Skip to main content

Microscopic Measurements of the Chlorophyll a Fluorescence Kinetics

  • Chapter
  • First Online:
Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications

Abstract

The method of high resolution fluorescence kinetics combines classical chlorophyll variable fluorescence methods and microscopy. It is useful for studies of intra-population relationships among photosynthetic microorganism, studies of single algal cell metabolism and phytoplankton diversity. The technique can be also used for toxicity tests and to assess the physiological homogeneity of algal populations. On the other hand, the technique is highly time consuming and suffers from relatively low signal and high noise. Recently, combination of multi-spectral methods and fast kinetic measurements with 2D imaging increased potential to study metabolic dynamics of single cells and intracellular compounds. New methods that were developed to manipulate with the living cells are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AL:

actinic light

CCD:

charge coupled device

chla :

chlorophyll a

2D, 3D:

two, three dimensional

F′:

fluorescence signal at any point between Fo′ and Fm′

FK:

fluorescence kinetics

FKM:

fluorescence kinetic microscope

FKMI:

fluorescence kinetic microscopy imaging

Fm, Fm′:

maximal fluorescence of dark adapter and light adapted sample

Fo, Fo′:

dark adapted, light adapted minimal fluorescence

FR:

far red illumination

Fv:

variable fluorescence of light adapted state

LED:

light emitting diodes

ML:

measuring light

NPQ:

non photochemical quenching

OJIP:

fast part of Kautsky kinetic curve

PAM:

pulse amplitude modulation

PQ:

plastoquinon

Q A :

completely oxidized quinon

SP:

saturating pulse (radiation)

UV:

ultraviolet radiation

VIS:

visual radiation (400–700 nm)

IR:

infrared radiation

References

  • Berman-Frank I, Lundgren P, Chen Y, Küpper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537

    Article  CAS  Google Scholar 

  • Bradbury M, Baker NR (1983) Analysis of the induction of chlorophyll fluorescence in leaves and isolated thylakoids: contributions of photochemical and non-photo-chemical quenching. Proc Roy Soc Lond B Biol 220:251–264

    Article  CAS  Google Scholar 

  • Daley PF, Rashke K, Ball JT, Berry JA (1989) Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiol 90:1233–1238

    Article  CAS  Google Scholar 

  • Fenton JM, Crofts AR (1990) Computer aided fluorescence imaging of photosynthetic systems: Application of video imaging to the study of fluorescence induction in green plants and photosynthetic bacteria. Photosynth Res 26:59–66

    Google Scholar 

  • Ferimazova N, Küpper H, Nedbal L, Trtílek M (2002) New insights into photosynthetic oscillations revealed by two-dimensional microscopic measurements of chlorophyll fluorescence kinetics in intact leaves and isolated protoplasts. Photochem Photobiol 76:501–508

    Article  CAS  Google Scholar 

  • Gachon CMM, Küpper H, Küpper FC, Setlik I (2006) Single-cell chlorophyll fluorescence kinetic microscopy of Pylaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota). Eur J Phycol 41:395–403

    Article  Google Scholar 

  • Genty B, Meyer S (1995) Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging. Aust J Plant Physiol 22:277–284

    Article  Google Scholar 

  • Gorbunov MY, Kolber Z, Falkowski PG (1999) Measuring photosynthetic parameters in individual algal cells by Fast Repetition Rate fluorometry. Photosynth Res 62:141–153

    Article  CAS  Google Scholar 

  • Grey DW, Zoe G, LA Cardon L (2006) Simultaneous collection of rapid chlorophyll fluorescence induction kinetics, fluorescence quenching parameters, and environmental data using an automated PAM 2000/CR10X data logging system. Photosynth Res 87:295–301

    Article  Google Scholar 

  • Küpper H, Šetlík I, Trtílek M, Nedbal L (2000a) A microscope for two-dimensional measurements of in vivo chlorophyll fluorescence kinetics using pulsed measuring radiation, continuous actinic radiation, and saturating flashes. Photosynthetica 38:553–570

    Article  Google Scholar 

  • Küpper H, Spiller M, Küpper F (2000b) Photomethric method for the quantification of chlorophylls and their derivatives in complex mixtures: fitting with gaus-peak-spectra. Anal Biochem 286:247–256

    Article  Google Scholar 

  • Küpper H, Šetlík I, Spiller M, Küpper FC, Prášil O (2002) Heavy metal-induced inhibition of photosynthesis: Targets of in vivo heavy metal chlorophyll formation. J Phycol 38:429–441

    Google Scholar 

  • Küpper H, Ferimazova N, Šetlík I, Berman-Frank I (2004a) Traffic lights in Trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. Plant Physiol 135:2120–2133

    Article  Google Scholar 

  • Küpper H, Šetlík I, Hlásek M (2004b) A versatile chamber for simultaneous measurements of oxygen exchange and fluorescence in filamentous and thallous algae as well as higher plants. Photosynthetica 42:579–583

    Article  Google Scholar 

  • Küpper H, Parameswaran A, Leitenmaier B, Trtílek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    Article  Google Scholar 

  • Küpper H, Šetlík I, Seiber S, Prášil O, Šetlíková E, Strittmatter M, Levitan O, Lohscheider J, Adamska I, Berman-Frank I (2008) Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. New Phytol 179:784–798

    Article  Google Scholar 

  • Küpper H, Andresen E, Wiegert S, Šimek M, Leitenmaier B, Šetlík I (2009) Revesible coupling of individual phycobiliprotein isoforms during state transitions in the cyanobacterium Trichodesmium analysed by single-cell fluorescence kinetic measurements. Biochim Biophys Acta 1787:155–167

    Article  Google Scholar 

  • Moya I, Cernovic ZG, Cernovic ZG (2004) Remote sensing of chlorophyll fluorescence: Instrumentation and analysis. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: A signature of photosynthesis., Springer, Dordrecht. pp 429–445

    Chapter  Google Scholar 

  • Nedbal L, Whitmarsh J (2004) Chlorophyll fluorescence imaging of leaves and fruits. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: A signature of photosynthesis., Springer, Dordrecht. pp 389–407

    Chapter  Google Scholar 

  • Nedbal L, Soukupová J, Kaftan D, Whitmarsh J, Trtílek M (2000) Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynth Res 66:3–12

    Article  CAS  Google Scholar 

  • Omasa K, Shimazaki K-I, Aiga I, Larcher W, Onoe M (1987) Image analysis of chlorophyll fluorescence transients for diagnosting the photosynthetic system of attached leaves. Plant Physiol 84:748–752

    Article  CAS  Google Scholar 

  • Omasa K, Konishi A, Tamura H, Hosoi F (2008) 3D confocal laser scanning microscopy for the analysis of chlorophyll fluorescence parameters of chloroplasts in intact leaf tissues. Plant Cell Physiol 50:90–105

    Article  Google Scholar 

  • Osmond B, Schwartz O, Gunning B (1999) Photoinhibitory printing on leaves, visualized by chlorophyll fluorescence imaging and confocal microscopy, is due to diminished fluorescence from grana. Aust J Plant Physiol 26:717–724

    Article  CAS  Google Scholar 

  • Oxborough K (2004) Using chlorophyll a fluorescence imaging to monitor photosynthetic performance. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: A signature of photosynthesis. Springer, Dordrecht, pp 409–428

    Chapter  Google Scholar 

  • Oxborough K, Baker NR (1997) An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular levels. Plant Cell Environ 20:1473–1483

    Article  Google Scholar 

  • Papageorgiou GC, Govindjee (eds) (2004) Chlorophyll a fluorescence: A signature of photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Pineda M, Soukupova J, Matous K, Nedbal L, Baron M (2008) Conventional and combinatorial chlorophyll fluorescence imaging to tobamovirus-infected plants. Photosynthetica 46:441–451

    Article  CAS  Google Scholar 

  • Roháček K (2002) Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationship. Photosynthetica 40:13–29

    Article  Google Scholar 

  • Roháček K, Soukupová J, Barták M (2008) Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress. Research Signpost, India, pp 41–104

    Google Scholar 

  • Rolfe SA, Scholes JD (2002) Extended depth-of-focus imaging of chlorophyll fluorescence from intact leaves. Photosynth Res 72:107–115

    Article  CAS  Google Scholar 

  • Scholes JD, Rolfe SA (1996) Photosynthesis in localized regions of oat leaves infected with crown rust (Pucinia coronata): Quantitative imaging of chlorophyll fluorescence. Planta 199:573–582

    Article  CAS  Google Scholar 

  • Schreiber U (2004) Pulse-Amplitude (PAM) fluorometry and saturation pulse method. In: Papageorgiou GC (ed) Chlorophylla fluorescence: A signature of photosynthesis. Springer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Šetlíková E, Šetlík I, Küpper H, Kasalický V, Prášil O (2005) The photosynthesis of individual algal cells during the cell cycle of Scenedesmus quadricauda studied by chlorophyll fluorescence kinetic microscopy. Photosynth Res 84:113–120

    Article  Google Scholar 

  • Siebke K, Weis E (1995) Imaging of Chlorophyll a fluorescence in leaves: Topography of photosynthetic oscillations in leaves of Glechoma hederacea. Photosynth Res 45:225–237

    Article  CAS  Google Scholar 

  • Siffel P, Hunalova I, Rohacek K (2000) Light-induced quenching of chlorophyll fluorescence at 77K in leaves, chloroplasts and Photosystem II particles. Photosynth Res 65:219–229

    Article  CAS  Google Scholar 

  • Zangerl AR, Hamilton JG, Miller TJ, Crofts AR, Oxborough K, Berenbaum MR, de Lucia EH (2002) Impact of folivory on photosynthesis is greater than the sum of its holes. Proc Natl Acad Sci USA 99:1088–1091

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by EEA Fund. No A/CZ0046/1/0021 and by the project GACR GA (206/07/0917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Komárek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Komárek, O., Felcmanová, K., Šetlíková, E., Kotabová, E., Trtílek, M., Prášil, O. (2010). Microscopic Measurements of the Chlorophyll a Fluorescence Kinetics. In: Suggett, D., Prášil, O., Borowitzka, M. (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Developments in Applied Phycology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9268-7_5

Download citation

Publish with us

Policies and ethics