Skip to main content

Photochemical Materials: Absorbers, Emitters, Displays, Sensitisers, Acceptors, Traps and Photochromics

  • Chapter
  • First Online:
Applied Photochemistry

Abstract

In this chapter we discuss some of the typical materials used in photochemistry. We describe, in general terms, how their suitability for application as absorber, emitter, sensitiser, energy acceptor or quencher, depends on the energy states within the material and the routes of interconversion between these states, and also how suitability as a redox or chemical sensitiser/acceptor/trap is determined by specific chemical reactivities. We describe the application of photochemical principles to the design of light sources and displays, and describe the photochemical principles and applications of photochromics and molecular switches. A table giving the structures, characteristics, and uses, of a number of compounds widely used in photochemistry is provided at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffiths J (1976) Colour and constitution of organic molecules. Academic Press, London

    Google Scholar 

  2. Christie RM (2001) Colour chemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Tilley R (2011) Colour and the optical properties of materials, 2nd edn. Wiley, Chichester

    Google Scholar 

  4. Reinen D, Lindner G–G (1999) The nature of the chalcogen colour centres in ultramarine-type solids. Chem Soc Rev 28:75–84

    Article  CAS  Google Scholar 

  5. Ball P (2002) Bright earth, the invention of colour. Penguin, London

    Google Scholar 

  6. Głowacki ED, Voss G, Leonat L et al (2012) Indigo and tyrian purple—from ancient natural dyes to modern organic semiconductors. Israel J Chem 52:540–551

    Article  CAS  Google Scholar 

  7. Nozik AJ, Beard MC, Luther JM et al (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890

    Article  CAS  Google Scholar 

  8. Cox J (2003) A quantum paintbox. Chem Br 39:21–25

    CAS  Google Scholar 

  9. Booth K, Hill S (1998) The essence of optoelectronics. Prentice Hall, London

    Google Scholar 

  10. Webb AR (2006) Considerations for lighting in the built environment: non-visual effects of light. Energy Build 38:721–727

    Article  Google Scholar 

  11. Lister GG, Lawler JE, Lapatovich WP, Godyak VA (2004) The physics of discharge lamps. Rev Mod Phys 76:541–598

    Article  CAS  Google Scholar 

  12. Leverenz HW (1949) Luminescent solids (phosphors). Science 109:183–195

    Article  CAS  Google Scholar 

  13. Feldmann C, Jüstel T, Ronda C, Schmidt PJ (2003) Inorganic luminescent materials: 100 years of research and applications. Adv Funct Mater 13:511–516

    Article  CAS  Google Scholar 

  14. Levine AK, Palilla FC (1964) New highly efficient red-emitting cathodoluminescent phosphor (YVO4-Eu) for color television. Appl Phys Lett 5:118–120

    Article  CAS  Google Scholar 

  15. Commission Internationale de L’Éclairage (CIE) (1986) Colorimetry. Publication Report No. 15.2, IEC/CIE, Vienna

    Google Scholar 

  16. Fairman HS, Brill MH, Hemmendinger H (1997) How the CIE color-matching functions were derived from Wright-Guild data. Color Res Appl 22:11–23

    Article  Google Scholar 

  17. Jüstel T, Nikol H, Ronda C (1998) New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed 37:3084–3103

    Article  Google Scholar 

  18. Förster T (1959) Transfer mechanisms of electronic excitation. Disc Faraday Soc 27:7–17

    Article  Google Scholar 

  19. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  CAS  Google Scholar 

  20. Bürmen M, Pernuš F, Likar B (2008) LED light sources: a survey of quality-affecting factors and methods for their assessment. Meas Sci Technol 19:122002

    Article  CAS  Google Scholar 

  21. Schadt M (2009) Milestone in the history of field-effect liquid crystal displays and materials. Japan J Appl Phys 48:03B001

    Google Scholar 

  22. Eden JG (2006) Information display early in the 21st century: overview of selected emissive display technologies. Proc IEEE 94:567–574

    Article  CAS  Google Scholar 

  23. Hung LS, Chen CH (2002) Recent progress of organic electroluminescent materials and devices. Mater Sci Eng R 39:143–222

    Article  Google Scholar 

  24. Bamfield P (2001) Chromic phenomena. Royal Society of Chemistry, Cambridge

    Google Scholar 

  25. Steranka FM, Bhat J, Collins D et al (2002) High power LEDs—technology status and market applications. Phys Stat Sol (a) 194:380–388

    Article  CAS  Google Scholar 

  26. Dupuis TD, Krames MR (2008) History, development, and applications of high-brightness visible light-emitting diodes. J Lightwave Technol 26:1154–1171

    Article  CAS  Google Scholar 

  27. Holonyak N, Bevacqua SF (1962) Coherent (visible) light emission from Ga(As1−xPx) junctions. Appl Phys Lett 1:82–83

    Article  CAS  Google Scholar 

  28. Nakamura S, Mukai T, Senoh M (1994) Candela-class high brightness InGaN/AlGaN double heterostructure blue light emitting diodes. Appl Phys Lett 64:1687–1689

    Article  CAS  Google Scholar 

  29. Ye S, Xiao F, Pan YX et al (2010) Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater Sci Eng R 71:1–34

    Article  CAS  Google Scholar 

  30. Grandjean N (2010) LED light sources (light for the future). J Phys D Appl Phys 43:350301 and following articles

    Google Scholar 

  31. Salbeck J (1996) Electroluminescence with organic compounds. Ber Bunsenges Phys Chem 100:1667–1677

    Article  CAS  Google Scholar 

  32. Tang CW (1982) Organic electroluminescent cell. U.S. Patent Number 4,356,429 (Eastman Kodak Company)

    Google Scholar 

  33. Friend RH, Burroughes JH, Bradley DD (1993) Electroluminescent devices. U.S. Patent Number 5,247,190 (Cambridge Research and Innovation Limited)

    Google Scholar 

  34. Friend RH, Gymer RW, Holmes AB et al (1999) Electroluminescence in conjugated polymers. Nature 397:121–128

    Article  CAS  Google Scholar 

  35. Grimsdale AC, Chan KL, Martin RE et al (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091

    Article  CAS  Google Scholar 

  36. Thompson ME, Burrows PE, Forrest SR (1999) Electrophosphorescence in organic light emitting diodes. Curr Opin Solid State Mater Sci 4:369–372

    Article  Google Scholar 

  37. D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid-state lighting. Adv Mater 16:1585–1595

    Article  CAS  Google Scholar 

  38. Evans RC, Douglas P, Winscom CJ (2006) Coordination complexes exhibiting room temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord Chem Rev 250:2093–2126

    Article  CAS  Google Scholar 

  39. Kamtekar KT, Monkman AP, Bryce MR (2009) Recent advances in white organic light-emitting materials and devices (WOLEDS). Adv Mater 22:572–582

    Article  CAS  Google Scholar 

  40. Liu B, Bazan GC (2004) Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem Mater 16:4467–4476

    Article  CAS  Google Scholar 

  41. Davies ML, Douglas P, Burrows HD et al (2011) Effect of aggregation on the photophysical properties of three fluorene–phenylene-based cationic conjugated polyelectrolytes. J Phys Chem B 115:6885–6892

    Article  CAS  Google Scholar 

  42. Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  CAS  Google Scholar 

  43. Achyuthan KE, Bergstedt TS, Chen L et al (2005) Fluorescence superquenching of conjugated polyelectrolytes: applications for biosensing and drug discovery. J Mater Chem 15:2648–2656

    Article  CAS  Google Scholar 

  44. Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16:4533–4542

    Article  CAS  Google Scholar 

  45. Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. CRC Press, New York

    Google Scholar 

  46. Balzani V, Bolletta F, Scandola F (1980) Vertical and nonvertical energy transfer processes. A general classical treatment. J Am Chem Soc 102:2152–2163

    Article  CAS  Google Scholar 

  47. Lehn J-M (1990) Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed 29:1304–1319

    Article  Google Scholar 

  48. Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reaction of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data 24:663–677

    Article  CAS  Google Scholar 

  49. Wilkinson F, Brummer JG (1981) Rate constants for the decay and reaction of the lowest electronically excited singlet state of molecular oxygen in solution. J Phys Chem Ref Data 10:809–999

    Article  CAS  Google Scholar 

  50. Henbest K, Douglas P, Garley MS, Mills A (1994) Persulphate quenching of the excited state of ruthenium(II) tris-bipyridyl dication: thermal reactions. J Photochem Photobiol A Chem 80:299–305

    Article  CAS  Google Scholar 

  51. Bouas-Laurent H, Dürr H (2001) Organic photochromism (IUPAC technical report). Pure Appl Chem 73:639–665

    Article  CAS  Google Scholar 

  52. Olive AGL, Del Guerzo A, Pozzo J-L, Desvergne J-P (2007) Photoimerization of soluble tetracene derivatives using visible light. J Phys Org Chem 20:838–844

    Article  CAS  Google Scholar 

  53. Hirshberg Y (1950) Photochromie dans la serie de la bianthrone. Compt Rend Acad Sci 231:903–904

    CAS  Google Scholar 

  54. Brown GH (ed) (1971) Photochromism. Wiley-Interscience, New York

    Google Scholar 

  55. Smith GP (1967) Photochromic glasses: properties and applications. J Mater Sci 2:139–152

    Article  CAS  Google Scholar 

  56. Armistead WH, Stookey SD (1964) Photochromic silicate glasses sensitized by silver halides. Science 144:150–154

    Article  CAS  Google Scholar 

  57. Crano JC, Flood T, Knowles D et al (1996) Photochromic compounds: chemistry and application in ophthalmic lenses. Pure Appl Chem 68:1395–1398

    Article  CAS  Google Scholar 

  58. Corns SN, Partington SM, Towns A (2009) Industrial organic photochromic dyes. Color Technol 125:249–261

    Article  CAS  Google Scholar 

  59. Dürr H, Bouas-Laurent H (eds) (1990) Photochromism: molecules and systems. Elsevier, Amsterdam

    Google Scholar 

  60. Crano JC, Guglielmetti RJ (eds) (2001) Organic photochromic and thermochromic compounds, vols 1 and 2. Plenum, New York

    Google Scholar 

  61. Irie M (2000) Photochromism: memories and switches. Chem Rev 100:1683 and following articles

    Google Scholar 

  62. Favaro G, Irie M (eds) (2011) Special issue on photochromism. J Photochem Photobiol C 12:71–236

    Google Scholar 

  63. Wyman GM (1955) The cis-trans isomerization of conjugated compounds. Chem Rev 55:625–657

    Article  CAS  Google Scholar 

  64. Zimerman G, Chow LY, Paik UJ (1958) The photochemical isomerization of azobenzene. J Am Chem Soc 80:3528–3531

    Article  Google Scholar 

  65. Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54

    Article  CAS  Google Scholar 

  66. Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev 100:1755–1776

    Article  CAS  Google Scholar 

  67. Matsuda K, Irie M (2004) Diarylethene as a photoswitching unit. J Photochem Photobiol C 5:169–182

    CAS  Google Scholar 

  68. Yokoyama Y (2000) Fulgides for memories and switches. Chem Rev 100:1717–1739

    Article  CAS  Google Scholar 

  69. Corval A, Kuldová K, Eichen Y et al (1996) Photochromism and thermochromism driven by intramolecular proton transfer in dinitrobenzylpyridine compounds. J Phys Chem 100:19315–19320

    Article  CAS  Google Scholar 

  70. Naumov P (2006) Photochromism of ortho-nitrobenzylpyridines: a brief overview. J Mol Struct 783:1–8

    Article  CAS  Google Scholar 

  71. Irie M, Miyatake O, Uchida K (1992) Blocked photochromism of diarylethenes. J Am Chem Soc 114:8715–8716

    Article  CAS  Google Scholar 

  72. Pina F, Petrov V, Laia CAR (2012) Photochromism of flavylium systems. An overview of a versatile multistate system. Dyes Pigments 92:877–889

    Article  CAS  Google Scholar 

  73. Uchida M, Irie M (1993) Two-photon photochromism of a naphthopyran derivative. J Am Chem Soc 115:6442–6443

    Article  CAS  Google Scholar 

  74. Parthenopoulos DA, Rentzepis PM (1989) Three-dimensional optical storage memory. Science 245:843–845

    Article  CAS  Google Scholar 

  75. Towns A (2012) Olympian colour chemistry. Chem Ind 76:32–35

    Google Scholar 

  76. Wang PY, Wu CJ (1997) Photochromic behavior of some phenoxyanthroquinone dyes in solution and on polyester substrate. Dyes Pigments 35:279–288

    Article  CAS  Google Scholar 

  77. Cheng T, Lin T, Brady R, Wang X (2008) Photochromic fabrics with improved durability and photochromic performance. Fibers Polym 9:521–526

    Article  CAS  Google Scholar 

  78. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38:4–7

    Google Scholar 

  79. Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chem Rev 100:1777–1788

    Article  CAS  Google Scholar 

  80. Tsujioka T, Irie M (1998) Fluorescence readout of near-field photochromic memory. Appl Opt 115:119458–119460

    Google Scholar 

  81. Balzani V, Credi A, Venturi M (2008) Molecular devices and machines. Concepts and perspectives. Wiley-VCH, Weinheim

    Book  Google Scholar 

  82. Natali M, Giordani S (2012) Molecular switches as photocontrollable “smart” receptors. Chem Soc Rev 41:4010–4029

    Article  CAS  Google Scholar 

  83. de Silva AP, McClenaghan ND (2004) Molecular-scale logic gates. Chem Eur J 10:574–586

    Article  CAS  Google Scholar 

  84. http://www.zyvex.com/nanotech/feynman.html. Accessed 25 August 2012

  85. Feringa BL (ed) (2001) Molecular switches. Wiley-VCH, Weinheim

    Google Scholar 

  86. Feringa BL (2001) In control of motion: from molecular switches to molecular motors. Acc Chem Res 34:504–513

    Article  CAS  Google Scholar 

  87. Russew M–M, Hecht S (2010) Photoswitches: from molecules to materials. Adv Mater 22:3348–3360

    Article  CAS  Google Scholar 

  88. Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542–1550

    Article  CAS  Google Scholar 

  89. Leo WR (ed) (1994) Techniques for nuclear and particle physics experiments, 2nd edn. Springer, Berlin

    Google Scholar 

  90. Hepp A, Heil H, Weise W et al (2003) Light-emitting field-effect transistor based on a tetracene thin film. Phys Rev Lett 91:406–410

    Article  CAS  Google Scholar 

  91. Takahashi T, Takenobul T, Takeya J, Iwasa Y (2007) Ambipolar light-emitting transistors of a tetracene single crystal. Adv Funct Mater 17:1623–1628

    Article  CAS  Google Scholar 

  92. Katraro R, Ron A, Speiser S (1979) Photophysical studies of coronene and 1,12-benzperylene. Self-quenching, photoquenching, temperature dependent fluorescence decay and temperature dependent electronic energy transfer to dye acceptors. Chem Phys 42:121–132V

    Article  CAS  Google Scholar 

  93. Glushko V, Thaler MSR, Karp CD (1981) Pyrene fluorescence fine structure as a polarity probe of hydrophobic regions: behavior in model solvents. Arch Biochem Biophys 210:33–42

    Article  CAS  Google Scholar 

  94. Lakowicz JR, Knutson JR (1980) Hindered depolarizing rotations of perylene in lipid bilayers. Detection by lifetime-resolved fluorescence anisotropy measurements. Biochemistry 19:905–911

    Article  CAS  Google Scholar 

  95. Armstrong N, Wightman M, Gross E (2001) Light-emitting electrochemical processes. Annu Rev Phys Chem 52:391–422

    Article  CAS  Google Scholar 

  96. Hoven CV, Garcia A, Bazan GC, Nguyen TQ (2008) Recent applications of conjugated polyelectrolytes in optoelectronic devices. Adv Mater 20:3793–3810

    Article  CAS  Google Scholar 

  97. Vaschetto ME, Monkman AP, Springborg M (1999) First-principles studies of some conducting polymers: PPP, PPy, PPV, PPyV, and PANI. J Mol Struct Theochem 468:181–191

    Article  CAS  Google Scholar 

  98. Rehahn M, Schlüter AD, Wegner G (1990) Soluble poly(para-phenylene)s 3. Variation of the length and the density of the solubilizing side chains. Makromol Chem 191:1991–2003

    Article  CAS  Google Scholar 

  99. Yang Y, Pei Q, Heeger AJ (1996) Efficient blue polymer light-emitting diodes from a series of soluble poly(paraphenylene)s. J Appl Phys 79:934–939

    Article  CAS  Google Scholar 

  100. Burroughes JH, Bradley DDC, Brown AR et al (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541

    Article  CAS  Google Scholar 

  101. Li J, Sun N, Guo ZX et al (2002) Photovoltaic devices with methanofullerenes as electron acceptors. J Phys Chem B 106:11509–11514

    Article  CAS  Google Scholar 

  102. Grüner JF, Hamer P, Friend RH et al (1994) A high efficiency blue-light-emitting diode based on novel ladder poly(p-phenylene)s. Adv Mater 6:748–752

    Article  Google Scholar 

  103. Li Z, Meng H (eds) (2007) Organic light-emitting materials and devices. CRC Press, New York

    Google Scholar 

  104. Takahashi K, Seto K, Yamaguchi T et al (2004) Performance enhancement by blending an electron acceptor in TiO2/polyphenylenevinylene/Au solid-state solar cells. Chem Lett 33:1042–1043

    Article  CAS  Google Scholar 

  105. Yang M, Zhang Q (2004) Organic light emitting diodes based on multi-wall carbon nanotubes (MWNTs) modified electrode. J Mater Sci 39:3777–3778

    Article  CAS  Google Scholar 

  106. Shen F, He F, Lu D et al (2006) Bright and colour stable white polymer light-emitting diodes. Semi Sci Tech 22:L16–L19

    Article  CAS  Google Scholar 

  107. Moses D (1993) High quantum efficiency luminescence from a conducting polymer in solution: a polymer laser dye. Synth Met 55:22–27

    Article  CAS  Google Scholar 

  108. Chen L, McBranch DW, Wang HL et al (1999) Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc Nat Acad Sci USA 96:12287–12292

    Article  CAS  Google Scholar 

  109. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17:345–359

    Article  CAS  Google Scholar 

  110. Scherf U, Neher D (eds) (2008) Polyfluorenes: Advances in Polymer Science. Springer, Berlin

    Google Scholar 

  111. Davies ML, Burrows HD, Morán MC et al (2009) Cationic fluorene-based conjugated polyelectrolytes induce compaction and bridging in DNA. Biomacromolecules 10:2987–2997

    Article  CAS  Google Scholar 

  112. Liu B, Bazan GC (2004) Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem Mater 16:4467–4476

    Article  CAS  Google Scholar 

  113. Garnier F (1998) Field-effect transistors based on conjugated materials. In: Müllen K, Wegner G (eds) Electronic materials: the oligomer approach. Wiley-VCH, Weinheim

    Google Scholar 

  114. Tsiminis G, Ruseckas A, Samuel IDW, Turnbull GA (2009) A two-photon pumped polyfluorene laser. Appl Phys Lett 94:253304-1-253304-3

    Google Scholar 

  115. Price S, Stuart A, Yang L, Zhou H (2011) Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer–fullerene solar cells. J Am Chem Soc 133:4625–4631

    Article  CAS  Google Scholar 

  116. Scheinert S, Doll T, Scherer A et al (2004) Organic field-effect transistors with nonlithographically defined submicrometer channel length. Appl Phys Lett 84:4427–4429

    Article  CAS  Google Scholar 

  117. Landi BJ, Raffaelle RP, Castro SL, Bailey SG (2005) Single-wall carbon nanotube–polymer solar cells. Prog Photovolt Res Appl 13:165–172

    Article  CAS  Google Scholar 

  118. Do H, Reinhard M, Vogeler H et al (2009) Polymeric anodes from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) for 3.5% efficient organic solar cells. Thin Solid Films 517:5900–5902

    Article  CAS  Google Scholar 

  119. Kubin RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Lumin 27:455–462

    Article  Google Scholar 

  120. Casey KG, Quitevis EL (1988) Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols. J Phys Chem 92:6590–6594

    Article  CAS  Google Scholar 

  121. Schäfer FP (1990) Dye lasers, 3rd edn. Springer, Berlin

    Google Scholar 

  122. Duarte FJ, Hillman LW (1990) Dye laser principles. Academic, New York

    Google Scholar 

  123. De Bernardo S, Weigele M, Toome V et al (1974) Studies on the reaction of fluorescamine with primary amines. Arch Biochem Biophys 163:390

    Article  Google Scholar 

  124. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its application. Coord Chem Rev 233–234:351–371

    Google Scholar 

  125. Seybold PG, Gouterman M, Callis J (1969) Calometric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes. Photochem Photobiol 9:229–242

    Article  CAS  Google Scholar 

  126. Johnson I, Spence MTZ, Molecular probes handbook—a guide to fluorescent probes and labelling technologies, 11th edn. Life Technologies, Carlsbad

    Google Scholar 

  127. Noukakis D, Auweraer MV, Toppet S, De Schryver FC (1995) Photophysics of thiacarbocyanine dye in organic solvent. J Phys Chem 99:11860–11866

    Article  CAS  Google Scholar 

  128. Jabbour GE, Wang JF, Peyghambarian N (2002) High-efficiency organic electrophophorescent devices through balance of charge injection. Appl Phys Lett 80:2026–2028

    Article  CAS  Google Scholar 

  129. Barnett GH, Hudson MF, Smith KM (1975) Concerning meso-tetraphenylporphyrin purification. J Chem Soc Perkin Trans 1 1401–1403

    Article  Google Scholar 

  130. Strachan JP, Gentemann S, Seth J et al (1997) Effects of orbital ordering on electronic communication in multiporphyrin arrays. J Am Chem Soc 119:11191–11201

    Article  CAS  Google Scholar 

  131. Baldo MA, O’Brien DF, You Y et al (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Article  CAS  Google Scholar 

  132. Cleave V, Yahioglu G, Barny PL et al (1999) Harvesting singlet and triplet energy in polymer LEDs. Adv Mater 11:285–288

    Article  CAS  Google Scholar 

  133. Whalley M (1961) Conjugated macrocycles. Part XXXII. Absorption spectra of tetrazaporphins and phthalocyanines. Formation of pyridine salts. J Chem Soc 866–869

    Google Scholar 

  134. Tang CW (1986) Two‐layer organic photovoltaic cell. Appl Phys Lett 48:183–185

    Google Scholar 

  135. Pfuetzner S, Meiss J, Petrich A et al (2009) Thick C60:ZnPc bulk heterojunction solar cells with improved performance by film deposition on heated substrates. Appl Phys Lett 94:253303-1–253303-3

    Google Scholar 

  136. Kumar GA, Santhosh C (2003) Spectral studies and radiative characteristics of naphthalocyanine molecules in DMF. Mater Lett 57:2315–2319

    Article  CAS  Google Scholar 

  137. Tang CW, Van Slyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    Article  CAS  Google Scholar 

  138. Hoshi T, Kumagai K, Inoue K et al (2008) Electronic absorption and emission spectra of Alq3 in solution with special attention to a delayed fluorescence. J Lumin 128:1353–1358

    Article  CAS  Google Scholar 

  139. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 335:737–740

    Article  Google Scholar 

  140. Nazeeruddin MK, De Angelis F, Fantacci S et al (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847

    Article  CAS  Google Scholar 

  141. Nazeeruddin MK, Péchy P, Renouard T et al (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624

    Article  CAS  Google Scholar 

  142. Deaton JC, Young RH, Lenhard JR et al (2010) Photophysical properties of the series fac- and mer-(1-phenylisoquinolinato-NC2′)(x)(2-phenylpyridinato-NC2′)3 − x iridium(III) (x = 1–3). Inorg Chem 49:9151–9161

    Article  CAS  Google Scholar 

  143. Fischer H, Baer R, Hany R et al (1990) 2,2-Dimethoxy-2-phenylacetophenone: photochemistry and free radical photofragmentation. J Chem Soc Perkin Trans 2 (5):787–798

    Google Scholar 

  144. Iwamoto S, Kai W, Isogai T et al (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stabil 95:1394–1398

    Article  CAS  Google Scholar 

  145. Kamibayashi M, Oowada S, Kameda H et al (2006) Synthesis and characterization of a practically better DEPMPO-type spin trap, 5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). Free Radic Res 40:1166–1172

    Article  CAS  Google Scholar 

  146. Dambrova M, Baumanea L, Kalvinsha I, Wikberg JES (2000) Improved method for EPR detection of DEPMPO-superoxide radicals by liquid nitrogen freezing. Biochem Biophys Res Commun 275:895–898

    Article  CAS  Google Scholar 

  147. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  148. Zhang XT, Liu YC, Zhi ZZ et al (2002) Temperature dependence of excitonic luminescence from nanocrystalline ZnO films. J Lumin 99:149–154

    Article  CAS  Google Scholar 

  149. Reynolds D, Leies G, Antes L, Marburger R (1954) Photovoltaic effect in cadmium sulfide. Phys Rev 96:533–534

    Article  CAS  Google Scholar 

  150. Bube RH (1955) Temperature dependence of the width of the band gap in several photoconductors. Phys Rev 98:431–433

    Article  CAS  Google Scholar 

  151. Mali SS, Desai SK, Kalagi SS et al (2012) PbS quantum dot sensitized anatase TiO2 nanocorals for quantum dot-sensitized solar cell applications. Dalton Trans 41:6130–6136

    Article  CAS  Google Scholar 

  152. Zhang S, Nakai Y, Tsuboi T et al (2011) The thermal stabilities of luminescence and microstructures of Eu2+-doped KBaPO4 and NaSrPO4 with β-K2SO4 type structure. Inorg Chem 50:2897–2904

    Article  CAS  Google Scholar 

  153. Lu J, Yagi H, Takaichi K et al (2004) 110 W ceramic Nd3+: Y3Al5O12 laser. Appl Phys B 79:25–28

    Article  CAS  Google Scholar 

  154. Vielhaber G, Grether-Beck S, Koch O et al (2006) Sunscreens with an absorption maximum of ≥360 nm provide optimal protection against UVA1-induced expression of matrix metalloproteinase-1, interleukin-1, and interleukin-6 in human dermal fibroblasts. Photochem Photobiol Sci 5:275–282

    Article  CAS  Google Scholar 

  155. Zechmeister L, Polgar A (1943) Cis-trans isomerization and spectral characteristics of carotenoids and some related compounds. J Am Chem Soc 65:1522–1528

    Article  CAS  Google Scholar 

  156. Naguiba YMA, Steel C, Young MA (2001) Decay kinetics of photosensitized triplet crystal violet in acetonitrile. J Photochem Photobiol A-Chem 141:33–38

    Article  Google Scholar 

  157. Tuite EM, Kelly JM (1993) New trends in photobiology: photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J Photochem Photobiol B-Biol 21:103–124

    Article  CAS  Google Scholar 

  158. Pattanaargson S, Munhapol T, Hirunsupachot P, Luangthongaram P (2004) Photoisomerization of octyl methoxycinnamate. J Photochem Photobiol A-Chem 161:269–274

    Article  CAS  Google Scholar 

  159. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:231–2358

    Article  Google Scholar 

  160. Holliman PJ, Davies ML, Connell A et al (2010) Ultra-fast dye sensitisation and co-sensitisation for dye sensitized solar cells. Chem Commun 46:7256–7258

    Article  CAS  Google Scholar 

  161. Ho CJ, Motyka AL, Topp MR (1989) Picosecond time-resolved S2 → S0 fluorescence of xanthione in different fluid solvents. Chem Phys Lett 158:51–59

    Article  CAS  Google Scholar 

  162. Seefeldt B, Kasper R, Beining M et al (2010) Spiropyrans as molecular optical switches. Photochem Photobiol Sci 9:213–220

    Article  CAS  Google Scholar 

  163. Landgraf JK, Braun M, Özçoban C et al (2012) Ultrafast dynamics of a spiropyran in water. J Am Chem Soc 134:14070–14077

    Article  CAS  Google Scholar 

  164. Chibisov AK, Görner H (2001) Photochromism of spirobenzopyranindolines and spironaphthopyranindolines. Phys Chem Chem Phys 3:424–431

    Article  CAS  Google Scholar 

  165. Ercole F, Malic N, Davis TP, Evans RA (2009) Optimizing the photochromic performance of naphthopyrans in a rigid host matrix using poly(dimethylsiloxane) conjugation. J Mater Chem 19:5612–5623

    Article  CAS  Google Scholar 

  166. Gray GW, Kelly SM (1999) Liquid crystals for twisted nematic display devices. J Mater Chem 9:2037–2050

    Google Scholar 

  167. Lumileds Corporation (2004) Luxeon Reliability. Application Brief AB25 11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davies, M.L., Douglas, P., Evans, R.C., Burrows, H.D. (2013). Photochemical Materials: Absorbers, Emitters, Displays, Sensitisers, Acceptors, Traps and Photochromics. In: Evans, R., Douglas, P., Burrow, H. (eds) Applied Photochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3830-2_4

Download citation

Publish with us

Policies and ethics