Scholar 

  5. Johnston, C.D. (1996), In: Production Methods and Workability of Concrete, Proceedings of the RILEM Symposium, P.J.M. Bartos, D.L. Marrs, D.J. Cleland (Eds.), E&FN Spon London, pp. 155–179.

    Google Scholar 

  6. Groth, P. (2004), PhD Thesis, Lulea University of Technology.

    Google Scholar 

  7. Bui, V.K., Geiker, M.R. and Shah, S.P. (2003), Proceedings of the RILEM Symposium, A.E. Naaman, H.W. Reinhardt (Eds.), RILEM Publications Michigan, pp. 221–231.

    Google Scholar 

  8. Ding, Y., Liu, S., Zhang, Y. and Thomas, A. (2008), Const. & Build. Mater., vol. 22, n. 7, p. 1462.

    Article  Google Scholar 

  9. Ferrara, L., Park, Y.D. and Shah, S.P. (2007), Cem. Concr. Res., vol. 37, n. 6, p. 957.

    Article  Google Scholar 

  10. Banfill, P.F.G., Starrs, G., Derruau, G., McCarter, W.J. and Chrisp, T.M. (2006), Cem. Concr. Compos., vol. 28, n. 9, p. 773.

    Article  Google Scholar 

  11. Martinie, L., Rossi, P., and Roussel, N. (2010), Cem. Concr. Res., vol. 40, p. 226.

    Article  Google Scholar 

  12. Kooiman, A.G. (2000), PhD Thesis, DTU, the Netherlands.

    Google Scholar 

  13. Markovic, I. (2006), PhD Thesis, DTU, the Netherlands.

    Google Scholar 

  14. Stähli, P. and van Mier, J.G.M. (2007), Eng. Fract. Mech., vol. 74, n. 1–2, p. 223.

    Article  Google Scholar 

  15. Dupont, D. and Vandewalle, L. (2005), Cem. Conc. Comp., vol. 27, p. 391.

    Article  Google Scholar 

  16. Laranjeira, F., Aguado, A. and Molins, C. (2009), Mater. Struct., published online.

    Google Scholar 

  17. Ferrara, L. and Meda, A. (2006), Mater. Struct., vol. 39, p. 411.

    Article  Google Scholar 

  18. Robins, P.J., Austin, S.A. and Jones, P.A. (2003), Mag. Conc. Res., vol. 55, n. 3, p. 225.

    Google Scholar 

  19. Krieger, I.M., Dougherty, T.J. (1959), Trans. Soc. Rheol., vol. 3, p. 137.

    Article  Google Scholar 

  20. Mahaut, F., Mokkedem, S., Chateau, X., Roussel, N. and Ovarlez, G. (2008), Cem. Concr. Res., vol. 38, n. 11, p. 1276.

    Article  Google Scholar 

  21. Yammine, J., Chaouche, M., Guerinet, M., Moranville, M. and Roussel, N. (2008), Cem. Concr. Res., vol. 38, n. 7, p. 890.

    Article  Google Scholar 

  22. Roussel, N., Lemaitre, A., Flatt, R.J. and Coussot, P. (2010), Cem. Concr. Res., vol. 40, p. 77.

    Article  Google Scholar 

  23. Philipse, A.P. (1996), Langmuir, vol. 12, p. 1127.

    Article  Google Scholar 

  24. Nardin, M. and Papirer, E. (1985), Powder Technology, vol. 44, p. 131.

    Article  Google Scholar 

  25. Barthos, P.J.M. and Hoy, C.W. (1996), In: Production Methods and Workability of Concrete, Proceedings of the RILEM Symposium, P.J.M. Bartos, D.L. Marrs, D.J. Cleland (Eds.), E&FN Spon, London, pp. 451–461.

    Google Scholar 

  26. Jeffery, G.B. (1922), Proc. Royal Soc. A, vol. 102, pp. 161–179.

    Article  Google Scholar 

  27. Folgar, F. and Tucker, C.F. (1984), J. Reinf. Plast. Comp., vol. 3, p. 98.

    Article  Google Scholar 

  28. Rahnama, M., Koch, D.L. and Shaqfeh, E.S.G. (1995), Phys. Fluids, vol. 7, n. 3, p. 487.

    Article  MATH  Google Scholar 

  29. Anczurowski, E. and Mason, S.G. (1967), J. Colloïd Interface Sci., vol. 23, p. 522.

    Article  Google Scholar 

  30. Trevelyan B.J. and Mason, S.G. (1951), J. Colloïd Sci., vol. 6, p. 354.

    Article  Google Scholar 

  31. Mason, S.G. and Manley, R. St. (1957), Proc. Royal Soc., vol. 238 series A, p. 117.

    Article  Google Scholar 

  32. Harris, J.B. and Pittman, J.F.T. (1975), J. Colloïd Interface Sci., vol. 50, n. 2, p. 280.

    Article  Google Scholar 

  33. Bibbo, M.A., Dinh, S.M. and Armstrong, R.C. (1985), J. Rheol., vol. 29, n., p. 905.

    Article  Google Scholar 

  34. Kameswara Rao, C.V.S. (1979), Cem. Concr. Res., vol. 9, p. 685.

    Article  Google Scholar 

  35. Dinh, S.M. and Armstrong, S.M. (1984), J. Rheol., vol. 28, n. 3, p. 207.

    Article  MATH  Google Scholar 

  36. Bretherton, F.P. (1962), J. Fluid Mech., vol. 14, p. 284.

    Article  MATH  MathSciNet  Google Scholar 

  37. Goldsmith, H.L. and Mason, S.G. (1967), In: Rheology: Theory and Applications, vol. 4, chapter 2, pp. 85–250, New York.

    Google Scholar 

  38. Lipscomb, G.G. and Denn, M.M. (1988), J. Non-Newt. Fluid Mech., vol. 26, p. 297.

    Article  Google Scholar 

  39. Vincent, M. (1984), PhD Thesis, ENS des Mines de Paris.

    Google Scholar 

  40. Taskernam-Kroser, R. and Ziabicki, A. (1963), J. Polymer Sciences, vol. 1, n. 6, p. 491.

    Google Scholar 

  41. Sunadararjakumar, R.R. and Koch, D.L. (1997), J. Non-Newt. Fluid Mech., vol. 73, p. 205.

    Article  Google Scholar 

  42. Koch, D.L. and Shaqfeh, E.S.G. (1990), Phys. Fluids A, vol. 2, p. 2093.

    Article  MATH  MathSciNet  Google Scholar 

  43. Ozyurt, N., Mason, T.O. and Shah, S.P. (2006), Cem. Concr. Res., vol. 36, p. 1653.

    Article  Google Scholar 

  44. Lataste, J.F., Behloul, M. and Breysse, D. (2007), Proceedings of the AUGC Symposium, Bordeaux (France).

    Google Scholar 

  45. Boulekbache, B., Hamrat, M., Chemrouk, M. and Amziane, S. (1985), EJECE.

    Google Scholar 

  46. Ozyurt, N., Woo, N.Y., Mason, T.O. and Shah, S.P. (2006), ACI Materials Journal, vol. 103, n. 5, p. 340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 RILEM

About this paper

Cite this paper

Martinie, L., Roussel, N. (2010). Fiber-Reinforced Cementitious Materials: From Intrinsic Isotropic Behavior to Fiber Alignment. In: Khayat, K., Feys, D. (eds) Design, Production and Placement of Self-Consolidating Concrete. RILEM Bookseries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9664-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9664-7_34

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9663-0

  • Online ISBN: 978-90-481-9664-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics