Skip to main content

Microfluidic Lab-on-a-Chip Devices for Biomedical Applications

  • Conference paper
  • First Online:
Microfluidics Based Microsystems

Abstract

Microfluidics is key to miniaturize bio-chemical and biomedical methods and processes into chip based technology. Basics of electrokinetic microfluidics will be reviewed first. Three types of lab-on-a-chip devices, PCR lab-on-a-chip, flow cytometer lab-on-a-chip and immunoassay lab-on-a-chip are discussed here. The working principle, key microfluidic processes and the current status of these lab-on-a-chip devices are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dongqing Li, “Electrokinetics in Microfluidics”, Academic, London, 2004.

    Google Scholar 

  2. G. Hu, Q. Xiang, R. Fu, B. Xu, R. Venditti, and D. Li, Electrokinetically controlled real-time PCR in microchannel using Joule heating effect. Analytica Chimica Acta, 557, 146–151 (2006).

    Article  Google Scholar 

  3. Y. Liu, C. B. Rauch, R. L. Stevens, R. Lenigk, J. Yang, D. B. Rhine, and P. Grodzinski, DNA amplification and hybridization assays in integrated plastic monolithic devices, Analytical Chemistry, 74, 3063 (2002).

    Article  Google Scholar 

  4. Y. C. Lin, C. Yang, and M. Y. Huang, Simulation and experimental validation of micro polymerase chain reaction chips, Sensors and Actuators B: Chemical, 71, 127 (2000).

    Article  Google Scholar 

  5. H. Nagai, Y. Murakami, K. Yokoyama, E. Tamiya, and Y. Morita, Development of microchamber array for picoliter PCR. Analytical Chemistry, 73, 1043 (2001).

    Article  Google Scholar 

  6. Y. Matsubara, K. Kerman, M. Kobayashi, S. Yamamura, Y. Morita, Y. Takamura, and E. Tamiya, On-chip nanoliter-volume multiplex TaqMan polymerase chain reaction from a single copy based on counting fluorescence released microchambers. Analytical Chemistry, 76, 6434 (2004).

    Article  Google Scholar 

  7. M. U. Kopp, A. Mello, and A. Manz, Chemical amplification: continuous-flow PCR on a chip, Science 280, 1046 (1998).

    Article  ADS  Google Scholar 

  8. Schneegass, R. Brautigam, and J. M. Kohler, Miniaturized flow through PCR with different temperature types in a silicon chip thermocycler. Lab on a Chip, 1, 42–9 (2001).

    Article  Google Scholar 

  9. P. J. Obeid, T. K. Christopoulos, H. J. Crabtree, and C. J. Backhouse, Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription polymerase chain reaction with cycle number selection, Analytical Chemistry, 75, 288 (2003).

    Article  Google Scholar 

  10. M. Hashimoto, P. C. Chen, M. W. Mitchell, D. E. Nikitopoulos, S. A. Soper, and M. C. Murphy, Rapid PCR in a continuous flow device, Lab on a Chip 4, 638 (2004).

    Article  Google Scholar 

  11. J. Liu, M. Enzelberger, and S. Quake, A nanoliter rotary device for polymerase chain reaction, Electrophoresis, 23, 1531 (2002).

    Article  Google Scholar 

  12. K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, A heater-integrated transparent microchannel chip for continuous flow PCR, Sensors and Actuators B: Chemical, 84, 283 (2002).

    Article  Google Scholar 

  13. Q. Xiang, B. Xu, and D. Li, Miniature real time PCR on chip with multi-channel fiber optical fluorescence detection module, Biomedical Microdevices, 9, 443–449 (2007).

    Article  Google Scholar 

  14. Q. Xiang, B. Xu, R. Fu, and D. Li, Real Time PCR on Disposable PDMS chip with a miniaturized thermal cycler, Biomedical Microdevices, 7, 273–279 (2005).

    Article  Google Scholar 

  15. Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos. PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes. Sensors and Actuators B: Chemical, 98, 356–367 (2004).

    Google Scholar 

  16. L. M. Fu, R. J. Yang, C. H. Lin, Y. J. Pan, and G. B. Lee, Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Analytica Chimica Acta, 507, 163–169 (2004).

    Article  Google Scholar 

  17. Q. Xiang, X. Xuan, B. Xu, and D. Li, Multi-functional particle detection with embedded optical fibers in a poly(dimethylsiloxane) chip, Instrumentation Science & Technology, 33, 597–607 (2005).

    Article  ADS  Google Scholar 

  18. X. Wu, Y. Kang, Y. N. Wang, D. Xu, Deyu Li, and Dongqing Li, Microfluidic differential resistive pulse sensor, Electrophoresis, 29, 2754–2759 (2008).

    Google Scholar 

  19. X. Wu, C. Chon, Y. Kang, Y. Wang, and D. Li, Simultaneous particle counting and detecting on a chip, Lab-on-Chip, 8, 1943–1949 (2008).

    Article  Google Scholar 

  20. Y. Kang, X. Wu, Y. Wang, and D. Li, On-chip fluorescence-activated particle counting and sorting system, Analytica Chimica Acta, 626, 97–103 (2008).

    Article  Google Scholar 

  21. Y. N. Wang, Y. Kang, D. Xu, L. Barnett, S. A. Kalams, Deyu Li, and Dongqing Li, On-chip total counting and percentage determination of CD4+ T lymphocytes, Lab-Chip, 8, 309–315 (2008).

    Article  Google Scholar 

  22. D. L. Stokes, G. D. Griffin, and T. Vo-Dinh, Detection of E. coli using a microfluidics-based antibody biochip detection system, Fresenius Journal of Analytical Chemistry, 369, 295–301 (2001).

    Article  Google Scholar 

  23. Dodge, K. Fluri, E. Verpoorte, and N. F. de Rooij, Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays, Analytical Chemistry, 73, 3400–3409.

    Google Scholar 

  24. S. K. Sia, V. Linder, B. A. Parviz, A. Siegel, and G. M. Whitesides, An integrated approach to a portable and low-cost immunoassay for resource-poor settings, Angewandte Chemie-International Edition, 43, 498–502 (2004).

    Article  Google Scholar 

  25. E. P. Kartalov, J. F. Zhong, A. Scherer, S. R. Quake, C. R. Taylor, and W. F. Anderson, High-throughput multi-antigen microfluidics fluorescence immunoassays, BioTechniques, 40, 85–90 (2006).

    Article  Google Scholar 

  26. Y. Gao, F. Lin, G. Hu, P. Sherman, and D. Li, Development of a novel electrokinetically-driven microfluidic immunoassay for detection of Helicobacter pylori, Analytica Chimica Acta, 543, 109–116 (2005).

    Article  Google Scholar 

  27. G. Hu, Y. Gao, P. Sherman, and D. Li, A Microfluidic chip for heterogeneous immunoassay using automatic electrokinetical control, Microfluidics and Nanofluidics, 1, 346–355 (2005).

    Article  Google Scholar 

  28. Y. Gao, G. Hu, P. Sherman, and D. Li, An automatic electrokinetically- controlled immunoassay lab-on-a-chip for simultaneous detection of multiple microbial antigens, Biomed Microdevices, 7, 301–312 (2005).

    Article  Google Scholar 

  29. Y. Gao, P. Sherman, Y. Sun, and D. Li, A multiplexed high-throughput electrokinetically-controlled immunoassay for the detection of bacterial antibodies in human serum, Analytica Chimica Acta, 606, 98–107 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Li, D. (2010). Microfluidic Lab-on-a-Chip Devices for Biomedical Applications. In: Kakaç, S., Kosoy, B., Li, D., Pramuanjaroenkij, A. (eds) Microfluidics Based Microsystems. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9029-4_18

Download citation

Publish with us

Policies and ethics