Skip to main content

Aqueous Phase Reactions Catalysed by Transition Metal Complexes of 7-Phospha-1,3,5-triazaadamantane (PTA) and Derivatives

  • Chapter
  • First Online:
Phosphorus Compounds

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 37))

Abstract

The possibility to run selective catalytic transformations in water has fascinated generations of chemists working in the field of homogenous catalysis. One of the most common approaches has been so far to translate organic phase transition metal complex catalyzed processes into water phase by replacing ancillary ligands such as phosphines with their water soluble analogs. A class of neutral, stable, easy-to-handle and functionally versatile monodentate phosphines is represented by 7-phospha-1,3,5-triazacyclo-[3.3.1.1]decane (PTA) whose application has witnessed a true renaissance in the first decade of the present century after some interest starting from its discovery in 1974. This chapter summarizes the most relevant applications of transition metal complexes of PTA in catalysis, from C=C and C=O bond hydrogenation, to olefin hydroformylation and various C–C and C-element bond forming reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phillips AD, Gonsalvi L, Romerosa A, Vizza F, Peruzzini M (2004) Coordination chemistry of 1,3,5-triaza-7-phosphaadamantane (PTA). Transition metal complexes and related catalytic, medicinal and photo-luminescent applications. Coord Chem Rev 248:955–993

    Article  CAS  Google Scholar 

  2. Bravo J, Bolaño S, Gonsalvi L, Peruzzini M (2010) Coordination chemistry of 1,3,5-triaza-7-phosphaadamantane (PTA) and derivatives. Part II. The quest for tailored ligands, complexes and related applications. Coord Chem Rev 254:555–607

    Article  CAS  Google Scholar 

  3. Daigle DJ, Pepperman AB Jr, Vail SL (1974) Synthesis of a monophosphorus analog of hexamethylenetetramine. J Heterocycl Chem 11:407–408

    Article  CAS  Google Scholar 

  4. Fluck E, Forster JE (1975) 1,3,5-Triaza-7-phosphaadamantan. Chem Zeit 99:246–248

    CAS  Google Scholar 

  5. Daigle DJ (1998) 1,3,5-Triaza-7-phosphatricyclo[3.3.1.13,7]decane and derivatives. Inorg Synth 32:40–45

    Article  CAS  Google Scholar 

  6. Darensbourg DJ, Decuir RJ, Reibenspies JH (1995) In: Horvath IT, Joó F (eds) Aqueous organometallic chemistry and catalysis. Kluwer, Dordrecht, pp 61–80

    Chapter  Google Scholar 

  7. Forward JM, Staples RJ, Liu CW, Fackler JP (1997) Luminescent tris(3-ethyl-1,5-diaza-3-azonia-7-phosphatricyclo[3.3.1.13,7]decane-P)gold(I) tetraiodide trihydrate, [(EtTPA)3Au]I4·3H2O. Acta Cryst C 53:195–197

    Article  Google Scholar 

  8. Fluck E, Förster JE, Weidlein J, Hädicke E (1977) 1,3,5-triaza-7-phosphaadamantan (Mono-phospha-urotropin). Z Naturforsch 32b:499–506

    CAS  Google Scholar 

  9. Forward JM, Staples RJ, Fackler JP Jr (1996) Crystal structure of 1-n-butyliodo-1-azonia-3,5-diaza-7-phosphaadamantane iodide, (C6H12PN3(CH2)4I)I. Z Kristallogr 211:129–130

    Article  CAS  Google Scholar 

  10. Mena-Cruz A, Lorenzo-Luis P, Romerosa A, Saoud M, Serrano-Ruiz M (2007) Synthesis of the water soluble ligands dmPTA and dmoPTA and the complex [RuClCp(HdmoPTA)(PPh3)](OSO2CF3) (dmPTA = N,N′-dimethyl-1,3,5-triaza-7-phosphaadamantane, dmoPTA = 3,7-dimethyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane, HdmoPTA = 3,7-H-3,7-dimethyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane). Inorg Chem 46:6120–6128

    Article  CAS  Google Scholar 

  11. Fluck E, Weissgraber HJ (1977) 7-Methyl-1,3,5-triaza-7-phosphaadamantan-7-ium iodide P-methyl-phospha-urotropinium iodide. Chem Ztg 101:304–307

    CAS  Google Scholar 

  12. Assmann B, Angermaier K, Schmidbaur H (1994) Synthesis, structure and complexes of a new bicyclic N,P-ligand derived from phosphatriazaadamantane. J Chem Soc Chem Commun 941–942

    Google Scholar 

  13. Assmann B, Angermaier K, Paul M, Riede J, Schmidbaur H (1995) Synthesis of 7-alkyl/aryl-1,3,5-triaza-7-phosphonia-adamantane cations and their reductive cleavage to novel n-methyl-p-alkyl/aryl[3.3.1]bicyclononane ligands. Chem Ber 128:891–900

    Article  CAS  Google Scholar 

  14. Kirillov AM, Smoleński P, Haukka M, Guedes da Silva MFC, Pombeiro AJL (2009) Unprecedented metal-free C(sp(3))-C(sp(3)) bond cleavage: switching from N-alkyl- to N-methyl-1,3,5-triaza-7-phosphaadamantane. Organometallics 28:1683–1687

    Article  CAS  Google Scholar 

  15. Krogstad DA, Ellis GS, Gunderson AK, Hammrich AJ, Rudolf JW, Halfen JA (2007) Two new water-soluble derivatives of 1,3,5-triaza-7-phosphaadamantane (PTA): synthesis, characterization, X-ray analysis and solubility studies of 3,7-diformyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane and 1-pyridylmethyl-3,5-diaza-1-azonia-7-phosphatricyclo [3.3.1.1]decane bromide. Polyhedron 26:4093–4100

    Article  CAS  Google Scholar 

  16. Wong GW, Harkreader JL, Mebi CA, Frost BJ (2006) Synthesis and coordination chemistry of a novel bidentate phosphine: 6-(diphenylphosphino)-1,3,5-triaza-7-phosphaadamantane (PTA-PPh2). Inorg Chem 45:6748–6755

    Article  CAS  Google Scholar 

  17. Erlandsson M, Gonsalvi L, Ienco A, Peruzzini M (2008) Diastereomerically enriched analogues of the water soluble phosphine PTA. Synthesis of phenyl-(1,3,5-triaza-7-phosphatricyclo [3.3.1.13,7]dec-6-yl)methanol (PZA) and the Sulfide PZA(S) and X-ray crystal structures of the oxide PZA(O) and [Cp*IrCl2(PZA)]. Inorg Chem 47:8–10

    Article  CAS  Google Scholar 

  18. Wong GW, Lee WC, Frost BJ (2008) Insertion of CO2, ketones, and aldehydes into the C-LI bond of 1,3,5-triaza-7-phosphaadamantan-6-yllithium. Inorg Chem 47:612–620

    Article  CAS  Google Scholar 

  19. Darensbourg DJ, Ortiz CG, Kamplain JW (2004) A new water-soluble phosphine derived from 1,3,5-triaza-7-phosphaadamantane (PTA), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane. Structural, bonding, and solubility properties. Organometallics 23:1747–1754

    Article  CAS  Google Scholar 

  20. Caporali M, Gonsalvi L, Zanobini F, Peruzzini M (2010) Synthesis of the water soluble bidentate (P,N) ligand PTN(Me) [PTN(Me) = 7-phospha-3-methyl-1,3,5-triazabicyclo[3.3.1]nonane]. Inorg Synth 35:96–101

    Google Scholar 

  21. Darensbourg DJ, Robertson JB, Larkins DL, Reibenspies JH (1999) Water-soluble organometallic compounds. 7. Further studies of 1,3,5-triaza-7-phosphaadamantane derivatives of group 10 metals, including metal carbonyls and hydrides. Inorg Chem 38:2473–2478

    Article  CAS  Google Scholar 

  22. Fisher KJ, Alyea EC, Shahnazarian N (1990) A P-NMR study of the water-soluble derivatives of 1,3,5-triaza-7-phosphaadamantane (PTA). Phosphorus Sulfur 48:37–40

    Article  CAS  Google Scholar 

  23. Darensbourg DJ, Joó F, Kannisto M, Kathó A, Reibenspies JH, Daigle DJ (1994) Water-soluble organometallic compounds. 4. Catalytic-hydrogenation of aldehydes in an aqueous 2-phase solvent system using a 1,3,5-triaza-7-phosphaadamantane complex of ruthenium. Inorg Chem 33:200–208

    Article  CAS  Google Scholar 

  24. Darensbourg DJ, Joó F, Kannisto M, Kathó A, Reibenspies JH (1992) Water-soluble organometallic compounds. 2. Catalytic-hydrogenation of aldehydes and olefins by new water-soluble 1,3,5-triaza-7-phosphaadamantane complexes of ruthenium and rhodium. Organometallics 11:1990–1993

    Article  CAS  Google Scholar 

  25. Smolenski P, Pruchnik FP, Ciunik Z, Lis T (2003) New rhodium(III) and ruthenium(II) water-soluble complexes with 3,5-diaza-1-methyl-1-azonia-7-phosphatricyclo [3.3.1.13,7]decane. Inorg Chem 42:3318–3322

    Article  CAS  Google Scholar 

  26. Madrigal CA, García-Fernández A, Gimeno J, Lastra E (2008) Asymmetric transfer hydrogenation of ketones catalyzed by ruthenium(II) complexes bearing a chiral phosphinoferrocenyloxazoline ligand. J Organomet Chem 693:2535–2540

    Article  CAS  Google Scholar 

  27. Dyson PJ, Ellis DJ, Laurenczy G (2003) Minor modifications to the ligands surrounding a ruthenium complex lead to major differences in the way in which they catalyse the hydrogenation of arenes. Adv Synth Catal 345:211–215

    Article  CAS  Google Scholar 

  28. Allardyce CS, Dyson PJ, Ellis DJ, Heath SL (2001) [Ru(η6-p-cymene)Cl2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane): a water soluble compound that exhibits pH dependent DNA binding providing selectivity for diseased cells. Chem Commun 1396–1397

    Google Scholar 

  29. Dyson PJ, Ellis DJ, Henderson W, Laurenczy G (2003) A comparison of ruthenium-catalysed arene hydrogenation reactions in water and 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids. Adv Synth Catal 345:216–221

    Article  CAS  Google Scholar 

  30. Akbayeva DN, Gonsalvi L, Oberhauser W, Peruzzini M, Vizza F, Brüggeller P, Romerosa A, Sava G, Bergamo A (2003) Synthesis, catalytic properties and biological activity of new water soluble ruthenium cyclopentadienyl PTA complexes [(C5R5)Ru(PTA)2Cl] (R = H, Me; PTA = 1,3,5-triaza-7-phosphaadamantane). Chem Commun 264–265

    Google Scholar 

  31. Kovacs G, Rossin A, Gonsalvi L, Lledos A, Peruzzini M (2010) Comparative DFT analysis of ligand and solvent effects on the mechanism of H2 activation in water mediated by half-sandwich complexes [Cp′Ru(PTA)2Cl] (Cp′ = C5H5, C5Me5; PTA = 1,3,5-triaza-7-phosphaadamantane). Organometallics 29:5121–5131

    Article  CAS  Google Scholar 

  32. Bolaño S, Gonsalvi L, Zanobini F, Vizza F, Bertolasi V, Romerosa A, Peruzzini M (2004) Water soluble ruthenium cyclopentadienyl and aminocyclopentadienyl PTA complexes as catalysts for selective hydrogenation of α,β-unsaturated olefins. (PTA = 1,3,5-triaza-7-phosphaadamantane). J Mol Catal A Chem 224:61–70

    Article  CAS  Google Scholar 

  33. Mebi CA, Frost BJ (2005) Effect of pH on the biphasic catalytic hydrogenation of benzylidene acetone using CpRu(PTA)2H. Organometallics 24:2339–2346

    Article  CAS  Google Scholar 

  34. Frost BJ, Mebi CA (2004) Aqueous organometallic chemistry: synthesis, structure, and reactivity of the water-soluble metal hydride CpRu(PTA)2H. Organometallics 23:5317–5323

    Article  CAS  Google Scholar 

  35. Mebi CA, Nair RP, Frost BJ (2007) pH-dependent selective transfer hydrogenation of α,β-unsaturated carbonyls in aqueous media utilizing half-sandwich ruthenium(II) complexes. Organometallics 26:429–438

    Article  CAS  Google Scholar 

  36. Pruchnik FP, Smolenski P, Wajda-Hermanowicz K (1998) Rhodium(I) acetylacetonato complexes with functionalized phosphines. J Organomet Chem 570:63–69

    Article  CAS  Google Scholar 

  37. Pruchnik FP, Smolenski P, Galdecka E, Galdecki Z (1998) New water-soluble rhodium(I) complexes containing 1-methyl-1-azonia-3,5-diaza-7-phosphaadamantane iodide. New J Chem 22:1395–1398

    Article  CAS  Google Scholar 

  38. Darensbourg DJ, Stafford NW, Joó F, Reibenspies JH (1995) Water-soluble organometallic compounds. 5. The regioselective catalytic-hydrogenation of unsaturated aldehydes to saturated aldehydes in an aqueous 2-phase solvent system using 1,3,5-triaza-7-phosphaadamantane complexes of rhodium. J Organomet Chem 488:99–108

    Article  CAS  Google Scholar 

  39. Phillips AD, Bolaño S, Bosquain SS, Daran J-C, Malacea R, Peruzzini M, Poli R, Gonsalvi L (2006) A new class of rhodium(I) κ1-P and κ2-P,N complexes with rigid PTN(R) ligands (PTN = 7-phospha-3-methyl 1,3,5-triazabicyclo[3.3.1]nonane). Organometallics 25:2189–2200

    Article  CAS  Google Scholar 

  40. Csabai P, Joó F (2004) Synthesis and catalytic properties of new water-soluble ruthenium(II)-N-heterocyclic carbene complexes. Organometallics 23:5640–5643

    Article  CAS  Google Scholar 

  41. Laurenczy G, Joó F, Nadasdi L (2000) Towards an easy carbon dioxide reduction in aqueous solution. High Press Res 18:251–255

    Article  Google Scholar 

  42. Joó F, Laurenczy G, Karady P, Elek J, Nadasdi L, Roulet R (2000) Homogeneous hydrogenation of aqueous hydrogen carbonate to formate under mild conditions with water soluble rhodium(I)- and ruthenium(II)-phosphine catalysts. Appl Organomet Chem 14:857–859

    Article  Google Scholar 

  43. Laurenczy G, Joó F, Nadasdi L (2000) Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3 in aqueous solution. Inorg Chem 39:5083–5088

    Article  CAS  Google Scholar 

  44. Bosquain SS, Dorcier A, Dyson PJ, Erlandsson M, Gonsalvi L, Laurenczy G, Peruzzini M (2007) Aqueous phase carbon dioxide and bicarbonate hydrogenation catalysed by cyclopentadienyl ruthenium complexes. Appl Organomet Chem 21:947–951

    Article  CAS  Google Scholar 

  45. Erlandsson M, Landaeta VR, Gonsalvi L, Peruzzini M, Phillips AD, Dyson PJ, Laurenczy G (2008) Methylcyclopentadienyl iridium PTA complexes and their application in catalytic water phase carbon dioxide hydrogenation (PTA = 1,3,5-triaza-7-phosphaadamantane). Eur J Inorg Chem 620–627

    Google Scholar 

  46. Laurenczy G, Jedner S, Alessio E, Dyson PJ (2007) In situ NMR characterisation of an intermediate in the catalytic hydrogenation of CO2 and HCO3 in aqueous solution. Inorg Chem Commun 10:558–562

    Article  CAS  Google Scholar 

  47. Legrand FX, Hapiot F, Tilloy S, Guerriero A, Peruzzini M, Gonsalvi L, Monflier E (2009) Aqueous rhodium-catalyzed hydroformylation of 1-decene in the presence of randomly methylated β-cyclodextrin and 1,3,5-triaza-7-phosphaadamantane derivatives. Appl Catal A Gen 362:62–66

    Article  CAS  Google Scholar 

  48. Shaughnessy KH (2009) Hydrophilic ligands and their application in aqueous-phase metal-catalyzed reactions. Chem Rev 109:643–710

    Article  CAS  Google Scholar 

  49. Xu X, Wang C, Zhou Z, Tang X, He Z, Tang C (2007) The aza-Morita–Baylis–Hillman reaction of N-thiophosphoryl imines catalyzed by 1,3,5-triaza-7-phosphaadamantane (PTA)—convenient synthesis of alpha-methylene-beta-amino ketone or acid derivatives. Eur J Org Chem 4487–4491

    Google Scholar 

  50. He Z, Tang X, Chen Y, He Z (2006) Adv Synth Catal 348:413

    Article  CAS  Google Scholar 

  51. Tang X, Zhang B, He Z, Gao R, He Z (2007) 1,3,5-Triaza-7-phosphaadamantane (PTA): a practical and versatile nucleophilic phosphine organocatalyst. Adv Synth Catal 349:2007–2017

    Article  CAS  Google Scholar 

  52. Lu A, Xu X, Gao P, Zhou Z, Song H, Tang C (2008) Chiral N-thiophosphoryl imine-induced diastereoselective aza-Morita–Baylis–Hillman reaction. Tetrahedron Asymmetry 19:1886–1890

    Article  CAS  Google Scholar 

  53. Zhang B, He Z, Xu S, Wu G, He Z (2008) Nucleophilic phosphine-catalyzed [3 + 2] cycloaddition of allenes with N-(thio)phosphoryl imines and acidic methanolysis of adducts N-(thio)phosphoryl 3-pyrrolines: a facile synthesis of free amine 3-pyrrolines. Tetrahedron 64:9471–9479

    Article  CAS  Google Scholar 

  54. Francos J, Cadierno V (2010) Palladium-catalyzed cycloisomerization of (Z)-enynols into furans using green solvents: glycerol vs. water. Green Chem 12:1552–1555

    Article  CAS  Google Scholar 

  55. Ruiz J, Cutillas N, López F, López G, Bautista D (2006) A copper- and amine-free Sonogashira reaction of aryl halides catalyzed by 1,3,5-triaza-7-phosphaadamantane palladium systems. Organometallics 25:5768–5773

    Article  CAS  Google Scholar 

  56. Krogstad DA, DeBoer AJ, Ortmeier WJ, Rudolf JW, Halfen JA (2005) 1,3,5-Triaza-7-phosphaadamantane (PTA) ligated iridium(I) complexes as catalysts for the intramolecular hydroamination of 4-pentyn-1-amine in water. Inorg Chem Commun 8:1141–1144

    Article  CAS  Google Scholar 

  57. Krogstad DA, Owens SB, Halfen JA, Young VG Jr (2005) Intramolecular hydroamination of alkynylamines in aqueous media catalyzed by platinum(II) 1,3,5-triaza-7-phosphaadamantane (PTA) complexes. Inorg Chem Commun 8:65–69

    Article  CAS  Google Scholar 

  58. Krogstad DA, Cho J, DeBoer AJ, Klitzke JA, Sanow WR, Williams HA, Halfen JA (2006) Platinum(II) and palladium(II) 1,3,5-triaza-7-phosphaadamantane (PTA) complexes as intramolecular hydroamination catalysts in aqueous and organic media. Inorg Chim Acta 359:136–148

    Article  CAS  Google Scholar 

  59. Nair RP, Kim TH, Frost BJ (2009) Atom transfer radical addition reactions of CCl4, CHCl3, and p-tosyl chloride catalyzed by Cp′Ru(PPh3)(PR3)Cl complexes. Organometallics 28:4681–4688

    Article  CAS  Google Scholar 

  60. Cadierno V, Francos J, Gimeno J (2010) Ruthenium-catalyzed synthesis of β-oxo esters in aqueous medium: scope and limitations. Green Chem 12:135–143

    Article  CAS  Google Scholar 

  61. Cadierno V, Francos J, Gimeno J (2008) Selective ruthenium-catalyzed hydration of nitriles to amides in pure aqueous medium under neutral conditions. Chem Eur J 14:6601–6605

    Article  CAS  Google Scholar 

  62. Cadierno V, Diez J, Francos J, Gimeno J (2010) Bis(allyl)ruthenium(IV) complexes containing water-soluble phosphane ligands: synthesis, structure, and application as catalysts in the selective hydration of organonitriles into amides. Chem Eur J 16:9808–9817

    Article  CAS  Google Scholar 

  63. Servin P, Laurent R, Gonsalvi L, Tristany M, Peruzzini M, Majoral JP, Caminade AM (2009) Grafting of water-soluble phosphines to dendrimers and their use in catalysis: positive dendritic effects in aqueous media. Dalton Trans 4432–4434

    Google Scholar 

  64. González B, Lorenzo-Luis P, Serrano-Ruiz M, Papp E, Fekete M, Csépkec K, Oszc K, Kathó A, Joó F, Romerosa (2010) Catalysis of redox isomerization of allylic alcohols by [RuClCp(mPTA)2](OSO2CF3)2 and [RuCp(mPTA)2(OH2-kappaO)](OSO2CF3)3 (H2O)(C4H10O)0.5. Unusual influence of the pH and interaction of phosphate with catalyst on the reaction rate. A J Mol Catal A Chem 326:15–20

    Article  CAS  Google Scholar 

  65. Ahlsten N, Lundberg H, Martin-Matute B (2010) Rhodium-catalyzed isomerisation of allylic alcohols in water at ambient temperature. Green Chem 12:1628–1633

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank support by EC through MC Actions RTN n° HPRN-CT-2002-00176 (Hydrochem) and MRTN-CT-2003-503864 (Aquachem); Ente Cassa di Risparmio di Firenze through the FIRENZE HYDROLAB project; COST Actions D29 and C0802 (PhoSciNet); Italian Ministries MIUR and MATTM through projects PRIN 2007and PIRODE; GDRE project “Catalyse Homogène pour le Développement Durable (CH2D)”.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gonsalvi, L., Peruzzini, M. (2011). Aqueous Phase Reactions Catalysed by Transition Metal Complexes of 7-Phospha-1,3,5-triazaadamantane (PTA) and Derivatives. In: Peruzzini, M., Gonsalvi, L. (eds) Phosphorus Compounds. Catalysis by Metal Complexes, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3817-3_7

Download citation

Publish with us

Policies and ethics