Skip to main content

The Molecular Geomicrobiology of Bacterial Manganese(II) Oxidation

  • Chapter
  • First Online:
Geomicrobiology: Molecular and Environmental Perspective

Abstract

Manganese is the second most abundant transition metal found in the Earth’s crust. It has a significant biological role as it is a cofactor of enzymes such as superoxide dismutase and is the key metal in the reaction center of photosystem II. In the environment, manganese is mostly found in three different oxidation states: II, III, and IV. Mn(II), primarily occurring as the soluble Mn2+ species, is the thermodynamically favored state at low pH and Eh while insoluble Mn(III) and Mn(IV) oxides are favored at high pH and Eh. Thus, studies of Mn in the environment have almost always employed this paradigm for defining different Mn phases based on operational definitions: Mn that passes through a 0.2 or 0.4 µm filter is defined as soluble Mn(II) while Mn that is trapped by the filter are the solid phase Mn(III,IV) oxides. Soluble Mn species other than Mn(II) were thought not to be important because Mn(III) ions are not stable in solution and rapidly disproportionate to Mn(II) and Mn(IV). However, recent work on the mechanism of bacterial Mn(II) oxidation has demonstrated that Mn(III) occurs as an intermediate in the oxidation of Mn(II) to Mn(IV) oxides (Webb et al. 2005b; Parker et al. 2007; Anderson et al. 2009b) and that a variety of inorganic and organic ligands can complex Mn(III) and render it relatively stable in solution. In this article we review these new insights into the molecular mechanism of bacterial Mn(II) oxidation and recent advances in our understanding of Mn(II) oxidation in the environment. The study of the importance of Mn in the environment needs to employ the new paradigm for Mn cycling which takes into account the role of soluble Mn(III) species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams LF, Ghiorse WC (1985) Influence of Manganese on Growth of a Sheathless Strain of Leptothrix discophora. Appl Environ Microbiol 49:556–562

    PubMed  CAS  Google Scholar 

  • Aguilar-Islas AM, Bruland KW (2006) Dissolved manganese and silicic acid in the Columbia River plume: a major source to the California current and coastal waters off Washington and Oregon. Mar Chem 101:233–247

    CAS  Google Scholar 

  • Anderson CR, Dick GJ, Chu ML, Cho JC, Davis RE, Brauer SL, Tebo BM (2009a) Aurantimonas manganoxydans, sp. nov. and Aurantimonas litoralis, sp. nov.: Mn(II) oxidizing representatives of a globally distributed clade of alpha-Proteobacteria from the order Rhizobiales. Geomicrobiol J 26:189–198

    PubMed  CAS  Google Scholar 

  • Anderson CR, Johnson HA, Caputo N, Davis RE, Torpey JW, Tebo BM (2009b) Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21. Appl Environ Microbiol 75:4130–4138

    PubMed  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242

    PubMed  CAS  Google Scholar 

  • Bargar JR, Tebo BM, Villinski JE (2000) In situ characterization of Mn(II) oxidation by spores of the marine Bacillus sp strain SG-1. Geochim Cosmochim Acta 64:2775–2778

    CAS  Google Scholar 

  • Bargar JR, Tebo BM, Bergmann U, Webb SM, Glatzel P, Chiu VQ, Villalobos M (2005) Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1. Am Mineral 90:143–154

    CAS  Google Scholar 

  • Bargar JR, Fuller CC, Marcus MA, Brearley AJ, Perez De la Rosa M, Webb SM, Caldwell WA (2009) Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ. Geochim Cosmochim Acta 73:889–910

    CAS  Google Scholar 

  • Barnes CA, Duxbury AC, Morse BA (1972) Circulation and selected properties of the Columbia river effluent at sea. In: Pruter AT, Alverson DL (eds) The Columbia river estuary and adjacent ocean waters. University of Washington Press, Seattle, pp 41–80

    Google Scholar 

  • Brouwers G-J, de Vrind JPM, Corstjens PLAM, Westbroek P, de Vrind-de Jong EW (1997) Pseudomonas genes involved in the oxidation of manganese. Abstracts, Geological Society of America Annual Meeting, Salt Lake City, UT

    Google Scholar 

  • Brouwers GJ, de Vrind JP, Corstjens PL, Cornelis P, Baysse C, de Vrind-de Jong EW (1999) cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 65:1762–1768

    PubMed  CAS  Google Scholar 

  • Brouwers GJ, Vijgenboom E, Corstjens PLAM, de Vrind JPM, de Vrind-de Jong EW (2000) Bacterial Mn2+ oxidizing systems and multicopper oxidases: an overview of mechanisms and functions. Geomicrobiol J 17:1–24

    CAS  Google Scholar 

  • Bruland KW, Lohan MC, Aguilar-Islas AM, Smith GJ, Sohst B, Baptista A (2008) Factors influencing the chemistry of the near-field Columbia river plume: nitrate, silicic acid, dissolved Fe, and dissolved Mn. J Geophys Res Oceans 113:C00B02

    Google Scholar 

  • Cahyani VR, Murase J, Ishibashi E, Asakawa S, Kimura M (2009) Phylogenetic positions of Mn2+-oxidizing bacteria and fungi isolated from Mn nodules in rice field subsoils. Biol Fertil Soils 45:337–346

    Google Scholar 

  • Camarero S, Ruiz-Duenas FJ, Sarkar S, Martinez MJ, Martinez AT (2000) The cloning of a new peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with other fungal peroxidases. FEMS Microbiol Lett 191:37–43

    PubMed  CAS  Google Scholar 

  • Caspi R, Haygood MG, Tebo BM (1996) Unusual ribulose-1, 5-bisphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium. Microbiology 142:2549–2559

    PubMed  CAS  Google Scholar 

  • Caspi R, Tebo BM, Haygood MG (1998) c-type cytochromes and manganese oxidation in Pseudomonas putida MnB1. Appl Environ Microbiol 64:3549–3555

    PubMed  CAS  Google Scholar 

  • Clement BG (2006) Biological Mn(II) oxidation in freshwater and marine systems: new perspectives on reactants, mechanisms and microbial catalysts of Mn cycling in the environment. University of California San Diego, La Jolla, CA

    Google Scholar 

  • Clement BG, Luther GW III, Tebo BM (2009) Rapid, oxygen-dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone. Geochim Cosmochim Acta 73:1878–1889

    CAS  Google Scholar 

  • Corstjens PLAM, de Vrind JPM, Goosen T, de Vrind-de Jong EW (1997) Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiol J 14:91–108

    CAS  Google Scholar 

  • Cox TL, Sly LI (1997) Phylogenetic relationships and uncertain taxonomy of Pedomicrobium species. Int J Syst Bacteriol 47:377–380

    PubMed  CAS  Google Scholar 

  • de Vrind JP, de Vrind-de Jong EW, de Voogt JW, Westbroek P, Boogerd FC, Rosson RA (1986) Manganese oxidation by spores and spore coats of a marine Bacillus species. Appl Environ Microbiol 52:1096–1100

    PubMed  Google Scholar 

  • de Vrind JP, Brouwers GJ, Corstjens PL, den Dulk J, de Vrind-de Jong EW (1998) The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 64:3556–3562

    PubMed  Google Scholar 

  • de Vrind J, de Groot A, Brouwers GJ, Tommassen J, de Vrind-de Jong E (2003) Identification of a novel Gsp-related pathway required for secretion of the manganese-oxidizing factor of Pseudomonas putida strain GB-1. Mol Microbiol 47:993–1006

    PubMed  Google Scholar 

  • de Vrind-de Jong EW, Corstjens PL, Kempers ES, Westbroek P, de Vrind JP (1990) Oxidation of manganese and iron by Leptothrix discophora: Use of N, N, N’, N’-Tetramethyl-p-Phenylenediamine as an indicator of metal oxidation. Appl Environ Microbiol 56:3458–3462

    PubMed  Google Scholar 

  • Dick GJ, Lee YE, Tebo BM (2006) Manganese(II)-oxidizing bacillus spores in Guaymas basin hydrothermal sediments and plumes. Appl Environ Microbiol 72:3184–3190

    PubMed  CAS  Google Scholar 

  • Dick GJ, Podell S, Johnson HA et al (2008a) Genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1. Appl Environ Microbiol 74:2646–2658

    PubMed  CAS  Google Scholar 

  • Dick GJ, Torpey JW, Beveridge TJ, Tebo BM (2008b) Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Appl Environ Microbiol 74:1527–1534

    PubMed  CAS  Google Scholar 

  • Dick GJ, Clement BG, Webb SM, Fodrie FJ, Bargar JR, Tebo BM (2009) Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas basin deep-sea hydrothermal plume. Geochim Cosmochim Acta 73:6517–6530

    CAS  Google Scholar 

  • Duckworth OW, Sposito G (2005a) Siderophore-manganese(III) interactions II. Manganite dissolution promoted by desferrioxamine B. Environ Sci Technol 39:6045–6051

    PubMed  CAS  Google Scholar 

  • Duckworth OW, Sposito G (2005b) Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(II) promoted by desferrioxamine B. Environ Sci Technol 39:6037–6044

    PubMed  CAS  Google Scholar 

  • Duckworth OW, Bargar JR, Sposito G (2009a) Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores. Biometals 22:605–613

    PubMed  CAS  Google Scholar 

  • Duckworth OW, Holmstrom SJM, Pena J, Sposito G (2009b) Biogeochemistry of iron oxidation in a circumneutral freshwater habitat. Chem Geol 260:149–158

    CAS  Google Scholar 

  • Ehrlich HL, Salerno JC (1990) Energy coupling in Mn2+ oxidation by a marine bacterium. Arch Microbiol 154:12–17

    CAS  Google Scholar 

  • El Gheriany IA, Bocioaga D, Hay AG, Ghiorse WC, Shuler ML, Lion LW (2009) Iron requirement for Mn(II) oxidation by Leptothrix discophora SS-1. Appl Environ Microbiol 75:1229–1235

    PubMed  CAS  Google Scholar 

  • Emerson S, Kalhorn S, Jacobs L, Tebo BM, Nealson KH, Rosson RA (1982) Environmental oxidation rate of manganese(II): bacterial catalysis. Geochim Cosmochim Acta 46:1073–1079

    CAS  Google Scholar 

  • Essen SA, Bylund D, Holmstrom SJM, Moberg M, Lundstrom US (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19:269–282

    PubMed  CAS  Google Scholar 

  • Faulkner KM, Stevens RD, Fridovich I (1994) Characterization of Mn(III) complexes of linear and cyclic desferrioxamines as mimics of superoxide dismutase activity. Arch Biochem Biophys 310:341–346

    PubMed  CAS  Google Scholar 

  • Francis CA, Tebo BM (2002) Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl Environ Microbiol 68:874–880

    PubMed  CAS  Google Scholar 

  • Francis CA, Co EM, Tebo BM (2001) Enzymatic manganese(II) oxidation by a marine α-proteobacterium. Appl Environ Microbiol 67:4024–4029

    PubMed  CAS  Google Scholar 

  • Frangipani E, Haas D (2009) Copper acquisition by the SenC protein regulates aerobic respiration in Pseudomonas aeruginosa sp. PAO1. FEMS Microbiol Lett 298:234–240

    PubMed  CAS  Google Scholar 

  • Gebers R, Beese M (1988) Pedomicrobium americanum sp. nov. and Pedomicrobium australicum sp. nov. from Aquatic Habitats, Pedomicrobium gen. emend., and Pedomicrobium ferrugineum sp. emend. Int J Syst Bacteriol 38:303–315

    Google Scholar 

  • Geszvain K, Tebo BM (2010) Identification of a two-component regulatory pathway essential for Mn(II) oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 76:1224–1231

    Google Scholar 

  • Ghiorse WC (1984) Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol 38:515–550

    PubMed  CAS  Google Scholar 

  • Glenn JK, Akileswaran L, Gold MH (1986) Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696

    PubMed  CAS  Google Scholar 

  • Hastings D, Emerson S (1986) Oxidation of manganese by spores of a marine Bacillus – kinetic and thermodynamic considerations. Geochim Cosmochim Acta 50:1819–1824

    CAS  Google Scholar 

  • Hofer C, Schlosser D (1999) Novel enzymatic oxidation of Mn2+ to Mn3+ catalyzed by a fungal laccase. FEBS Lett 451:186–190

    PubMed  CAS  Google Scholar 

  • Holmstrom SJM, Lundstrom US, Finlay RD, van Hees PAW (2004) Siderophores in forest soil solution. Biogeochemistry 71:247–258

    Google Scholar 

  • Johnson KS (2006) Manganese redox chemistry revisited. Science 313:1896–1897

    PubMed  CAS  Google Scholar 

  • Johnson HA, Tebo BM (2008) In vitro studies indicate a quinone is involved in bacterial Mn(II) oxidation. Arch Microbiol 189:59–69

    PubMed  CAS  Google Scholar 

  • Jung WK, Schweisfurth R (1979) Manganese oxidation by an intracellular protein of a Pseudomonas species. Z Allg Mikrobiol 19:107–115

    PubMed  CAS  Google Scholar 

  • Jürgensen A, Widmeyer JR, Gordon RA, Bendell-Young LI, Moore MM, Crozier ED (2004) The structure of the manganese oxide on the sheath of the bacterium Leptothrix discophora: an XAFS study. Am Mineral 89:1110–1118

    Google Scholar 

  • Kepkay PE, Nealson KH (1987) Growth of a manganese oxidizing Pseudomonas sp in continuous culture. Arch Microbiol 148:63–67

    CAS  Google Scholar 

  • Klewicki JK, Morgan JJ (1998) Kinetic behavior of Mn(III) complexes of pyrophosphate, EDTA, and citrate. Environ Sci Technol 32:2916–2922

    CAS  Google Scholar 

  • Klewicki JK, Morgan JJ (1999) Dissolution of β-MnOOH particles by ligands: pyrophosphate, ethylenediaminetetraacetate, and citrate. Geochim Cosmochim Acta 63:3017–3024

    CAS  Google Scholar 

  • Konovalov SK, Luther GW, Friederich GE et al (2003) Lateral injection of oxygen with the Bosporus plume – fingers of oxidizing potential in the Black Sea. Limnol Oceanogr 48:2369–2376

    CAS  Google Scholar 

  • Konovalov S, Samodurov A, Oguz T, Ivanov L (2004) Parameterization of iron and manganese cycling in the Black Sea suboxic and anoxic environment. Deep-Sea Res Pt I 51:2027–2045

    CAS  Google Scholar 

  • Kostka JE, Luther III GW, Nealson KH (1995) Chemical and biological reduction of Mn(III)-pyrophosphate complexes – potential importance of dissolved Mn(III) as an environmental oxidant. Geochim Cosmochim Acta 59:885–894

    CAS  Google Scholar 

  • Larsen EI, Sly LI, McEwan AG (1999) Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol 171:257–264

    CAS  Google Scholar 

  • Luther GW (2005) Manganese(II) oxidation and Mn(IV) reduction in the environment – two one-electron transfer steps versus a single two-electron step. Geomicrobiol J 22:195–203

    CAS  Google Scholar 

  • Luther GW, Sundby B, Lewis BL, Brendel PJ, Silverberg N (1997) Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen. Geochim Cosmochim Acta 61:4043–4052

    CAS  Google Scholar 

  • Mandernack KW, Post J, Tebo BM (1995) Manganese mineral formation by bacterial spores of a marine Bacillus, strain SG-1: evidence for the direct oxidation of Mn(II) to Mn(IV). Geochim Cosmochim Acta 59:4393–4408

    CAS  Google Scholar 

  • Mann S, Sparks NHC, Scott GHE, de Vrind-de Jong EW (1988) Oxidation of manganese and formation of Mn3O4 (hausmannite) by spore coats of a marine Bacillus sp. Appl Environ Microbiol 54:2140–2143

    PubMed  CAS  Google Scholar 

  • Mawji E, Gledhill M, Milton JA, Tarran GA, Ussher S, Thompson A, Wolff GA, Worsfold PJ, Achterberg EP (2008) Hydroxamate siderophores: occurrence and importance in the Atlantic ocean. Environ Sci Technol 42:8675–8680

    PubMed  CAS  Google Scholar 

  • Murray JW, Dillard JG, Giovanoli R, Moers H, Stumm W (1985) Oxidation of Mn(II): initial mineralogy, oxidation state and aging. Geochim Cosmochim Acta 49:463–470

    CAS  Google Scholar 

  • Murray JW, Codispoti LA, Friederich GE (1995) Oxidation-reduction environments: the suboxic zone in the Black Sea. In: Huang CP, O’Melia CR, Morgan JJ (eds) Aquatic chemistry: interfacial and interspecies processes. American Chemical Society, Washington, DC, pp 157–176

    Google Scholar 

  • Murray K, Mozafarzadeh M, Tebo B (2005) Cr(III) oxidation and Cr toxicity in cultures of the manganese(II)-oxidizing Pseudomonas putida strain GB-1. Geomicrobiol J 22:151–159

    CAS  Google Scholar 

  • Nelson YM, Lion LW, Ghiorse WC, Shuler ML (1999) Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics. Appl Environ Microbiol 65:175–180

    PubMed  CAS  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    PubMed  CAS  Google Scholar 

  • O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    PubMed  Google Scholar 

  • Oguz T, Murray JW, Callahan AE (2001) Modeling redox cycling across the suboxic-anoxic interface zone in the Black Sea. Deep-Sea Res Pt I 48:761–787

    CAS  Google Scholar 

  • Okazaki M, Sugita T, Shimizu M, Ohode Y, Iwamoto K, de Vrind-de Jong EW, de Vrind JP, Corstjens PL (1997) Partial purification and characterization of manganese-oxidizing factors of Pseudomonas fluorescens GB-1. Appl Environ Microbiol 63:4793–4799

    PubMed  CAS  Google Scholar 

  • Palma C, Martinez AT, Lema JM, Martinez MJ (2000) Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. J Biotechnol 77:235–245

    PubMed  CAS  Google Scholar 

  • Parker DL, Sposito G, Tebo BM (2004) Manganese(III) binding to a pyoverdine siderophore produced by a manganese(II)-oxidizing bacterium. Geochim Cosmochim Acta 68:4809–4820

    CAS  Google Scholar 

  • Parker DL, Morita T, Mozafarzadeh ML, Verity R, McCarthy JK, Tebo BM (2007) Inter-relationships of MnO2 precipitation, siderophore-Mn(III) complex formation, siderophore degradation, and iron limitation in Mn(II) oxidizing bacterial cultures. Geochim Cosmochim Acta 71:5672–5683

    CAS  Google Scholar 

  • Pecher K, McCubbery D, Kneedler E, Rothe J, Bargar J, Meigs G, Cox L, Nealson K, Tonner B (2003) Quantitative charge state analysis of manganese biominerals in aqueous suspension using Scanning Transmission X-ray Microscopy (STXM). Geochim Cosmochim Acta 67:1089–1098

    CAS  Google Scholar 

  • Peña J, Duckworth OW, Bargar JR, Sposito G (2007) Dissolution of hausmannite (Mn3O4) in the presence of the trihydroxamate siderophore desferrioxamine B. Geochim Cosmochim Acta 71:5661–5671

    Google Scholar 

  • Perez J, Jeffries TW (1992) Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl Environ Microbiol 58:2402–2409

    PubMed  CAS  Google Scholar 

  • Piggot PJ (1996) Spore development in Bacillus subtilis. Curr Opin Genet Dev 6:531–537

    PubMed  CAS  Google Scholar 

  • Reddy CA, D’Souza TM (1994) Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev 13:137–152

    PubMed  CAS  Google Scholar 

  • Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI (2007) A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. Environ Microbiol 9:944–953

    PubMed  CAS  Google Scholar 

  • Rosson RA, Tebo BM, Nealson KH (1984) Use of poisons in the determination of microbial manganese binding rates in seawater. Appl Environ Microbiol 47:740–745

    PubMed  CAS  Google Scholar 

  • Ryden LG, Hunt LT (1993) Evolution of protein complexity: the blue copper-containing oxidases and related proteins. J Mol Evol 36:41–66

    PubMed  CAS  Google Scholar 

  • Sakurai T, Kataoka K (2007) Structure and function of type I copper in multicopper oxidases. Cell Mol Life Sci 64:2642–2656

    PubMed  CAS  Google Scholar 

  • Saratovsky I, Wightman PG, Pasten PA, Gaillard J-F, Poeppelmeier KR (2006) Manganese oxides: parallels between abiotic and biotic structures. J Am Chem Soc 128:11188–11198

    PubMed  CAS  Google Scholar 

  • Schippers A, Neretin LN, Lavik G, Leipe T, Pollehne F (2005) Manganese(II) oxidation driven by lateral oxygen intrusions in the western Black Sea. Geochim Cosmochim Acta 69:2241–2252

    CAS  Google Scholar 

  • Schlosser D, Hofer C (2002) Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl Environ Microbiol 68:3514–3521

    PubMed  CAS  Google Scholar 

  • Schweisfurth R (1973) Manganoxydierende bakterien I. Isolierung und bestimmung einiger stamme von manganbakterien. Z Allg Mikrobiol 13:341–347

    PubMed  CAS  Google Scholar 

  • Siering PL, Ghiorse WC (1997) PCR detection of a putative manganese oxidation gene mofA in environmental samples and assessment of mofA gene homology among diverse manganese-oxidizing bacteria. Geomicrobiol J 14:109–125

    CAS  Google Scholar 

  • Sly LI, Arunpairojana V, Dixon DR (1990) Binding of colloidal MnO2 by extracellular polysaccharides of Pedomicrobium manganicum. Appl Environ Microbiol 56:2791–2794

    PubMed  CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2606

    PubMed  CAS  Google Scholar 

  • Spiro TG, Bargar JR, Sposito G, Tebo BM (2010) Bacteriogenic manganese oxides. Acc Chem Res 43:2–9

    Google Scholar 

  • Stone AT (1987) Reductive dissolution of manganese(III/IV) oxides by substituted phenols. Environ Sci Technol 21:979–988

    PubMed  CAS  Google Scholar 

  • Stone AT, Morgan JJ (1984) Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. 2. Survey of the reactivity of organics. Environ Sci Technol 18:617–624

    PubMed  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1988) Effect of sunlight on redox cycles of manganese in the southwestern Sargasso Sea. Deep-Sea Res 35:1297–1317

    CAS  Google Scholar 

  • Sunda WG, Kieber DJ (1994) Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates. Nature 367:62–64

    CAS  Google Scholar 

  • Sunda WG, Huntsman SA, Harvey GR (1983) Photoreduction of manganese oxides in seawater and its geochemical and biological implications. Nature 301:234–236

    CAS  Google Scholar 

  • Takeda M, Kamagata Y, Ghiorse WC, Hanada S, Koizumi J (2002) Caldimonas manganoxidans gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading, manganese-oxidizing thermophile. Int J Syst Evol Microbiol 52:895–900

    PubMed  CAS  Google Scholar 

  • Tebo BM (1991) Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep-Sea Res 38:S883–S905

    Google Scholar 

  • Tebo BM, Emerson S (1985) Effect of oxygen tension, Mn(II) concentration, and temperature on the microbially catalyzed Mn(II) oxidation rate in a marine fjord. Appl Environ Microbiol 50:1268–1273

    PubMed  CAS  Google Scholar 

  • Tebo BM, Nealson KH, Emerson S, Jacobs L (1984) Microbial mediation of Mn(II) and Co(II) precipitation at the O2/H2S interfaces in 2 anoxic fjords. Limnol Oceanogr 29:1247–1258

    CAS  Google Scholar 

  • Tebo BM, Bargar JR, Clement B, Dick G, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328

    CAS  Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428

    PubMed  CAS  Google Scholar 

  • Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol J 22:127–139

    CAS  Google Scholar 

  • Trouwborst RE, Clement BG, Tebo BM, Glazer BT, Luther GW III (2006) Soluble Mn(III) in suboxic zones. Science 313:1955–1957

    PubMed  CAS  Google Scholar 

  • van Veen WL, Mulder EG, Deinema MH (1978) The Sphaerotilus-Leptothrix group of bacteria. Microbiol Rev 42:329–356

    PubMed  Google Scholar 

  • van Waasbergen LG, Hoch JA, Tebo BM (1993) Genetic analysis of the marine manganese-oxidizing Bacillus sp. strain SG-1: protoplast transformation, Tn917 mutagenesis, and identification of chromosomal loci involved in manganese oxidation. J Bacteriol 175:7594–7603

    PubMed  Google Scholar 

  • van Waasbergen LG, Hildebrand M, Tebo BM (1996) Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. J Bacteriol 178:3517–3530

    PubMed  Google Scholar 

  • Villalobos M, Toner B, Bargar J, Sposito G (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67:2649–2662

    CAS  Google Scholar 

  • Villalobos M, Lanson B, Manceau A, Toner B, Sposito G (2006) Structural model for the biogenic Mn oxide produced by Pseudomonas putida. Am Mineral 91:489–502

    CAS  Google Scholar 

  • Wang Y, Stone AT (2008) Phosphonate- and carhoxylate-based chelating agents that solubilize (hydr)oxide-bound Mn-III. Environ Sci Technol 42:4397–4403

    PubMed  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695

    PubMed  CAS  Google Scholar 

  • Webb SM, Bargar JR, Tebo BM (2005a) Structural Characterization of biogenic manganese oxides produced in sea water by the marine Bacillus sp. strain SG-1. Am Mineral 90:1342–1357

    CAS  Google Scholar 

  • Webb SM, Dick GJ, Bargar JR, Tebo BM (2005b) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Proc Natl Acad Sci USA 102:5558–5563

    PubMed  CAS  Google Scholar 

  • Webb SM, Tebo BM, Bargar JR (2005c) Structural influences of sodium and calcium ions on the biogenic manganese oxides produced by the marine Bacillus sp., strain SG-1. Geomicrobiol J 22:181–193

    CAS  Google Scholar 

  • Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Umlauf L (2007) Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem 107:388–310

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding for our research from the National Science Foundation (MCB-0630355 and OCE-0221500), the NSF Science and Technology Center for Coastal Margins Observation and Prediction (CMOP; OCE 0424602) and grant number P42ES010337 from the National Institute of Environmental Health Sciences (NIEHS). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NSF or NIEHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley M. Tebo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Tebo, B.M., Geszvain, K., Lee, SW. (2010). The Molecular Geomicrobiology of Bacterial Manganese(II) Oxidation. In: Barton, L., Mandl, M., Loy, A. (eds) Geomicrobiology: Molecular and Environmental Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9204-5_13

Download citation

Publish with us

Policies and ethics