Skip to main content

Solutions to the Glycosylation Problem for Low- and High-Throughput Structural Glycoproteomics

  • Chapter
  • First Online:
Functional and Structural Proteomics of Glycoproteins

Abstract

N- and O-glycosylation profoundly affect the biological properties of glycoproteins, principally by influencing their structures and cellular trafficking, and by forming the recognition sites of carbohydrate-binding ligands. For crystallographers interested in studying the protein component of glycoproteins, the two most important aspects of glycosylation are (1) that it is often essential for the correct folding of a given protein and for ensuring its solubility, which generally necessitates expression of the molecule in eukaryotic cells, and (2) that there are now procedures for the efficient post-folding removal of N-linked glycans from glycoproteins and for minimizing the effects of O-glycosylation, which will generally benefit crystallogenesis. We provide an overview of how glycans influence glycoprotein folding and then identify the sources of structural heterogeneity at the heart of the ‘glycosylation problem’. We then discuss the options available to structural biologists for circumventing the problems associated with protein N- and O-glycosylation. Our emphasis is on methods for producing glycoproteins with homogeneous and/or removable N-glycosylation in mammalian cells that can be implemented in both very high yield, stable expression systems and in a high throughput format based on transient expression protocols. We also consider whether deglycosylation reduces protein stability and end by emphasizing the importance of using rigorous stereochemical and biosynthetic data when building glycosylation into partial or complete electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CHO:

Chinese hamster ovary

CNX:

calnexin

CRT:

calreticulin

Endo:

endoglycosidase

ER:

endoplasmic reticulum

GalNAc:

α-N-acetylgalactosamine

GlcNAc:

N-acetylglucosamine

GnT I:

β1−2 N-acetylglucosamine transferase I

HEK:

human embryonic kidney

IL:

interleukin

IgSF:

immunoglobulin superfamily

MALDI-TOF MS:

matrix-assisted laser desorption/ionization-time of flight mass spectrometry

NB-DNJ:

N-butyldeoxynojirimycin

PDB:

Protein Data Bank

PNGase F:

peptide-N-glycosidase F

s:

soluble

S2:

Schneider 2

SG:

structural genomics

STP:

serine-, threonine- and proline-rich

TCR:

T-cell receptor

UGGT:

UDP-glucose glycoprotein:glucosyltransferase

References

  1. Pantazatos D, Kim JS, Klock HE, Stevens RC, Wilson IA, Lesley SA, Woods VL Jr (2004) Rapid refinement of crystallographic protein construct definition employing enhanced hydrogen/deuterium exchange MS. Proc Natl Acad Sci USA 101:751–756

    CAS  PubMed  Google Scholar 

  2. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8

    CAS  PubMed  Google Scholar 

  3. Doerr A (2009) Membrane protein structures. Nat Methods 6: doi:10.1038/nmeth.f.240

    Google Scholar 

  4. Terwilliger TC, Stuart D, Yokoyama S (2009) Lessons from structural genomics. Annu Rev Biophys 38:371–383

    CAS  PubMed  Google Scholar 

  5. Butters TD, Sparks LM, Harlos K, Ikemizu S, Stuart DI, Jones EY, Davis SJ (1999) Effects of N-butyldeoxynojirimycin and the Lec3.2.8.1 mutant phenotype on N-glycan processing in Chinese hamster ovary cells: application to glycoprotein crystallization. Protein Sci 8:1696–1701

    CAS  PubMed  Google Scholar 

  6. Davis SJ et al (1995) Ligand binding by the immunoglobulin superfamily recognition molecule CD2 is glycosylation-independent. J Biol Chem 270:369–375

    PubMed  Google Scholar 

  7. Davis SJ, Puklavec MJ, Ashford DA, Harlos K, Jones EY, Stuart DI, Williams AF (1993) Expression of soluble recombinant glycoproteins with predefined glycosylation: application to the crystallization of the T-cell glycoprotein CD2. Protein Eng 6:229–232

    CAS  PubMed  Google Scholar 

  8. Pusey ML, Liu ZJ, Tempel W, Praissman J, Lin D, Wang BC, Gavira JA, Ng JD (2005) Life in the fast lane for protein crystallization and X-ray crystallography. Prog. Biophys. Mol. Biol. 88:359–386

    CAS  PubMed  Google Scholar 

  9. Chang VT et al (2007) Glycoprotein structural genomics: solving the glycosylation problem. Structure 15:267–273

    CAS  PubMed  Google Scholar 

  10. Aricescu AR, Lu W, Jones EY (2006) A time and cost efficient system for high level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 10:1243–1250

    Google Scholar 

  11. Davies A, Greene A, Lullau E, Abbott WM (2005) Optimisation and evaluation of a high-throughput mammalian protein expression system. Protein Expr Purif 42:111–121

    CAS  PubMed  Google Scholar 

  12. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9

    PubMed  Google Scholar 

  13. Geisse S, Henke M (2005) Large-scale transient transfection of mammalian cells: a newly emerging attractive option for recombinant protein production. J Struct Funct Genomics 6:165–170

    CAS  PubMed  Google Scholar 

  14. Bause E (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 209:331–336

    CAS  PubMed  Google Scholar 

  15. Sato C, Kim JH, Abe Y, Saito K, Yokoyama S, Kohda D (2000) Characterization of the N-oligosaccharides attached to the atypical Asn-X-Cys sequence of recombinant human epidermal growth factor receptor. J Biochem (Tokyo) 127:65–72

    CAS  Google Scholar 

  16. Parodi AJ (2000) Protein glucosylation and its role in protein folding. Annu Rev Biochem 69:69–93

    CAS  PubMed  Google Scholar 

  17. Gilbert RJ, Fucini P, Connell S, Fuller SD, Nierhaus KH, Robinson CV, Dobson CM, Stuart DI (2004) Three-dimensional structures of translating ribosomes by Cryo-EM. Mol Cell 14:57–66

    CAS  PubMed  Google Scholar 

  18. Land A, Zonneveld D, Braakman I (2003) Folding of HIV-1 envelope glycoprotein involves extensive isomerization of disulfide bonds and conformation-dependent leader peptide cleavage. Faseb J 17:1058–1067

    CAS  PubMed  Google Scholar 

  19. Kuznetsov G, Chen LB, Nigam SK (1997) Multiple molecular chaperones complex with misfolded large oligomeric glycoproteins in the endoplasmic reticulum. J Biol Chem 272:3057–3063

    CAS  PubMed  Google Scholar 

  20. Daniels R, Kurowski B, Johnson AE, Hebert DN (2003) N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 11:79–90

    CAS  PubMed  Google Scholar 

  21. van Anken E, Romijn EP, Maggioni C, Mezghrani A, Sitia R, Braakman I, Heck AJ (2003) Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity 18:243–253

    PubMed  Google Scholar 

  22. Taylor SC, Ferguson AD, Bergeron JJ, Thomas DY (2004) The ER protein folding sensor UDP-glucose glycoprotein-glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation. Nat Struct Mol Biol 11:128–134

    CAS  PubMed  Google Scholar 

  23. Caramelo JJ, Castro OA, Alonso LG, De Prat-Gay G, Parodi AJ (2003) UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc Natl Acad Sci USA 100:86–91

    CAS  PubMed  Google Scholar 

  24. Crispin MDM, Ritchie GE, Critchley AJ, Morgan BP, Wilson IA, Dwek RA, Sim RB, Rudd PM (2004) Monoglucosylated glycans in the secreted human complement component C3: implications for protein biosynthesis and structure. FEBS Lett 566:270–274

    CAS  PubMed  Google Scholar 

  25. Ryu KS et al (2009) The presence of monoglucosylated N196-glycan is important for the structural stability of storage protein, arylphorin. Biochem J 421:87–96

    CAS  PubMed  Google Scholar 

  26. Evans EJ et al (2005) Crystal structure of a soluble CD28-Fab complex. Nat Immunol 6:271–279

    CAS  PubMed  Google Scholar 

  27. Derewenda ZS, Vekilov PG (2006) Entropy and surface engineering in protein crystallization. Acta Crystallogr D Biol Crystallogr 62:116–124

    PubMed  Google Scholar 

  28. Walter TS et al (2006) Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14:1617–1622

    CAS  PubMed  Google Scholar 

  29. Kim Y et al (2008) Large-scale evaluation of protein reductive methylation for improving protein crystallization. Nat Methods 5:853–854

    CAS  PubMed  Google Scholar 

  30. Julenius K, Molgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15:153–164

    CAS  PubMed  Google Scholar 

  31. Merry AH et al (2003) O-glycan sialylation and the structure of the stalk-like region of the T cell co-receptor CD8. J Biol Chem 278:27119–27128

    CAS  PubMed  Google Scholar 

  32. Lukacik P et al (2004) Complement regulation at the molecular level: the structure of decay-accelerating factor. Proc Natl Acad Sci USA 101:1279–1284

    CAS  PubMed  Google Scholar 

  33. Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376

    CAS  PubMed  Google Scholar 

  34. Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Gumbiner BM, Shapiro L (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296:1308–1313

    CAS  PubMed  Google Scholar 

  35. Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14:103–114

    CAS  PubMed  Google Scholar 

  36. Leahy DJ, Axel R, Hendrickson WA (1992) Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 A resolution. Cell 68:1145–1162

    CAS  PubMed  Google Scholar 

  37. Crispin M, Stuart DI, Jones EY (2007) Building meaningful models of glycoproteins. Nat Struct Mol Biol 14:1

    Google Scholar 

  38. Herscovics A (2001) Structure and function of Class I α1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie 83:757–762

    CAS  PubMed  Google Scholar 

  39. Lal A, Pang P, Kalelkar S, Romero PA, Herscovics A, Moremen KW (1998) Substrate specificities of recombinant murine Golgi α1, 2-mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing α1,2-mannosidases. Glycobiology 8:981–995

    CAS  PubMed  Google Scholar 

  40. Tremblay LO, Herscovics A (2000) Characterization of a cDNA encoding a novel human Golgi α1, 2-mannosidase (IC) involved in N-glycan biosynthesis. J Biol Chem 275:31655–31660

    CAS  PubMed  Google Scholar 

  41. Schachter H (1991) The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1:453–461

    CAS  PubMed  Google Scholar 

  42. Tan K et al (2002) Crystal structure of murine sCEACAM1a: a coronavirus receptor in the CEA family. EMBO J 21:2076–2086

    CAS  PubMed  Google Scholar 

  43. Rudd PM, Morgan BP, Wormald MR, Harvey DJ, van den Berg CW, Davis SJ, Ferguson MA, Dwek RA (1997) The glycosylation of the complement regulatory protein, human erythrocyte CD59. J Biol Chem 272:7229–7244

    CAS  PubMed  Google Scholar 

  44. Leonard R, Rendic D, Rabouille C, Wilson IB, Preat T, Altmann F (2006) The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J Biol Chem 281:4867–4875

    CAS  PubMed  Google Scholar 

  45. Tomiya N et al (2006) Purification, characterization, and cloning of a Spodoptera frugiperda Sf9 β-N-acetylhexosaminidase that hydrolyzes terminal N-acetylglucosamine on the N-glycan core. J Biol Chem 281:19545–19560

    CAS  PubMed  Google Scholar 

  46. Woods RJ, Pathiaseril A, Wormald MR, Edge CJ, Dwek RA (1998) The high degree of internal flexibility observed for an oligomannose oligosaccharide does not alter the overall topology of the molecule. Eur J Biochem 258:372–386

    CAS  PubMed  Google Scholar 

  47. Wormald MR, Edge CJ (1993) The systematic use of negative nuclear Overhauser constraints in the determination of oligosaccharide conformations: application to sialyl-Lewis X. Carbohydr Res 246:337–344

    CAS  PubMed  Google Scholar 

  48. Weihofen WA, Liu J, Reutter W, Saenger W, Fan H (2004) Crystal structure of CD26/dipeptidyl-peptidase IV in complex with adenosine deaminase reveals a highly amphiphilic interface. J Biol Chem 279:43330–43335

    CAS  PubMed  Google Scholar 

  49. Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102:371–386

    CAS  PubMed  Google Scholar 

  50. Wormald MR, Dwek RA (1999) Glycoproteins: glycan presentation and protein-fold stability. Structure 7:R155–R160

    CAS  PubMed  Google Scholar 

  51. Syed RS et al (1998) Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395:511–516

    CAS  PubMed  Google Scholar 

  52. Yamamoto-Katayama S, Ariyoshi M, Ishihara K, Hirano T, Jingami H, Morikawa K (2002) Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities. J Mol Biol 316:711–723

    CAS  PubMed  Google Scholar 

  53. Yamamoto-Katayama S et al (2001) Site-directed removal of N-glycosylation sites in BST-1/CD157: effects on molecular and functional heterogeneity. Biochem J 357:385–392

    CAS  PubMed  Google Scholar 

  54. Nachon F, Nicolet Y, Viguie N, Masson P, Fontecilla-Camps JC, Lockridge O (2002) Engineering of a monomeric and low-glycosylated form of human butyrylcholinesterase: expression, purification, characterization and crystallization. Eur J Biochem 269:630–637

    CAS  PubMed  Google Scholar 

  55. Gordon K, Redelinghuys P, Schwager SL, Ehlers MR, Papageorgiou AC, Natesh R, Acharya KR, Sturrock ED (2003) Deglycosylation, processing and crystallization of human testis angiotensin-converting enzyme. Biochem J 371:437–442

    CAS  PubMed  Google Scholar 

  56. Wilson KP, Liao DI, Bullock T, Remington SJ, Breddam K (1990) Crystallization of serine carboxypeptidases. J Mol Biol 211:301–303

    CAS  PubMed  Google Scholar 

  57. Sivaraman J, Coloumbe R, Magny MC, Mason P, Mort JS, Cygler M (1996) Crystallization of rat procathepsin B. Acta Crystallogr D Biol Crystallogr 52:874–875

    CAS  PubMed  Google Scholar 

  58. Petrescu AJ, Wormald MR, Dwek RA (2006) Structural aspects of glycomes with a focus on N-glycosylation and glycoprotein folding. Curr Opin Struct Biol 16:600–607

    CAS  PubMed  Google Scholar 

  59. Branza-Nichita N, Negroiu G, Petrescu AJ, Garman EF, Platt FM, Wormald MR, Dwek RA, Petrescu SM (2000) Mutations at critical N-glycosylation sites reduce tyrosinase activity by altering folding and quality control. J Biol Chem 275:8169–8175

    CAS  PubMed  Google Scholar 

  60. Young RJ et al (1995) Secretion of recombinant human IgE-Fc by mammalian cells and biological activity of glycosylation site mutants. Protein Eng 8:193–199

    CAS  PubMed  Google Scholar 

  61. Nettleship JE, Aplin R, Radu Aricescu A, Evans EJ, Davis SJ, Crispin M, Owens RJ (2006) Analysis of variable N-glycosylation site occupancy in glycoproteins by liquid chromatography electrospray ionization mass spectrometry. Anal Biochem 361:149–151

    PubMed  Google Scholar 

  62. Joshi S, Katiyar S, Lennarz WJ (2005) Misfolding of glycoproteins is a prerequisite for peptide: N-glycanase mediated deglycosylation. FEBS Lett 579:823–826

    CAS  PubMed  Google Scholar 

  63. Calderone V, Di Paolo ML, Trabucco M, Biadene M, Battistutta R, Rigo A, Zanotti G (2003) Crystallization and preliminary X-ray data of amine oxidase from bovine serum. Acta Crystallogr D Biol Crystallogr 59:727–729

    PubMed  Google Scholar 

  64. Lunelli M, Di Paolo ML, Biadene M, Calderone V, Battistutta R, Scarpa M, Rigo A, Zanotti G (2005) Crystal structure of amine oxidase from bovine serum. J Mol Biol 346:991–1004

    CAS  PubMed  Google Scholar 

  65. Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454:177–182

    CAS  PubMed  Google Scholar 

  66. Johanson K et al (1995) Binding interactions of human interleukin 5 with its receptor α subunit. Large scale production, structural, and functional studies of Drosophila-expressed recombinant proteins. J Biol Chem 270:9459–9471

    CAS  PubMed  Google Scholar 

  67. Hoover DM, Schalk-Hihi C, Chou CC, Menon S, Wlodawer A, Zdanov A (1999) Purification of receptor complexes of interleukin-10 stoichiometry and the importance of deglycosylation in their crystallization. Eur J Biochem 262:134–141

    CAS  PubMed  Google Scholar 

  68. Fuentes-Prior P et al (2000) Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature 404:518–525

    CAS  PubMed  Google Scholar 

  69. Baker HM, Day CL, Norris GE, Baker EN (1994) Enzymatic deglycosylation as a tool for crystallization of mammalian binding proteins. Acta Crystallogr D Biol Crystallogr 50:380–384

    CAS  PubMed  Google Scholar 

  70. Day CL, Norris GE, Anderson BF, Tweedie JW, Baker EN (1992) Preliminary crystallographic studies of the amino terminal half of human lactoferrin in its iron-saturated and iron-free forms. J Mol Biol 228:973–974

    CAS  PubMed  Google Scholar 

  71. Ducros V et al (1997) Crystallization and preliminary X-ray analysis of the laccase from Coprinus cinereus. Acta Crystallogr D Biol Crystallogr 53:605–607

    CAS  PubMed  Google Scholar 

  72. Graves BJ et al (1994) Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature 367:532–538

    CAS  PubMed  Google Scholar 

  73. Lemieux MJ, Reithmeier RA, Wang DN (2002) Importance of detergent and phospholipid in the crystallization of the human erythrocyte anion-exchanger membrane domain. J Struct Biol 137:322–332

    PubMed  Google Scholar 

  74. Cheng A, van Hoek AN, Yeager M, Verkman AS, Mitra AK (1997) Three-dimensional organization of a human water channel. Nature 387:627–630

    CAS  PubMed  Google Scholar 

  75. Sui H, Walian PJ, Tang G, Oh A, Jap BK (2000) Crystallization and preliminary X-ray crystallographic analysis of water channel AQP1. Acta Crystallogr D Biol Crystallogr 56:1198–1200

    CAS  PubMed  Google Scholar 

  76. Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325:979–989

    CAS  PubMed  Google Scholar 

  77. Tegoni M, Spinelli S, Verhoeyen M, Davis P, Cambillau C (1999) Crystal structure of a ternary complex between human chorionic gonadotropin (hCG) and two Fv fragments specific for the α and β-subunits. J Mol Biol 289:1375–1385

    CAS  PubMed  Google Scholar 

  78. Ogawa H, Qiu Y, Ogata CM, Misono KS (2004) Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J Biol Chem 279:28625–28631

    CAS  PubMed  Google Scholar 

  79. Tsiftsoglou SA et al (2006) Human complement factor I glycosylation: structural and functional characterisation of the N-linked oligosaccharides. Biochim Biophys Acta 1764:1757–1766

    CAS  PubMed  Google Scholar 

  80. Zajonc DM, Elsliger MA, Teyton L, Wilson IA (2003) Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 A. Nat Immunol 4:808–815

    CAS  PubMed  Google Scholar 

  81. Zajonc DM, Maricic I, Wu D, Halder R, Roy K, Wong CH, Kumar V, Wilson IA (2005) Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J Exp Med 202:1517–1526

    CAS  PubMed  Google Scholar 

  82. O’Leary JM, Radcliffe CM, Willis AC, Dwek RA, Rudd PM, Downing AK (2004) Identification and removal of O-linked and non-covalently linked sugars from recombinant protein produced using Pichia pastoris. Protein Expr Purif 38:217–227

    PubMed  Google Scholar 

  83. Tarentino AL, Quinones G, Changchien LM, Plummer TH, Jr. (1993) Multiple endoglycosidase F activities expressed by Flavobacterium meningosepticum endoglycosidases F2 and F3. Molecular cloning, primary sequence, and enzyme expression. J Biol Chem 268:9702–9708

    CAS  PubMed  Google Scholar 

  84. Tarentino AL, Quinones G, Schrader WP, Changchien LM, Plummer TH, Jr. (1992) Multiple endoglycosidase (Endo) F activities expressed by Flavobacterium meningosepticum. Endo F1: molecular cloning, primary sequence, and structural relationship to Endo H. J Biol Chem 267:3868–3872

    CAS  PubMed  Google Scholar 

  85. Robbins PW, Wirth DF, Hering C (1981) Expression of the Streptomyces enzyme endoglycosidase H in Escherichia coli. J Biol Chem 256:10640–10644

    CAS  PubMed  Google Scholar 

  86. Robbins PW et al (1984) Primary structure of the Streptomyces enzyme endo-β-N-acetylglucosaminidase H. J Biol Chem 259:7577–7583

    CAS  PubMed  Google Scholar 

  87. Muramatsu H, Tachikui H, Ushida H, Song X, Qiu Y, Yamamoto S, Muramatsu T (2001) Molecular cloning and expression of endo-β-N-acetylglucosaminidase D, which acts on the core structure of complex type asparagine-linked oligosaccharides. J Biochem (Tokyo) 129:923–928

    CAS  Google Scholar 

  88. Collin M, Olsen A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20:3046–3055

    CAS  PubMed  Google Scholar 

  89. Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L, Wilson IA (1996) An αβ T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274:209–219

    CAS  PubMed  Google Scholar 

  90. Kwong PD et al (1999) Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). J Biol Chem 274:4115–4123

    CAS  PubMed  Google Scholar 

  91. Zajonc DM et al (2005) Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22:209–219

    CAS  PubMed  Google Scholar 

  92. Kostrewa D, Gruninger-Leitch F, D’Arcy A, Broger C, Mitchell D, van Loon AP (1997) Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution. Nat Struct Biol 4:185–190

    CAS  PubMed  Google Scholar 

  93. Sato T et al (2004) A unique dye-decolorizing peroxidase, DyP, from Thanatephorus cucumeris Dec 1: heterologous expression, crystallization and preliminary X-ray analysis. Acta Crystallogr D Biol Crystallogr 60:149–152

    PubMed  Google Scholar 

  94. Houborg K, Harris P, Poulsen JC, Schneider P, Svendsen A, Larsen S (2003) The structure of a mutant enzyme of Coprinus cinereus peroxidase provides an understanding of its increased thermostability. Acta Crystallogr D Biol Crystallogr 59:997–1003

    PubMed  Google Scholar 

  95. Shimizu T, Nakatsu T, Miyairi K, Okuno T, Kato H (2001) Crystallization and preliminary X-ray study of endopolygalacturonase from the pathogenic fungus Stereum purpureum. Acta Crystallogr D Biol Crystallogr 57:1171–1173

    CAS  PubMed  Google Scholar 

  96. Fusetti F et al (2002) Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus. Structure 10:259–268

    CAS  PubMed  Google Scholar 

  97. Prota AE, Sage DR, Stehle T, Fingeroth JD (2002) The crystal structure of human CD21: Implications for Epstein-Barr virus and C3d binding. Proc Natl Acad Sci USA 99:10641–10646

    CAS  PubMed  Google Scholar 

  98. Xiang T, Liu Q, Deacon AM, Koshy M, Kriksunov IA, Lei XG, Hao Q, Thiel DJ (2004) Crystal structure of a heat-resilient phytase from Aspergillus fumigatus, carrying a phosphorylated histidine. J Mol Biol 339:437–445

    CAS  PubMed  Google Scholar 

  99. Rydberg EH et al (1999) Cloning, mutagenesis, and structural analysis of human pancreatic α-amylase expressed in Pichia pastoris. Protein Sci 8:635–643

    CAS  PubMed  Google Scholar 

  100. Katz BA, Liu B, Barnes M, Springman EB (1998) Crystal structure of recombinant human tissue kallikrein at 2.0 Å resolution. Protein Sci 7:875–885

    CAS  PubMed  Google Scholar 

  101. Oefner C, D’Arcy A, Hennig M, Winkler FK, Dale GE (2000) Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon. J Mol Biol 296:341–349

    CAS  PubMed  Google Scholar 

  102. Dale GE, D’Arcy B, Yuvaniyama C, Wipf B, Oefner C, D’Arcy A (2000) Purification and crystallization of the extracellular domain of human neutral endopeptidase (neprilysin) expressed in Pichia pastoris. Acta Crystallogr D Biol Crystallogr 56:894–897

    CAS  PubMed  Google Scholar 

  103. Ryu SE et al (1990) Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature 348:419–426

    CAS  PubMed  Google Scholar 

  104. Wang JH et al (1990) Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 348:411–418

    CAS  PubMed  Google Scholar 

  105. Davis SJ, Brady RL, Barclay AN, Harlos K, Dodson GG, Williams AF (1990) Crystallization of a soluble form of the rat T-cell surface glycoprotein CD4 complexed with Fab from the W3/25 monoclonal antibody. J Mol Biol 213:7–10

    CAS  PubMed  Google Scholar 

  106. Ashford DA et al (1993) Site-specific glycosylation of recombinant rat and human soluble CD4 variants expressed in Chinese hamster ovary cells. J Biol Chem 268:3260–3267

    CAS  PubMed  Google Scholar 

  107. Stanley P (1984) Glycosylation mutants of animal cells. Annu Rev Genet 18:525–552

    CAS  PubMed  Google Scholar 

  108. Stanley P (1981) Selection of specific wheat germ agglutinin-resistant (WgaR) phenotypes from Chinese hamster ovary cell populations containing numerous lecR genotypes. Mol Cell Biol 1:687–696

    CAS  PubMed  Google Scholar 

  109. Cockett MI, Bebbington CR, Yarranton GT (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology (N Y) 8:662–667

    CAS  Google Scholar 

  110. Jones EY, Davis SJ, Williams AF, Harlos K, Stuart DI (1992) Crystal structure at 2.8 A resolution of a soluble form of the cell adhesion molecule CD2. Nature 360:232–239

    CAS  PubMed  Google Scholar 

  111. Liu J et al (1996) Crystallization of a deglycosylated T cell receptor (TCR) complexed with an anti-TCR Fab fragment. J Biol Chem 271:33639–33646

    CAS  PubMed  Google Scholar 

  112. Kern PS et al (1998) Structural basis of CD8 coreceptor function revealed by crystallographic analysis of a murine CD8αα ectodomain fragment in complex with H-2Kb. Immunity 9:519–530

    CAS  PubMed  Google Scholar 

  113. Liu Y et al (2003) The crystal structure of a TL/CD8αα complex at 2.1 A resolution: implications for modulation of T cell activation and memory. Immunity 18:205–215

    CAS  PubMed  Google Scholar 

  114. Casasnovas JM, Stehle T, Liu JH, Wang JH, Springer TA (1998) A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. Proc Natl Acad Sci USA 95:4134–4139

    CAS  PubMed  Google Scholar 

  115. Casasnovas JM, Springer TA, Liu JH, Harrison SC, Wang JH (1997) Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature 387:312–315

    CAS  PubMed  Google Scholar 

  116. Love CA, Harlos K, Mavaddat N, Davis SJ, Stuart DI, Jones EY, Esnouf RM (2003) The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat Struct Biol 10:843–848

    CAS  PubMed  Google Scholar 

  117. Reinherz EL et al (1999) The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286:1913–1921

    CAS  PubMed  Google Scholar 

  118. Karlsson GB, Butters TD, Dwek RA, Platt FM (1993) Effects of the imino sugar N-butyldeoxynojirimycin on the N-glycosylation of recombinant gp120. J Biol Chem 268:570–576

    CAS  PubMed  Google Scholar 

  119. Aricescu AR et al (2006) Eukaryotic Expression: Developments for Structural Proteomics. Acta Crystallogr D Biol Crystallogr 62:1114–11124

    CAS  PubMed  Google Scholar 

  120. Chandonia JM, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311:347–351

    CAS  PubMed  Google Scholar 

  121. Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci USA 99:13419–13424

    CAS  PubMed  Google Scholar 

  122. Tokunaga F, Brostrom C, Koide T, Arvan P (2000) Endoplasmic reticulum (ER)-associated degradation of misfolded N-linked glycoproteins is suppressed upon inhibition of ER mannosidase I. J Biol Chem 275:40757–40764

    CAS  PubMed  Google Scholar 

  123. Aricescu AR, Siebold C, Choudhuri K, Chang VT, Lu W, Davis SJ, van der Merwe PA, Jones EY (2007) Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. Science 317:1217–1220

    CAS  PubMed  Google Scholar 

  124. Bowden TA, Crispin M, Harvey DJ, Aricescu AR, Grimes JM, Jones EY, Stuart DI (2008) Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design. J Virol 82:11628–11636

    CAS  PubMed  Google Scholar 

  125. Bowden TA, Aricescu AR, Nettleship JE, Siebold C, Rahman-Huq N, Owens RJ, Stuart DI, Jones EY (2009) Structural plasticity of eph receptor A4 facilitates cross-class ephrin signaling. Structure 17:1386–1397

    CAS  PubMed  Google Scholar 

  126. Bishop B, Aricescu AR, Harlos K, O’Callaghan CA, Jones EY, Siebold C (2009) Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP. Nat Struct Mol Biol 16:698–703

    CAS  PubMed  Google Scholar 

  127. van der Merwe PA, McPherson DC, Brown MH, Barclay AN, Cyster JG, Williams AF, Davis SJ (1993) The NH2-terminal domain of rat CD2 binds rat CD48 with a low affinity and binding does not require glycosylation of CD2. Eur J Immunol 23:1373–1377

    PubMed  Google Scholar 

  128. van der Merwe PA, Brown MH, Davis SJ, Barclay AN (1993) Affinity and kinetic analysis of the interaction of the cell adhesion molecules rat CD2 and CD48. Embo J 12:4945–4954

    PubMed  Google Scholar 

  129. Wyss DF et al (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269:1273–1278

    CAS  PubMed  Google Scholar 

  130. Recny MA et al (1992) N-glycosylation is required for human CD2 immunoadhesion functions. J Biol Chem 267:22428–22434

    CAS  PubMed  Google Scholar 

  131. Williams AF, Barclay AN (1988) The immunoglobulin superfamily–domains for cell surface recognition. Annu Rev Immunol 6:381–405

    CAS  PubMed  Google Scholar 

  132. Williams AF (1987) A year in the life of the immunoglobulin superfamily. Immunol Today 8:298–303

    CAS  Google Scholar 

  133. Niwa R et al (2004) Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcγRIIIa functional polymorphism. Clin Cancer Res 10:6248–6255

    CAS  PubMed  Google Scholar 

  134. Niwa R, Sakurada M, Kobayashi Y, Uehara A, Matsushima K, Ueda R, Nakamura K, Shitara K (2005) Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res 11:2327–2336

    CAS  PubMed  Google Scholar 

  135. Niwa R et al (2004) Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 64:2127–2133

    CAS  PubMed  Google Scholar 

  136. Crispin M, Bowden TA, Coles CH, Harlos K, Aricescu AR, Harvey DJ, Stuart DI, Jones EY (2009) Carbohydrate and domain architecture of an immature antibody glycoform exhibiting enhanced effector functions. J Mol Biol 387:1061–1066

    CAS  PubMed  Google Scholar 

  137. Frank M, Lutteke T, von der Lieth CW (2007) GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages. Nucleic Acids Res 35:287–290

    CAS  PubMed  Google Scholar 

  138. Lutteke T (2009) Analysis and validation of carbohydrate three-dimensional structures. Acta Crystallogr D Biol Crystallogr 65:156–168

    PubMed  Google Scholar 

  139. Lutteke T, Bohne-Lang A, Loss A, Goetz T, Frank M, von der Lieth CW (2006) GLYCOSCIENCES.de: an Internet portal to support glycomics and glycobiology research. Glycobiology 16:71R–81R

    PubMed  Google Scholar 

  140. Lutteke T, Frank M, von der Lieth CW (2005) Carbohydrate Structure Suite (CSS): analysis of carbohydrate 3D structures derived from the PDB. Nucleic Acids Res 33:D242–D246

    PubMed  Google Scholar 

  141. Lutteke T, von der Lieth CW (2004) pdb-care (PDB carbohydrate residue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC Bioinformatics 5:69

    PubMed  Google Scholar 

  142. Lutteke T, Frank M, von der Lieth CW (2004) Data mining the protein data bank: automatic detection and assignment of carbohydrate structures. Carbohydr Res 339:1015–1020

    CAS  PubMed  Google Scholar 

  143. Crispin M et al (2009) A human embryonic kidney 293T cell line mutated at the Golgi α-mannosidase II locus. J Biol Chem 284:21684–21695

    CAS  PubMed  Google Scholar 

  144. Frank M, Bohne-Lang A, Wetter T, Lieth CW (2002) Rapid generation of a representative ensemble of N-glycan conformations. In Silico Biol 2:427–439

    CAS  PubMed  Google Scholar 

  145. Harvey DJ, Merry AH, Royle L, Campbell MP, Dwek RA, Rudd PM (2009) Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics 9:3796–3801

    CAS  PubMed  Google Scholar 

  146. Matsumiya S et al (2007) Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J Mol Biol 368:767–779

    CAS  PubMed  Google Scholar 

  147. Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664–14671

    CAS  PubMed  Google Scholar 

  148. Henrich S, Cameron A, Bourenkov GP, Kiefersauer R, Huber R, Lindberg I, Bode W, Than ME (2003) The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Biol 10:520–526

    CAS  PubMed  Google Scholar 

  149. Smith BJ et al (2006) Structure of a calcium-deficient form of influenza virus neuraminidase: implications for substrate binding. Acta Crystallogr D Biol Crystallogr 62:947–952

    PubMed  Google Scholar 

  150. Bodian DL, Jones EY, Harlos K, Stuart DI, Davis SJ (1994) Crystal structure of the extracellular region of the human cell adhesion molecule CD2 at 2.5 A resolution. Structure 2:755–766

    CAS  PubMed  Google Scholar 

  151. Ikemizu S, Sparks LM, van der Merwe PA, Harlos K, Stuart DI, Jones EY, Davis SJ (1999) Crystal structure of the CD2-binding domain of CD58 (lymphocyte function-associated antigen 3) at 1.8-A resolution. Proc Natl Acad Sci USA 96:4289–4294

    CAS  PubMed  Google Scholar 

  152. Fusetti F et al (2002) Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus. Structure 10:259–268

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Veronica Chang, Radu Aricescu, Ray Owens, Jo Nettleship, Yvonne Jones, David Stuart, Neil Barclay, Chris Scanlan, Pauline Rudd, David Harvey, Mark Wormald, Tom Bowden and Raymond Dwek for many helpful discussions. We are particularly grateful to Ed Evans for his intellectual input and for his preparation of Fig. 6.9. This work was funded by the Wellcome Trust, the United Kingdom Medical Research Council and the Oxford Glycobiology Institute Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Davis, S.J., Crispin, M. (2010). Solutions to the Glycosylation Problem for Low- and High-Throughput Structural Glycoproteomics. In: Owens, R., Nettleship, J. (eds) Functional and Structural Proteomics of Glycoproteins. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9355-4_6

Download citation

Publish with us

Policies and ethics