Skip to main content

Photodegradation of Pesticides and Photocatalysis in the Treatment of Water and Waste

  • Chapter
  • First Online:
Applied Photochemistry

Abstract

A brief overview on the main photoprocesses applied to the treatment of water and wastewater is presented. The photodegradation methods that have been applied to the oxidation of organic pollutants are described. A review on advanced oxidation processes (AOP’s) and photooxidation mechanisms in homogeneous and heterogeneous solution is presented and some practical applications discussed. Combinations of biological and chemical treatments are considered to be a good approach to improve the removal efficiencies and reduce costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Commission of the European Communities. Directive of the European Parliament and of the Council on environmental quality standards in the field of water policy and amending. Direc-tive 2000/60/EC. COM (2006) 397 final, Brussels, July 2006

    Google Scholar 

  2. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698

    Article  CAS  Google Scholar 

  3. Burrows HD, Canle M, Santaballa JA, Steenken S (2002) Reaction pathway and mechanisms of photodegradation of pesticides. J Photoch Photob B Biol 67:71–108

    Article  CAS  Google Scholar 

  4. Bielski BHJ, Cabelli DE, Arudi RL (1985) Reactivity of HO2/O2-radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100

    Article  CAS  Google Scholar 

  5. Buxton GV, Greenstock CL, Helman WP, Rosss AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (HO/HO) in aqueous solution. J Phys Chem 17:513–886

    CAS  Google Scholar 

  6. Haag WR, Yao CCD (1992) Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26:1005–1013

    Article  CAS  Google Scholar 

  7. Murov SL, Carmichael I, Hug GL (eds) (1993) Handbook of photochemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  8. Braslavsky SE (2007) Glossary of terms used in photochemistry, 3rd edn. Pure Appl Chem 79:293–465

    Article  CAS  Google Scholar 

  9. Kalynasundaram K, Grätzel M (1993) Photosensitization and photocatalysis using inorganic and organometallic compounds. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  10. Faria J (2008) The heterogeneous photocatalytic process. In: Figueiredo JL, Pereira MM, Faria J (eds) Catalysis from theory to application. Coimbra University Press, Coimbra

    Google Scholar 

  11. Herrmann JM (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 34:49–65

    Article  CAS  Google Scholar 

  12. Katsoulis DE (1998) A survey of applications of polyoxometalates. Chem Rev 98:359–388

    Article  CAS  Google Scholar 

  13. Hill CL, Prosser-McCartha CM (1995) Homogeneous catalysis by transition metal oxygen anion clusters. Coord Chem Rev 143:407–455

    Article  CAS  Google Scholar 

  14. Misono M (1987) Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal Rev Sci Eng 29:269–321

    Article  CAS  Google Scholar 

  15. Papaconstantinou E (1989) Photochemistry of polyoxometallates of molybdenum and tung-sten and/or vanadium. Chem Soc Rev 18:1–31

    Article  CAS  Google Scholar 

  16. Kozhevnikov IV, Kloestra KR, Sinnema A, Zandbergen HW, Van Bekkum H (1996) Study of catalysts comprising heteropoly acid H3PW12O40 supported on MCM-41 molecular sieve and amorphous silica. J Mol Catal A Chem 114:287–298

    Article  CAS  Google Scholar 

  17. Gall RD, Hill CL, Walker JE (1996) Carbon powder and fiber-supported polyoxometalate catalytic materials. Preparation, characterization, and catalytic oxidation of dialkyl sulfides as mustard (HD) analogues. Chem Mater 8:2523–2527

    Article  CAS  Google Scholar 

  18. Sattari D, Hill CL (1993) Catalytic carbon-halogen bond cleavage chemistry by redox-active polyoxometalates. J Am Chem Soc 115:4649–4657

    Article  CAS  Google Scholar 

  19. Mylonas A, Papaconstantinou E (1994) Photocatalytic degradation of chlorophenols to CO2 and HCl with polyoxotungstates in aqueous solution. J Mol Cat 92:261–267

    Article  CAS  Google Scholar 

  20. Mylonas A, Hiskia A, Papaconstantinou E (1996) Contribution to water purification using polyoxometalates. Aromatic derivatives, chloroacetic acids. J Mol Cat A Chem 114:191–200

    Article  CAS  Google Scholar 

  21. Texier I, Giannotti C, Malato S, Richter C, Delaire J (1999) Solar photodegradation of pesticides in water by sodium decatungstate. Catal Today 54:297–307

    Article  CAS  Google Scholar 

  22. Texier I, Delouis J-F, Delaire J, Giannotti C, Plaza P, Martin M (1999) Dynamics of the first excited state of the decatungstate anion studied by subpicosecond laser spectroscopy. Chem Phys Lett 311:139–145

    Article  CAS  Google Scholar 

  23. Tanielian C (1998) Decatungstate photocatalysis. Coord Chem Rev 178–180:1165–1181

    Article  Google Scholar 

  24. Tanielian C, Duffy K, Jones A (1997) Kinetic and mechanistic aspects of photocatalysis by polyoxotungstates: a laser flash photolysis, pulse radiolysis, and continuous photolysis study. J Phys Chem B 101:4276–4282

    Article  CAS  Google Scholar 

  25. Kim S, Yeo J, Choi W (2008) Simultaneous conversion of dye and hexavalent chromium in visible light-illuminated aqueous solution of polyoxometalate as an electron transfer catalyst. Appl Catal B Environ 84:148–155

    Article  CAS  Google Scholar 

  26. Troupis A, Gkika E, Hiskia A, Papaconstantinou E (2006) Photocatalytic reduction of metals using polyoxometallates: recovery of metals or synthesis of metal nanoparticles. C R Chimie 9:851–857

    Article  CAS  Google Scholar 

  27. Lykakis IO, Tanielian C, Orfanopoulos M (2003) Decatungstate photocatalyzed oxidation of aryl alkanols. Electron transfer or hydrogen abstraction mechanism? Org Lett 5:2875–2878

    Article  CAS  Google Scholar 

  28. Troupis A, Triantis TM, Gkika et al (2009) Photocatalytic reductive–oxidative degradation of Acid Orange 7 by polyoxometalates. Appl Catal B Environ 86:98–107

    Article  CAS  Google Scholar 

  29. Hu M, Xu Y (2004) Photocatalytic degradation of textile dye X3B by heteropolyoxometalate acids. Chemosphere 54:431–434

    Article  CAS  Google Scholar 

  30. Rafqah S, Wong Wah Chung P, Forano C, Sarakha M (2008) Photocatalytic degradation of metsulfuron methyl in aqueous solution by decatungstate anions. J Photochem Photobiol A Chem 199:297–302

    Article  CAS  Google Scholar 

  31. Anpo M (2000) Utilization of TiO2 photocatalysts in green chemistry. Pure Appl Chem 72:1265–1270

    Article  CAS  Google Scholar 

  32. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  33. IARC (2006) Titanium dioxide Group 2B, Monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer, World Health Organization, Lyon

    Google Scholar 

  34. Ramsden CS, Smith TJ, Shaw BJ, Handy RD (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle bio-chemical disturbances in the brain. Ecotoxicology 18:939–951

    Article  CAS  Google Scholar 

  35. Herrmann JM (2010) Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal 99:461–468

    Article  CAS  Google Scholar 

  36. Gerischer H (1993) Photocatalytic purification and treatment of water and air. In: Ollis DF, Al-Ekabi H (eds) Photocatalytic purification and treatment of water and air. Elsevier Science, Amsterdam

    Google Scholar 

  37. Nakamura M, Negishi N, Kutsuna S et al (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A Chem 161:205–212

    Article  CAS  Google Scholar 

  38. Wu NL, Lee MS, Pon ZJ, Hsu JZ (2004) Effect of calcination atmosphere on TiO2 photo-catalysis in hydrogen production from methanol/water solution. J Photochem Photobiol A 163:277–280

    Article  CAS  Google Scholar 

  39. Cao YA, Yang WS, Zhang WF et al (2004) Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J Chem 28:218–222

    Article  Google Scholar 

  40. Li FB, Li XZ (2002) Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl Catal A Gen 288:15–27

    Article  Google Scholar 

  41. Venkatachalam N, Palanichamy M, Murugesan V (2007) Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J Mol Catal A Chem 273:177–185

    Article  CAS  Google Scholar 

  42. Yu J, Liu S, Xiu Z et al (2008) Combustion synthesis and photocatalytic activities of Bi3+  doped TiO2 nanocrystals. J Alloy Compd 461:L17–L19

    Article  CAS  Google Scholar 

  43. Liu S, Chen X (2008) A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. J Hazard Mater 152:48–55

    Article  CAS  Google Scholar 

  44. Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516

    Article  CAS  Google Scholar 

  45. Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 Photocatalyst under visible light. Chem Lett 32:364–36519

    Article  CAS  Google Scholar 

  46. Serpone N, Maruthamuthu P, Pichat P et al (1995) Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobiol 85:247–255

    Article  CAS  Google Scholar 

  47. Lin CF, Wu CH, Onn ZN (2008) Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems. J Hazard Mater 154:1033–1039

    Article  CAS  Google Scholar 

  48. Wang W, Serp P, Kalck P, Faria JL (2005) Photocatalytic degradation of phenol on MWNT and Titania composite catalysts prepared by a modified sol-gel method. Appl Catal B Environ 56:305–312

    Article  CAS  Google Scholar 

  49. Wang W, Serp P, Kalck P et al (2008) Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater Res Bull 43:958–967

    Article  CAS  Google Scholar 

  50. Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A Chem 328:8–26

    Article  CAS  Google Scholar 

  51. Schiavello M (ed) (1988) Photocatalysis and environment: trends and applications. Kluwer Academic Pubublishers, Dordrecht

    Google Scholar 

  52. Serpone N, Pelizzetti E (eds) (1989) Photocatalysis, fundamentals and applications. Wiley, New York

    Google Scholar 

  53. Herrmann JM, Guillard C, Pichat P (1993) Heterogeneous photocatalysis: an emerging technology for water treatment. Catal Today 17:7–20

    Article  CAS  Google Scholar 

  54. Guillard C, Disdier J, Herrmann JM et al (1999) Comparison of various Titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol. Catal Today 54:217–228

    Article  CAS  Google Scholar 

  55. Zepp RG, Helz GR, Crosby DG (eds) (1994) Aquatic surface photochemistry. Lewis Publishers, Boca Raton

    Google Scholar 

  56. Jansen F, Van Santen RA (1999) Environmental catalysis. Imperial College Press, London

    Google Scholar 

  57. Mazille F, Schoettl T, Klamerth N et al (2010) Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH. Water Res 44:3029–3038

    Article  CAS  Google Scholar 

  58. Schwarzenbach RP, Escher BI, Fenner K et al (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  Google Scholar 

  59. Pelizzetti E, Minero C, Carlin C et al (1992) Identification of photocatalytic degradation pathways of 2-Cl-S- triazine herbicides and detection of their decomposition intermediates. Chemosphere 24:891–910

    Article  CAS  Google Scholar 

  60. Pelizzetti E, Carlin C, Minero C et al (1992) Degradation pathways of atrazine under solar light and in the presence of TiO2 colloidal particles. Sci Total Environ 123–124:161–169

    Article  Google Scholar 

  61. Minero C, Maurino V, Pelizzetti E (1997) Heterogeneous photocatalytic transformations of s-triazine derivates. Res Chem Interm 23:291–310

    Article  Google Scholar 

  62. Gianturco F, Chiodaroli CM, Bellobono IR et al (1997) Pilot-plant photomineralization of atrazine in aqueous solution, by photocatalytic membranes immobilising titanium dioxide and promoting photocatalysts. Fresenius Environ Bull 6:461–468

    CAS  Google Scholar 

  63. McMurray TA, Dunlop PSM, Byrne JA (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photochem Photobiol A Chem 182:43–51

    Article  CAS  Google Scholar 

  64. Zhanqi G, Shaogui Y, Na T, Cheng S (2007) Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspension. J Hazard Mater 145:424–430

    Article  Google Scholar 

  65. Granados-Oliveros G, Páez-Mozo EA, Ortega FM et al (2009) Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl Catal B Environ 89:448–454

    Article  CAS  Google Scholar 

  66. Wang C, Li J, Mele G et al (2010) The photocatalytic activity of novel, substituted porphyrin/TiO2-based composites. Dyes Pigm 84:183–18920

    Article  CAS  Google Scholar 

  67. Mele G, Del Sole R, Vasapollo G et al (2003) Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine. J Catal 217:334–342

    CAS  Google Scholar 

  68. Wang C, Yang G-M, Li J et al (2009) Novel meso-substituted porphyrins: synthesis, characterization and photocatalytic activity of their TiO2-based composites. Dyes Pigm 80:321–328

    Article  CAS  Google Scholar 

  69. Silva M, Azenha ME, Pereira MM et al (2009) Immobilization of 5,10,15,20-tetrakis-(2-fluorophenyl)porphyrin into MCM-41 and NaY: routes toward photodegradation of pesticides. Pure Appl Chem 81:2025–2033

    Article  CAS  Google Scholar 

  70. Silva M, Azenha ME, Pereira MM et al (2010) Immobilization of halogenated porphyrins and their copper complexes in MCM-41: environmentally friendly photocatalysts for the degradation of pesticides. Appl Catal B Environ 100:1–9

    Article  CAS  Google Scholar 

  71. Mills A, Wang J (1998) Photomineralisation of 4-chlorophenol sensitised by TiO2 thin films. J Photochem Photobiol A Chem 118:53–63

    Article  CAS  Google Scholar 

  72. Herrmann JM, Disdier J, Pichat P et al (1998) TiO2-based solar photocatalytic detoxification of water containing organic pollutants. Case studies of 2,4-dichlorophenoxyacetic acid (2,4-D) and of benzofuran. Appl Catal B Environ 17:15–23

    Article  CAS  Google Scholar 

  73. Wuang KH, Hsieh YH, Chou MY, Chang CY (1998) Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Appl Catal B Environ 21:1–8

    Article  Google Scholar 

  74. Pera-Titus M, Garcia-Molina V, Banos MA et al (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219–256

    Article  CAS  Google Scholar 

  75. Huang DG, Liao SJ, Liu JM et al (2006) Preparation of visible-light responsive N-F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method. J Photochem Photobiol A Chem 184:282–288

    Article  CAS  Google Scholar 

  76. Miranda-García N, Suárez S, Sánchez B et al (2011) Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl Catal B Environ 103:294–301

    Article  Google Scholar 

  77. González LF, Sarria V, Sánchez F (2010) Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/UV. Bioresource Technol 101:3493–3499

    Article  Google Scholar 

  78. Perez M, Torrades F, Doménech X, Peral J (2002) Removal of organic contaminants in pa-per pulp effluents by AOPs: an economic study. J Chem Technol Biotechnol 77:5425–5532

    Google Scholar 

  79. Sun Y, Pignatello JJ (1993) Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV. Environ Sci Technol 27:304–310

    Article  Google Scholar 

  80. Pignatello JJ, Liu D, Huston P (1999) Evidence for an additional oxidant in the photoassisted Fenton reaction. Environ Sci Technol 33:1832–1839

    Article  CAS  Google Scholar 

  81. Kuo WG (1992) Decolorizing dye wastewater with Fenton’s reagent. Water Res 26:881–886

    Article  CAS  Google Scholar 

  82. Lipczynska-Kochany E (1991) Degradation of aqueous nitrophenols and nitrobenzene by means of the Fenton reaction. Chemosphere 22:529–536

    Article  CAS  Google Scholar 

  83. Brand N, Mailhot G, Bolte M (1998) Degradation photoinduced by Fe(III): method of alkylphenol ethoxylates removal in water. Environ Sci Technol 32:2715–2720

    Article  CAS  Google Scholar 

  84. Benkelberg HJ, Warneck P (1995) Photodecomposition of iron (III) hydroxo and sulfato complexes in aqueous solution: wavelength dependence of OH and SO4- quantum yields. J Phys Chem 99:5214–5221

    Article  CAS  Google Scholar 

  85. Malato S, Blanco J, Richter C et al (1997) Low-concentrating CPC collectors for photocatalytic water detoxification: comparison with a medium concentrating solar collector. Water Sci Technol 35:157–164

    CAS  Google Scholar 

  86. Huang YH, Jen HY, Tsai HC, Chen HT (2010) Degradation of phenol using low concentration of ferric ions by the photo-Fenton process. J Taiwan Inst Chem Eng 41:699–704

    Article  CAS  Google Scholar 

  87. Safarzadeh-Amiri A, Bolton JR, Cater SR (1996) The use of iron in advanced oxidation processes. J Adv Oxid Technol 1:1821

    Google Scholar 

  88. Perez M, Torrades F, Garcia Hortal JA, Doménech X, Peral J (2002) Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Appl Catal B Environ 36:63–74

    Article  CAS  Google Scholar 

  89. Preez-Moya M, Graells M, Castells G et al (2010) Characterization of the degradation performance of the sulfamethazine antibiotic by photoFenton process. Water Res 44:2533–2540

    Article  Google Scholar 

  90. Al Momani FA, Shawaqfeha AT, Al-Zoubib H (2010) Comparison of different treatment alternatives for removal of pesticide from water solution. J Chem Technol Biotechnol 85:529–535

    CAS  Google Scholar 

  91. Ballesteros MM, Casas López JL, Oller I et al (2010) A comparative study of different tests for biodegradability enhancement determination during AOP treatment of recalcitrant toxic aqueous solutions. Ecotox Environ Saf 73:1189–1195

    Article  Google Scholar 

  92. Essam T, Aly Amin M, El Tayeb O et al (2007) Sequential photochemical–biological degradation of chlorophenols. Chemosphere 66:2201–2209

    Article  CAS  Google Scholar 

  93. Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B 37:1–15

    Article  CAS  Google Scholar 

  94. Bauer R, Waldner G, Fallmann et al (1999) The photo-fenton reaction and the TiO2/UV process for waste water treatment—novel developments. Catal Today 53:131–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Emília Azenha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Azenha, M.E., Romeiro, A., Sarakha, M. (2013). Photodegradation of Pesticides and Photocatalysis in the Treatment of Water and Waste . In: Evans, R., Douglas, P., Burrow, H. (eds) Applied Photochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3830-2_6

Download citation

Publish with us

Policies and ethics