Skip to main content
Book cover

Pseudomonas pp 255–282Cite as

Heavy Metal Resistance in Pseudomonads

  • Chapter
  • First Online:

Abstract

The genomes of pseudomonad`species display a wide variety of adaptive genes which allow them to tolerate heavy metal toxicity. Several resistance systems have been directly characterized by genetic and biochemical tests, whereas other may only be inferred by comparison with the systems encoded in the genomes of other bacteria. This review briefly summarizes the mechanisms of resistance to heavy metals in pseudomonads. For this purpose, metals have been divided into three groups: (i) micronutrient cations that show toxicity (copper, cobalt, nickel, zinc); (ii) nonessential toxic cations (cadmium, lead, mercury, siliver); and (iii) toxic oxyanions (derived from arsenic, chromium, selenium and tellurium). Pseudomonads have evolved two main strategies to cope with heavy metal toxicity: membrane transporters able to efflux toxic ions from the cytoplasm, which include members of the major membrane protein families, and enzymatic redox detoxification pathways, which transform metals to less-toxic forms. Most heavy metal resistance systems in pseudomonads are encoded by complex operons, located on chromosomes or on plasmids, commonly involving delicate regulatory switches functioning at the transcriptional level. The abundance and diversity of genetic determinants conferring metal tolerance in the genomes of pseudomonads may be associated with the varied environments that these versatile bacteria inhabit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cervantes, C. and Silver, S. (1990) Inorganic cation and anion transport systems of Pseudomonas, pp. 359–372. In S. Silver, A.M. Chakrabarty, B. Iglewski and S. Kaplan (eds.), Pseudomonas: biotransformations, pathogenesis and evolving biotechnology. American Society for Microbiology, Washington, DC.

    Google Scholar 

  2. Nies, D.H. and Silver, S. (eds.), (2007) Molecular microbiology of heavy metals. Springer-Verlag, Berlin.

    Google Scholar 

  3. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S.L., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K.S., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E.W., Lory, S. and Olson, M.V. (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959–964.

    Article  CAS  PubMed  Google Scholar 

  4. Nies, D.H. (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27: 313–339.

    Article  CAS  PubMed  Google Scholar 

  5. Nelson, K.E., Weinel, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martins dos Santos, V.A., Fouts, D.E., Gill, S.R., Pop, M., Holmes, M., Brinkac, L., Beanan, M., DeBoy, R.T., Daugherty, S., Kolonay, J., Madupu, R., Nelson, W., White, O., Peterson, J., Khouri, H., Hance, I., Chris Lee, P., Holtzapple, E., Scanlan, D., Tran, K., Moazzez, A., Utterback, T., Rizzo, M., Lee, K., Kosack, D., Moestl, D., Wedler, H., Lauber, J., Stjepandic, D., Hoheisel, J., Straetz, M., Heim, S., Kiewitz, C., Eisen, J.A., Timmis, K.N., Düsterhöft, A., Tümmler, B. and Fraser, C.M. (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799–808.

    Article  CAS  PubMed  Google Scholar 

  6. Cánovas, D., Cases, I. and de Lorenzo, V. (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 5: 1242–1256.

    Article  PubMed  Google Scholar 

  7. Rensing, C. (2005) Form and function in metal-dependent transcriptional regulation: dawn of the enlightenment. J. Bacteriol. 187: 3909–3912.

    Article  CAS  PubMed  Google Scholar 

  8. Helmann, J.D., Soonsanga, S. and Gabriel, S. (2007) Metalloregulators: arbiters of metal sufficiency, pp. 37–71. In D.H. Nies and S. Silver (eds.), Molecular microbiology of heavy metals. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  9. Rensing, C. and Grass, G. (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27: 197–213.

    Article  CAS  PubMed  Google Scholar 

  10. Magnani, D. and Solioz, M. (2007) How bacteria handle copper, pp. 259–285. In D.H. Nies and S. Silver (eds.), Molecular microbiology of heavy metals. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  11. Cooksey, D.A. (1993) Copper uptake and resistance in bacteria. Mol. Microbiol. 7: 1–5.

    Article  CAS  PubMed  Google Scholar 

  12. Cervantes, C. and Gutierrez-Corona, F. (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev. 14: 121–137.

    Article  CAS  PubMed  Google Scholar 

  13. Solioz, M. and Odermatt, A. (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 270: 9217–9221.

    Article  CAS  PubMed  Google Scholar 

  14. Solioz, M. and Stoyanov, J.V. (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol. Rev. 27: 183–195.

    Article  CAS  PubMed  Google Scholar 

  15. Silver, S. and Phung, L.T. (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol. 32: 587–605.

    Article  CAS  PubMed  Google Scholar 

  16. Cooksey, D.A. (1987) Characterization of a copper resistance plasmid conserved in copper-resistant strains of Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol. 53: 454–456.

    CAS  PubMed  Google Scholar 

  17. Bender, C.L. and Cooksey, D.A. (1987) Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato. J. Bacteriol. 169: 470–474.

    CAS  PubMed  Google Scholar 

  18. Cha, J.S. and Cooksey, D.A. (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA 88: 8915–8919.

    Article  CAS  PubMed  Google Scholar 

  19. Grass, G. and Rensing, C. (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 286: 902–908.

    Article  CAS  PubMed  Google Scholar 

  20. Cha, J.S. and Cooksey, D.A. (1993) Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl. Environ. Microbiol. 59: 1671–1674.

    CAS  PubMed  Google Scholar 

  21. Mills, S.D., Lim, C.K. and Cooksey, D.A. (1994) Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain (cop box) in copper-inducible promoters of Pseudomonas syringae. Mol. Gen. Genet. 244: 341–351.

    Article  CAS  PubMed  Google Scholar 

  22. Lim, C.K. and Cooksey, D.A. (1993) Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae. J. Bacteriol. 175: 4492–4498.

    CAS  PubMed  Google Scholar 

  23. Nies, D.H. (1999) Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730–750.

    Article  CAS  PubMed  Google Scholar 

  24. Franke, S., Grass, G., Rensing, C. and Nies, D.H. (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J. Bacteriol. 185: 3804–3812.

    Article  PubMed  CAS  Google Scholar 

  25. Gupta, A., Matsui, K., Lo, J.F. and Silver, S. (1999) Molecular basis for resistance to silver cations in Salmonella. Nat. Med. 5: 183–188.

    Article  CAS  PubMed  Google Scholar 

  26. Rensing, C., Fan, B., Sharma, R., Mitra, B. and Rosen, B.P. (2000) CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97: 652–656.

    Article  CAS  PubMed  Google Scholar 

  27. Coombs, J.M. and Barkay, T. (2005) New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea. Appl. Environ. Microbiol. 71: 7083–7091.

    Article  CAS  PubMed  Google Scholar 

  28. Teitzel, G.M., Geddie, A., De Long, S.K., Kirisits, M.J., Whiteley, M. and Parsek, M.R. (2006) Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J. Bacteriol. 188: 7242–7256.

    Article  CAS  PubMed  Google Scholar 

  29. Hassan, M.T., van der Lelie, D., Springael, D., Römling, U., Ahmed, N. and Mergeay, M. (1999) Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238: 417–425.

    Article  CAS  PubMed  Google Scholar 

  30. Anton, A., Grosse, C., Reissmann, J., Pribyl, T. and Nies, D.H. (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J. Bacteriol. 181: 6876–6881.

    CAS  PubMed  Google Scholar 

  31. Mulrooney, S.B. and Hausinger, R.P. (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol. Rev. 27: 239–261.

    Article  CAS  PubMed  Google Scholar 

  32. Eitinger, T., Suhr, J., Moore, L. and Smith, J.A. (2005) Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 8: 399–405.

    Article  CAS  Google Scholar 

  33. Hausinger, R.P. and Zamble, D.B. (2007) Microbial physiology of nickel and cobalt, pp. 287–320. In D.H. Nies and S. Silver (eds.), Molecular microbiology of heavy metals. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  34. Babich, H. and Stotzky, G. (1983) Toxicity of nickel to microbes: environmental aspects. Adv. Appl. Microbiol. 29: 195–265.

    Article  CAS  PubMed  Google Scholar 

  35. Mergeay, M., Nies, D., Schlegel, H.G., Gerits, J., Charles, P. and Van Gijsegem, F. (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162: 328–334.

    CAS  PubMed  Google Scholar 

  36. Mergeay, M., Monchy, S., Vallaeys, T., Auquier, V., Benotmane, A., Bertin, P., Taghavi, S., Dunn, J., van der Lelie, D. and Wattiez, R. (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27: 385–410.

    Article  CAS  PubMed  Google Scholar 

  37. Liesegang, H., Lemke, K., Siddiqui, R.A. and Schlegel, H.G. (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J. Bacteriol. 175: 767–778.

    CAS  PubMed  Google Scholar 

  38. Grass, G., Grosse, C. and Nies, D.H. (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. J. Bacteriol. 182: 1390–1398.

    Article  CAS  PubMed  Google Scholar 

  39. Tibazarwa, C., Wuertz, S., Mergeay, M., Wyns, L. and van der Lelie, D. (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J. Bacteriol. 182: 1399–1409.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt, T. and Schlegel, H.G. (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J. Bacteriol. 176: 7045–7054.

    CAS  PubMed  Google Scholar 

  41. Nies, D.H., Nies, A., Chu, L. and Silver, S. (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci. USA 86: 7351–7355.

    Article  CAS  PubMed  Google Scholar 

  42. Nies, D.H. (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J. Bacteriol. 177: 2707–2712.

    CAS  PubMed  Google Scholar 

  43. Stahler, F.N., Odenbreit, S., Haas, R., Wilrich, J., van Vliet, A.H., Kusters, J.G., Kist, M. and Bereswill, S. (2006) The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect. Immun. 74: 3845–3852.

    Article  PubMed  CAS  Google Scholar 

  44. Nies, D.H. (1992) CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J. Bacteriol. 174: 8102–8110.

    CAS  PubMed  Google Scholar 

  45. Munkelt, D., Grass, G. and Nies, D.H. (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J. Bacteriol. 186: 8036–8043.

    Article  CAS  PubMed  Google Scholar 

  46. Legatzki, A., Grass, G., Anton, A., Rensing, C. and Nies, D.H. (2003) Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J. Bacteriol. 185: 4354–4361.

    Article  CAS  PubMed  Google Scholar 

  47. Haney, C.J., Grass, G., Franke, S. and Rensing, C. (2005) New developments in the understanding of the cation diffusion facilitator family. J. Ind. Microbiol. Biotechnol. 32: 215–226.

    Article  CAS  PubMed  Google Scholar 

  48. Grass, G., Fan, B., Rosen, B.P., Lemke, K., Schlegel, H.G. and Rensing, C. (2001) NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J. Bacteriol. 183: 2803–2807.

    Article  CAS  PubMed  Google Scholar 

  49. Rodrigue, A., Effantin, G. and Mandrand-Berthelot, M.A. (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J. Bacteriol. 187: 2912–2916.

    Article  CAS  PubMed  Google Scholar 

  50. Iwig, J.S., Rowe, J.L. and Chivers, P.T. (2006) Nickel homeostasis in Escherichia coli - the rcnR-rcnA efflux pathway and its linkage to NikR function. Mol. Microbiol. 62: 252–262.

    Article  CAS  PubMed  Google Scholar 

  51. Koch, D., Nies, D.H. and Grass, G. (2007) The RcnRA (YohLM) system of Escherichia coli: a connection between nickel, cobalt and iron homeostasis. Biometals 20: 759–771.

    Article  CAS  PubMed  Google Scholar 

  52. Dutta, S.J., Liu, J., Stemmler, A.J. and Mitra, B. (2007) Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Biochemistry 46: 3692–3703.

    Article  CAS  PubMed  Google Scholar 

  53. Gupta, A., Kumar, M. and Goel, R. (2004) Bioaccumulation properties of nickel-, cadmium-, and chromium-resistant mutants of Pseudomonas aeruginosa NBRI 4014 at alkaline pH. Biol. Trace Elem. Res. 99: 269–277.

    Article  CAS  PubMed  Google Scholar 

  54. Tripathi, V.N. and Srivastava, S. (2006) Extracytoplasmic storage as the nickel resistance mechanism in a natural isolate of Pseudomonas putida S4. Can. J. Microbiol. 52: 287–292.

    Article  CAS  PubMed  Google Scholar 

  55. Hantke, K. (2005) Bacterial zinc uptake and regulators. Curr. Opin. Microbiol. 8: 196–202.

    Article  CAS  PubMed  Google Scholar 

  56. Blencowe, D.K. and Morby, A.P. (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol. Rev. 27: 291–311.

    Article  CAS  PubMed  Google Scholar 

  57. Rensing, C., Mitra, B. and Rosen, B.P. (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 94: 14326–14331.

    Article  CAS  PubMed  Google Scholar 

  58. Nucifora, G., Chu, L., Misra, T.K. and Silver, S. (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86: 3544–3548.

    Article  CAS  PubMed  Google Scholar 

  59. Rensing, C. and Mitra, B. (2007) Zinc, cadmium, and lead resistance and homeostasis, pp. 321–341. In D.H. Nies and S. Silver (eds.), Molecular microbiology of heavy metals. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  60. Brocklehurst, K.R., Hobman, J.L., Lawley, B., Blank, L., Marshall, S.J., Brown, N.L. and Morby, A.P. (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31: 893–902.

    Article  CAS  PubMed  Google Scholar 

  61. Binet, M.R.B. and Poole, R.K. (2000) Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. FEBS Lett. 473: 67–70.

    Article  CAS  PubMed  Google Scholar 

  62. Grass, G., Fan, B., Rosen, B.P., Franke, S., Nies, D.H. and Rensing, C. (2001) ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J. Bacteriol. 183: 4664–4667.

    Article  CAS  PubMed  Google Scholar 

  63. Rossbach, S., Wilson, T.L., Kukuk, M.L. and Carty, H.A. (2000) Elevated zinc induces siderophore biosynthesis genes and a zntA-like gene in Pseudomonas fluorescens. FEMS Microbiol. Lett. 191: 61–70.

    Article  CAS  PubMed  Google Scholar 

  64. Choudhury, R. and Srivastava, S. (2001) Mechanism of zinc resistance in Pseudomonas putida strain S4. World J. Microbiol. Biotechnol. 17: 149–153.

    Article  CAS  Google Scholar 

  65. Olafson, R.W., McCubbin, W.D. and Kay, C.M. (1988) Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem. J. 251: 691–699.

    CAS  PubMed  Google Scholar 

  66. Huckle, J.W., Morby, A.P., Turner, J.S. and Robinson, N.J. (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol. Microbiol. 7: 177–187.

    Article  CAS  PubMed  Google Scholar 

  67. Robinson, N.J., Whitehall, S.K. and Cavet, J.S. (2001) Microbial metallothioneins. Adv. Microb. Physiol. 44: 183–213.

    Article  CAS  PubMed  Google Scholar 

  68. Blindauer, C.A., Harrison, M.D., Robinson, A.K., Parkinson, J.A., Bowness, P.W., Sadler, P.J. and Robinson, N.J. (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol. Microbiol. 45: 1421–1432.

    Article  CAS  PubMed  Google Scholar 

  69. Rensing, C., Sun, Y., Mitra, B. and Rosen, B.P. (1998) Pb(II)-translocating P-type ATPases. J. Biol. Chem. 273: 32614–32617.

    Article  CAS  PubMed  Google Scholar 

  70. Rensing, C., Ghosh, M. and Rosen, B.P. (1999) Families of soft-metal-ion-transporting ATPases. J. Bacteriol. 181: 5891–5897.

    CAS  PubMed  Google Scholar 

  71. Tsai, K.J., Lin, Y.-F., Wong, M.D., Yang, H.H.-C., Fu, H.-L. and Rosen, B.P. (2002) Membrane topology of the pl258 CadA Cd(II)/Pb(II)/Zn(II)-translocating P-type ATPase. J. Bioenerg. Biomembr. 34: 147–156.

    Article  CAS  PubMed  Google Scholar 

  72. Yoon, K.P. and Silver, S. (1991) A second gene in the Staphylococcus aureus cadA cadmium resistance determinant of plasmid p1258. J. Bacteriol. 173: 7636–7642.

    CAS  PubMed  Google Scholar 

  73. Wang, C.L., Michels, P.C., Dawson, S.C., Kitisakkul, S., Baross, J.A., Keasling, J.D. and Clark, D.S. (1997) Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl. Environ. Microbiol. 63: 4075–4078.

    CAS  PubMed  Google Scholar 

  74. Perron, K., Caille, O., Rossier, C., van Delden, C., Dumas, J.L. and Köhler, T. (2004) CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J. Biol. Chem. 279: 8761–8768.

    Article  CAS  PubMed  Google Scholar 

  75. Lee, S.H., Glickmann, E. and Cooksey, D.A. (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl. Environ. Microbiol. 67: 1437–1444.

    Article  CAS  PubMed  Google Scholar 

  76. Brown, N.L., Stoyanov, J.V., Kidd, S.P. and Hobman, J.L. (2003) The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 27: 145–163.

    Article  CAS  PubMed  Google Scholar 

  77. Leedjarv, A., Ivask, A. and Virta, M. (2008) Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. J. Bacteriol. 190: 2680–2689.

    Article  CAS  PubMed  Google Scholar 

  78. Goldberg, M., Pribyl, T., Juhnke, S. and Nies, D.H. (1999) Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J. Biol. Chem. 274: 26065–26070.

    Article  CAS  PubMed  Google Scholar 

  79. Higham, D.P., Sadler, P.J. and Scawent, M.D. (1986) Cadmium-binding proteins in Pseudomonas putida: Pseudothioneins. Environ. Health Perspect. 65: 5–11.

    Article  CAS  PubMed  Google Scholar 

  80. Borremans, B., Hobman, J.L., Provoost, A., Brown, N.L. and van der Lelie, D. (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J. Bacteriol. 183: 5651–5658.

    Article  CAS  PubMed  Google Scholar 

  81. Taghavi, S., Lesaulnier, C., Monchy, S., Wattiez, R., Mergeay, M. and van der Lelie, D. (2009) Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie van Leeuwenhoek 96: 171–182.

    Google Scholar 

  82. Stanisich, V.A., Bennett, P.M. and Richmond, M.H. (1977) Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid in Pseudomonas aeruginosa. J. Bacteriol. 129: 1227–1233.

    CAS  PubMed  Google Scholar 

  83. Clark, D.L., Weiss, A.A. and Silver, S. (1977) Mercury and organomercurial resistances determined by plasmids in Pseudomonas. J. Bacteriol. 132: 186–196.

    CAS  PubMed  Google Scholar 

  84. Osborn, A.M., Bruce, K.D., Strike, P. and Ritchie, D.A. (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol. Rev. 19: 239–262.

    Article  CAS  PubMed  Google Scholar 

  85. Fox, B. and Walsh, C.T. (1982) Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. J. Biol. Chem. 257: 2498–2503.

    CAS  PubMed  Google Scholar 

  86. Barkay, T., Miller, S.M. and Summers, A.O. (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27: 355–384.

    Article  CAS  PubMed  Google Scholar 

  87. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J. and Natale, D.A. (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform. 4: 41.

    Article  Google Scholar 

  88. Sahlman, L. and Jonsson, B.H. (1992) Purification and properties of the mercuric-ion-binding protein MerP. Eur. J. Biochem. 205: 375–381.

    Article  CAS  PubMed  Google Scholar 

  89. Silver, S. and Hobman, J.L. (2007) Mercury microbiology: resistance systems, environmental aspects, methylation, and human health, pp. 357–370. In D.H. Nies and S. Silver (eds.), Molecular microbiology of heavy metals. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  90. Walsh, C.T., Distefano, M.D., Moore, M.J., Shewchuk, L.M. and Verdine, G.L. (1988) Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. FASEB J. 2: 124–130.

    CAS  PubMed  Google Scholar 

  91. Kiyono, M. and Pan-Hou, H. (1999) The merG gene product is involved in phenylmercury resistance in Pseudomonas strain K-62. J. Bacteriol. 181: 726–730.

    CAS  PubMed  Google Scholar 

  92. Stolz, J.F. and Oremland, R.S. (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23: 615–627.

    Article  CAS  PubMed  Google Scholar 

  93. Parvatiyar, K., Alsabbagh, E.M., Ochsner, U.A., Stegemeyer, M.A., Smulian, A.G., Hwang, S.H., Jackson, C.R., McDermott, T.R. and Hassett, D.J. (2005) Global analysis of cellular factors and responses involved in Pseudomonas aeruginosa resistance to arsenite. J. Bacteriol. 187: 4853–4864.

    Article  CAS  PubMed  Google Scholar 

  94. Bhattacharjee, H. and Rosen, B.P. (2007) Arsenic metabolism in prokaryotic and eukaryotic microbes, pp. 371–406. In D.H. Nies and S. Silver (eds.), Molecular microbiology of heavy metals. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  95. Pontius, F.W., Brown, K.G. and Chen, C.J. (1994) Health implications of arsenic in drinking water. J. Am. Water Works Assoc. 86: 52–63.

    CAS  Google Scholar 

  96. Rosen, B.P. (2002) Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp. Biochem. Physiol. A 133: 689–693.

    Article  Google Scholar 

  97. Rosen, B.P. (1999) Families of arsenic transporters. Trends Microbiol. 7: 207–212.

    Article  CAS  PubMed  Google Scholar 

  98. Diorio, C., Cai, J., Marmor, J., Shinder, R. and Dubow, M.S. (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in Gram-negative bacteria. J. Bacteriol. 177: 2050–2056.

    CAS  PubMed  Google Scholar 

  99. Jackson, C.R. and Dugas, S.L. (2003) Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. BMC Evol. Biol. 3: 18.

    Article  PubMed  Google Scholar 

  100. Prithivirajsingh, S., Mishra, S.K. and Mahadevan, A. (2001) Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Mol. Biol. Rep. 28: 63–72.

    Article  CAS  PubMed  Google Scholar 

  101. Neyt, C., Iriarte, M., Thi, V.H. and Cornelis, G.R. (1997) Virulence and arsenic resistance in Yersiniae. J. Bacteriol. 179: 612–619.

    CAS  PubMed  Google Scholar 

  102. Silver, S. and Phung, L.T. (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71: 599–608.

    Article  CAS  PubMed  Google Scholar 

  103. Abdrashitova, S.A., Abdulline, G.G. and Ilyaletdinov, A.N. (1986) Role of arsenites in lipid peroxidation in Pseudomonas putida cells oxidizing arsenite. Mikrobiologiya 55: 212–216.

    CAS  Google Scholar 

  104. Abdrashitova, S.A., Mynbaeva, B.N., Aidarkhanov, B.B. and Ilyaletdinov, A.N. (1990) Effect of arsenite on lipid peroxidation and on activity of antioxidant enzymes in arsenite-oxidizing microorganisms. Mikrobiologiya 59: 234–240.

    CAS  Google Scholar 

  105. Cervantes, C. and Campos-García, J. (2007) Reduction and efflux of chromate by bacteria, pp. 407–420. In D.H. Nies and S. Silver (eds.), Molecular microbiology of heavy metals. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  106. Ramírez-Díaz, M.I., Díaz-Pérez, C., Vargas, E., Riveros-Rosas, H., Campos-García, J. and Cervantes, C. (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21: 321–332.

    Article  PubMed  CAS  Google Scholar 

  107. Nies, D.H., Koch, S., Wachi, S., Peitzsch, N. and Saier, M.H., Jr. (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J. Bacteriol. 180: 5799–5802.

    CAS  PubMed  Google Scholar 

  108. Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J.C. and Moreno-Sánchez, R. (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25: 335–347.

    Article  CAS  PubMed  Google Scholar 

  109. Cervantes, C., Ohtake, H., Chu, L., Misra, T.K. and Silver, S. (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J. Bacteriol. 172: 287–291.

    CAS  PubMed  Google Scholar 

  110. Jimenez-Mejia, R., Campos-Garcia, J. and Cervantes, C. (2006) Membrane topology of the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 262: 178–184.

    Article  CAS  PubMed  Google Scholar 

  111. Alvarez, A.H., Moreno-Sánchez, R. and Cervantes, C. (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J. Bacteriol. 181: 7398–7400.

    CAS  PubMed  Google Scholar 

  112. Pimentel, B.E., Moreno-Sánchez, R. and Cervantes, C. (2002) Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiol. Lett. 212: 249–254.

    Article  CAS  PubMed  Google Scholar 

  113. Nies, A., Nies, D.H. and Silver, S. (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J. Biol. Chem. 265: 5648–5653.

    CAS  PubMed  Google Scholar 

  114. Aguilar-Barajas, E., Paluscio, E., Cervantes, C. and Rensing, C. (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol. Lett. 285: 97–100.

    Article  CAS  PubMed  Google Scholar 

  115. Branco, R., Chung, A.P., Johnston, T., Gurel, V., Morais, P. and Zhitkovich, A. (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J. Bacteriol. 190: 6996–7003.

    Article  CAS  PubMed  Google Scholar 

  116. Aguilera, S., Aguilar, M.E., Chavez, M.P., Lopez-Meza, J.E., Pedraza-Reyes, M., Campos-Garcia, J. and Cervantes, C. (2004) Essential residues in the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 232: 107–112.

    Article  CAS  PubMed  Google Scholar 

  117. Díaz-Pérez, C., Cervantes, C., Campos-García, J., Julián-Sánchez, A. and Riveros-Rosas, H. (2007) Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. FEBS J. 274: 6215–6227.

    Article  PubMed  CAS  Google Scholar 

  118. Saier, M.H., Jr. (2003) Tracing pathways of transport protein evolution. Mol. Microbiol. 48: 1145–1156.

    Article  CAS  PubMed  Google Scholar 

  119. Tauch, A., Schlüter, A., Bischoff, N., Goesmann, A., Meyer, F. and Pühler, A. (2003) The 79,370-bp conjugative plasmid pB4 consists of an IncP-1β backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene blaNPS-1, and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol. Genet. Genomics 268: 570–584.

    CAS  PubMed  Google Scholar 

  120. Juhnke, S., Peitzsch, N., Hubener, N., Grosse, C. and Nies, D.H. (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch. Microbiol. 179: 15–25.

    Article  CAS  PubMed  Google Scholar 

  121. Horitsu, H., Futo, S., Miyazawa, Y., Ogai, S. and Kawai, K. (1987) Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1. Agric. Biol. Chem. 51: 2417–2420.

    CAS  Google Scholar 

  122. Bopp, L.H. and Erlich, H.L. (1988) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426–431.

    Article  CAS  Google Scholar 

  123. Ishibashi, Y., Cervantes, C. and Silver, S. (1990) Chromium reduction in Pseudomonas putida. Appl. Environ. Microbiol. 56: 2268–2270.

    CAS  PubMed  Google Scholar 

  124. Park, C.H., Keyhan, M., Wielinga, B., Fendorf, S. and Matin, A. (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl. Environ. Microbiol. 66: 1788–1795.

    Article  CAS  PubMed  Google Scholar 

  125. Gonzalez, C.F., Ackerley, D.F., Lynch, S.V. and Matin, A. (2005) ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J. Biol. Chem. 280: 22590–22595.

    Article  CAS  PubMed  Google Scholar 

  126. Llagostera, M., Garrido, S., Guerrero, R. and Barbé, J. (1986) Induction of SOS genes of Escherichia coli by chromium compounds. Environ. Mutagen. 8: 571–577.

    Article  CAS  PubMed  Google Scholar 

  127. Miranda, A.T., González, M.V., González, G., Vargas, E., Campos-García, J. and Cervantes, C. (2005) Involvement of DNA helicases in chromate resistance by Pseudomonas aeruginosa PAO1. Mutat. Res. 578: 202–209.

    Article  CAS  PubMed  Google Scholar 

  128. Rivera, S.L., Vargas, E., Ramírez-Díaz, M.I., Campos-García, J. and Cervantes, C. (2008) Genes related to chromate resistance by Pseudomonas aeruginosa PAO1. Antonie van Leeuwenhoek 94: 299–305.

    Article  CAS  PubMed  Google Scholar 

  129. Taylor, D.E. (1999) Bacterial tellurite resistance. Trends Microbiol. 7: 111–115.

    Article  CAS  PubMed  Google Scholar 

  130. Harrison, J.J.H., Ceri, H., Stremick, C.A. and Turner, R.J. (2004) Biofilm susceptibility to metal toxicity. Environ. Microbiol. 6: 1220–1227.

    Article  CAS  PubMed  Google Scholar 

  131. Turner, R.J. (2001) Tellurite toxicity and resistance in gram negative bacteria. Rec. Res. Dev. Microbiol. 5: 69–77.

    CAS  Google Scholar 

  132. Avazeri, C., Turner, R.J., Pommier, J., Weiner, J.H., Giordano, G. and Vermiglio, A. (1997) Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143: 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  133. Silver, S. and Phung, L.T. (1996) Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50: 753–789.

    Article  CAS  PubMed  Google Scholar 

  134. Bradley, D.E. (1985) Detection of tellurite-resistance determinants in IncP plasmids. J. Gen. Microbiol. 131: 3135–3137.

    CAS  PubMed  Google Scholar 

  135. Hou, Y. and Taylor, D.E. (1994) Incidence of tellurite resistance determinants among plasmids of different incompatibility groups. Plasmid 32: 306–311.

    Article  CAS  PubMed  Google Scholar 

  136. Cournoyer, B., Watanabe, S. and Vivian, A. (1998) A tellurite-resistance genetic determinant from phytopathogenic pseudomonads encodes a thiopurine methyltransferase: evidence of a widely-conserved family of methyltransferases. Biochim. Biophys. Acta 1397: 161–168.

    CAS  PubMed  Google Scholar 

  137. Zawadzka, A.M., Crawford, R.L. and Paszczynski, A.J. (2006) Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces and precipitates selenium and tellurium oxyanions. Appl. Environ. Microbiol. 76: 3119–3129.

    Article  CAS  Google Scholar 

  138. Tremaroli, V., Workentine, M.L., Weljie, A.M., Vogel, H.J., Ceri, H., Viti, C., Tatti, E., Zhang, P., Hynes, A., Turner, R.J. and Zannoni, D. (2008) Metabolomics investigation of bacterial response to metal challenge. Appl. Environ. Microbiol. 75: 719–728.

    Article  PubMed  CAS  Google Scholar 

  139. Turner, R.J., Weiner, J.H. and Taylor, D.E. (1995) The tellurite resistance determinants tehAtehB and klaAklaBtelB have different biochemical requirements. Microbiology 141: 3133–3140.

    Article  CAS  PubMed  Google Scholar 

  140. Turner, R.J., Weiner, J.H. and Taylor, D.E. (1995) Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed in Escherichia coli. Can. J. Microbiol. 41: 92–98.

    Article  CAS  PubMed  Google Scholar 

  141. Turner, R.J., Hou, Y., Weiner, J.H. and Taylor, D.E. (1992) The arsenical ATPase efflux pump mediates tellurite resistance. J. Bacteriol. 174: 3092–3094.

    CAS  PubMed  Google Scholar 

  142. Liu, M., Turner, R.J., Winstone, T.L., Saetre, A., Dyllick-Brenzinger, M., Jickling, G., Tari, L.W., Weiner, J.H. and Taylor, D.E. (2000) Escherichia coli TehB requires S-adenosylmethionine as a cofactor to mediate tellurite resistance. J. Bacteriol. 182: 6509–6513.

    Article  CAS  PubMed  Google Scholar 

  143. Haefeli, C., Franklin, C. and Hardy, K. (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J. Bacteriol. 158: 389–392.

    CAS  PubMed  Google Scholar 

  144. Slawson, R.M., van Dyke, M.I., Lee, H. and Trevors, J.T. (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27: 72–79.

    Article  CAS  PubMed  Google Scholar 

  145. Franke, S. (2007) Microbiology of the toxic noble metal silver, pp. 343–355. In D.H. Nies and S. Silver (eds.), Molecular microbiology of heavy metals. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  146. Silver, S. (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27: 341–353.

    Article  CAS  PubMed  Google Scholar 

  147. Gupta, A., Phung, L.T., Taylor, D.E. and Silver, S. (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147: 3393–3402.

    CAS  PubMed  Google Scholar 

  148. White, J.S., Tobin, J.M. and Cooney, J.J. (1999) Organotin compounds and their interactions with microorganisms. Can. J. Microbiol. 45: 541–554.

    Article  CAS  PubMed  Google Scholar 

  149. Pain, A. and Cooney, J.J. (1998) Characterization of organotin-resistant bacteria from Boston harbor sediments. Arch. Environ. Contam. Toxicol. 35: 412–416.

    Article  CAS  PubMed  Google Scholar 

  150. Inoue, H., Takimura, O., Fuse, H., Murakami, K., Kamimura, K. and Yamaoka, Y. (2000) Degradation of triphenyltin by a fluorescent pseudomonad. Appl. Environ. Microbiol. 66: 3492–3498.

    Article  CAS  PubMed  Google Scholar 

  151. Inoue, H., Takimura, O., Kawaguchi, K., Nitoda, T., Fuse, H., Murakami, K. and Yamaoka, Y. (2003) Tin-carbon cleavage of organotin compounds by pyoverdine from Pseudomonas chlororaphis. Appl. Environ. Microbiol. 69: 878–883.

    Article  CAS  PubMed  Google Scholar 

  152. Jude, F., Arpin, C., Brachet-Castang, C., Capdepuy, M., Caumette, P. and Quentin, C. (2004) TbtABM, a multidrug efflux pump associated with tributyltin resistance in Pseudomonas stutzeri. FEMS Microbiol. Lett. 232: 7–14.

    Article  CAS  PubMed  Google Scholar 

  153. Burton, G.A., Jr., Giddings, T.H., DeBrine, P. and Fall, R. (1987) High incidence of selenite-resistant bacteria from a site polluted with selenium. Appl. Environ. Microbiol. 53: 185–188.

    CAS  PubMed  Google Scholar 

  154. Maiers, D.T., Wichlacz, P.L., Thompson, D.L. and Bruhn, D.F. (1988) Selenate reduction by bacteria from a selenium-rich environment. Appl. Environ. Microbiol. 54: 2591–2593.

    CAS  PubMed  Google Scholar 

  155. Sarret, G., Avoscan, L., Carrière, M., Collins, R., Geoffroy, N., Carrot, F., Covès, J. and Gouget, B. (2005) Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl. Environ. Microbiol. 71: 2331–2337.

    Article  CAS  PubMed  Google Scholar 

  156. Lortie, L., Gould, W.D., Rajan, S., McCready, R.G. and Cheng, K.J. (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl. Environ. Microbiol. 58: 4042–4044.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in authors’ laboratories was funded by Coordinación de Investigación Científica (UMSNH), Consejo Nacional de Ciencia y Tecnología (No. 79190), COECYT (Michoacán), and DGAPA-UNAM (IN:208308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cervantes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Aguilar-Barajas, E., Ramírez-Díaz, M.I., Riveros-Rosas, H., Cervantes, C. (2010). Heavy Metal Resistance in Pseudomonads. In: Ramos, J., Filloux, A. (eds) Pseudomonas. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3909-5_9

Download citation

Publish with us

Policies and ethics