Skip to main content

Computational Modeling of Trabecular Bone Mechanics

  • Chapter
  • First Online:
Computational Modeling in Biomechanics

Abstract

Computational modeling has become an important tool for understanding trabecular bone mechanics. Models provide a means to investigate the individual and combined effects of changes in trabecular architecture, density, and material properties on overall trabecular bone mechanics. In experimental studies, specimen-specific models derived from high-resolution micro-CT scans provide a means to interpret the mechanical testing data at both macroscopic and tissue levels in order to calculate multi-scale material properties. More recently, micro-CT-based finite element modeling has been applied to the detailed investigation of the biomechanical effects of therapeutic treatments, and studies are now using such techniques to address the micro-mechanics of whole-bone behavior. Advances in computational power and solution algorithms have made trabecular bone modeling practical in almost any laboratory. Improvements in imaging technology, the spread of high-speed computing systems, and new computational algorithms will drive continued growth of this technique for the foreseeable future. In addition to its current role as a tool to study basic science and micro-mechanics, this technique may ultimately find clinical usage in diagnosis of disease and assessment of treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, M.F., Bayraktar, H.H., Keaveny, T.M., Papadopoulos, P.: Ultrascalable implicit finite element analysis in solid mechanics with over half a billion degrees of freedom Proceedings of Supercomputing 2004: High Performance Networking and Computing. ACM/IEEE (2004)

    Google Scholar 

  2. Bathe, K.J.: Finite Element Procedures, pp 1037. Prentice-Hall, Englewood Cliffs, NJ (1995)

    Google Scholar 

  3. Bauer, J.S., Banerjee, S., Henning, T.D., Krug, R., Majumdar, S., Link, T.M.: Fast high-spatial-resolution MRI of the ankle with parallel imaging using grappa at 3 t. AJR 189, 240–245 (2007)

    Article  Google Scholar 

  4. Bayraktar, H.H., Gupta, A., Kwon, R.Y., Papadopoulos, P., Keaveny, T.M.: The modified super-ellipsoid yield criterion for human trabecular bone. J. Biomech. Eng. 126, 677–684 (2004)

    Article  Google Scholar 

  5. Bayraktar, H.H., Morgan, E.F., Niebur, G.L., Morris, G.E., Wong, E.K., Keaveny, T.M.: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37, 27–35 (2004)

    Article  Google Scholar 

  6. Beaupre, G.S., Hayes, W.C.: Finite element analysis of a three-dimensional open-celled model for trabecular bone. J. Biomech. Eng. 107, 249–256 (1985)

    Article  Google Scholar 

  7. Beck, J.D., Canfield, B.L., Haddock, S.M., Chen, T.J.H., Kothari, M., Keaveny, T.M.: Three-dimensional imaging of trabecular bone using the computer numerically controlled milling technique. Bone 21, 281–287 (1997)

    Article  Google Scholar 

  8. Bevill, G., Easley, S.K., Keaveny, T.M.: Side-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependence on bone volume fraction and anatomic site. J. Biomech. 40, 3381–3388 (2007)

    Article  Google Scholar 

  9. Bevill, G., Eswaran, S.K., Gupta, A., Papadopoulos, P., Keaveny, T.M.: Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone 39, 1218–1225 (2006)

    Article  Google Scholar 

  10. Bourne, B.C., van der Meulen, M.C.H.: Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J. Biomech. 37, 613–621 (2004)

    Article  Google Scholar 

  11. Boutroy, S., Van Rietbergen, B., Sornay-Rendu, E., Munoz, F., Bouxsein, M.L., Delmas, P.D.: Finite element analysis based on in vivo hr-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J. Bone Miner. Res. 23, 392–399 (2008)

    Article  Google Scholar 

  12. Boyd, S.K., Muller, R.: Smooth surface meshing for automated finite element model generation from 3D image data. J. Biomech. 39, 1287–1295 (2006)

    Article  Google Scholar 

  13. Charras, G.T., Guldberg, R.E.: Improving the local solution accuracy of large-scale digital image-based finite element analyses. J. Biomech. 33, 255–259 (2000)

    Article  Google Scholar 

  14. Chevalier, Y., Pahr, D., Allmer, H., Charlebois, M., Zysset, P.: Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. J. Biomech. 40, 3333–3340 (2007)

    Article  Google Scholar 

  15. Dagan, D., Be’ery, M., Gefen, A.: Single-trabecula building block for large-scale finite element models of cancellous bone. Med. Biol. Eng. Comput. 42, 549–556 (2004)

    Article  Google Scholar 

  16. Day, J.S., Ding, M., Bednarz, P., van der Linden, J.C., Mashiba, T., Hirano, T., Johnston, C.C., Burr, D.B., Hvid, I., Sumner, D.R., Weinans, H.: Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties. J. Orthop. Res. 22, 465–471 (2004)

    Article  Google Scholar 

  17. Dempster, D.: Anatomy and functions of the adult skeleton. In: Mea, F. (ed.) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 6th edn., pp 7–11. American Society of Bone and Mineral Research, Washington DC (2006)

    Google Scholar 

  18. Eswaran, S.K., Gupta, A., Keaveny, T.M.: Locations of bone tissue at high risk of initial failure during compressive loading of the human vertebral body. Bone 41, 733–739 (2007)

    Article  Google Scholar 

  19. Eswaran, S.K., Gupta, A., Adams, M.F., Keaveny, T.M.: Cortical and trabecular load sharing in the human vertebral body. J. Bone Miner. Res. 21, 307–314 (2006)

    Article  Google Scholar 

  20. Eswaran, S.K., Allen, M.R., Burr, D.B., Keaveny, T.M.: A computational assessment of the independent contribution of changes in canine trabecular bone volume fraction and microarchitecture to increased bone strength with suppression of bone turnover. J. Biomech. 40, 3424–3431 (2007)

    Article  Google Scholar 

  21. Eswaran, S.K., Bayraktar, H.H., Adams, M.F., Gupta, A., Hoffman, P.F., Lee, D.C., Papadopoulos, P.: The micro-mechanics of cortical shell removal in the human vertebral body. Comput. Methods Appl. Mech. Eng. 196, 3025–3032 (2007)

    Article  MATH  Google Scholar 

  22. Feldkamp, L.A., Goldstein, S.A., Parfitt, A.M., Jesion, G., Kleerekoper, M.: The direct examination of three-dimensional bone architecture in vitro by computed tomography. J. Bone Miner. Res. 4, 3–11 (1989)

    Article  MATH  Google Scholar 

  23. Fletcher, R. Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

    Google Scholar 

  24. Gibson, L.J.: Biomechanics of cellular solids. J. Biomech. 38, 377–399 (2005)

    Article  Google Scholar 

  25. Goldstein, S.A.: The mechanical properties of trabecular bone: dependence on anatomic location and function. J. Biomech. 20, 1055–1061 (1987)

    Article  Google Scholar 

  26. Goldstein, S.A., Wilson, D.L., Sonstegard, D.A., Matthews, L.S.: The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J. Biomech. 16, 965–969 (1983)

    Article  Google Scholar 

  27. Guldberg, R.E., Hollister, S.J., Charras, G.T.: The accuracy of digital image-based finite element models. J. Biomech. Eng. 120, 289–295 (1998)

    Article  Google Scholar 

  28. Guo, X.E., McMahon, T.A., Keaveny, T.M., Hayes, W.C., Gibson, L.J.: Finite element modeling of damage accumulation in trabecular bone under cyclic loading. J. Biomech. 27, 145–155 (1994)

    Article  Google Scholar 

  29. Haiat, G., Padilla, F., Peyrin, F., Laugier, P.: Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation. J. Bone Miner. Res. 22, 665–674 (2007)

    Article  Google Scholar 

  30. Hara, T., Tanck, E., Homminga, J., Huiskes, R.: The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone 31, 107–109 (2002)

    Article  Google Scholar 

  31. Hernandez, C.J., Gupta, A., Keaveny, T.M.: A biomechanical analysis of the effects of resorption cavities on cancellous bone strength. J. Bone Miner. Res. 21, 1248–1255 (2006)

    Article  Google Scholar 

  32. Hernandez, C.J., Tang, S.Y., Baumbach, B.M., Hwu, P.B., Sakkee, A.N., van der Ham, F., DeGroot, J., Bank, R.A., Keaveny, T.M.: Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone 37, 825–832 (2005)

    Article  Google Scholar 

  33. Hollister, S.J., Brennan, J.M., Kikuchi, N.: A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J. Biomech. 27, 433–444 (1994)

    Article  Google Scholar 

  34. Hollister, S.J., Fyhrie, D.P., Jepsen, K.J., Goldstein, S.A.: Application of homogenization theory to the study of trabecular bone mechanics. J. Biomech. 24, 825–839 (1991)

    Article  Google Scholar 

  35. Homminga, J., Weinans, H., Gowin, W., Felsenberg, D., Huiskes, R.: Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine 26, 1555–1561 (2001)

    Article  Google Scholar 

  36. Homminga, J., Huiskes, R., Van Rietbergen, B., Ruegsegger, P., Weinans, H.: Introduction and evaluation of a gray-value voxel conversion technique. J. Biomech. 34, 513–517 (2001)

    Article  Google Scholar 

  37. Homminga, J., Van-Rietbergen, B., Lochmuller, E.M., Weinans, H., Eckstein, F., Huiskes, R.: The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34, 510–516 (2004)

    Article  Google Scholar 

  38. Hughes, T., Ferencz, R., Hallquist, J.: Large-scale vectorized implicit calculation in solid mechanics on a cray x-mp/48 utilizing ebe preconditioned conjugate gradients. Comput. Methods Appl. Mech. Eng. 61, 215–248 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  39. Hughs, T.J.R.: The Finite Element Method, pp 682. Dover, Mineola, NY (2000)

    Google Scholar 

  40. Ito, M., Nishida, A., Aoyagi, K., Uetani, M., Hayashi, K., Kawase, M.: Effects of risedronate on trabecular microstructure and biomechanical properties in ovariectomized rat tibia. Osteoporos. Int. 16, 1042–1048 (2005)

    Article  Google Scholar 

  41. Jaasma, M.J., Bayraktar, H.H., Niebur, G.L., Keaveny, T.M.: Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone. J. Biomech. 35, 237–246 (2002)

    Article  Google Scholar 

  42. Jacobs, C.R., Davis, B.R., Rieger, C.J., Francis, J.J., Saad, M., Fyhrie, D.P.: The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large scale finite element modeling. J. Biomech. 32, 1159–1164 (1999)

    Article  Google Scholar 

  43. Kabel, J., van Rietbergen, B., Odgaard, A., Huiskes, R.: Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25, 481–486 (1999)

    Article  Google Scholar 

  44. Kabel, J., van Rietbergen, B., Dalstra, M., Odgaard, A., Huiskes, R.: The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J. Biomech. 32, 673–680 (1999)

    Article  Google Scholar 

  45. Kazakia, G.J., Majumdar, S.: New imaging technologies in the diagnosis of osteoporosis. Rev. Endocr. Metab. Disord. 7, 67–74 (2006)

    Article  Google Scholar 

  46. Kazakia, G.J., Hyun, B., Burghardt, A.J., Krug, R., Newitt, D.C., de Papp, A.E., Link, T.M., Majumdar, S.: In vivo determination of bone structure in postmenopausal women: a comparison of hr-pQCT and high-field MR imaging. J. Bone Miner. Res. 23, 463–474 (2008)

    Article  Google Scholar 

  47. Keaveny, T.M., Borchers, R.E., Gibson, L.J., Hayes, W.C.: Theoretical analysis of the experimental artifact in trabecular bone compressive modulus [published erratum appears in J. Biomech. 1993 Sept;26(9):1143]. J. Biomech. 26, 599–607 (1993)

    Google Scholar 

  48. Keaveny, T.M., Wachtel, E.F., Ford, C.M., Hayes, W.C.: Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J. Biomech. 27, 1137–1146 (1994)

    Article  Google Scholar 

  49. Keaveny, T.M., Morgan, E.F., Niebur, G.L., Yeh, O.C.: Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3, 307–333 (2001)

    Article  Google Scholar 

  50. Keaveny, T.M., Guo, X.E., Wachtel, E.F., McMahon, T.A., Hayes, W.C.: Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J. Biomech. 27, 1127–1136 (1994)

    Article  Google Scholar 

  51. Keaveny, T.M., Pinilla, T.P., Crawford, R.P., Kopperdahl, D.L., Lou, A.: Systematic and random errors in compression testing of trabecular bone. J. Orthop. Res. 15, 101–110 (1997)

    Article  Google Scholar 

  52. Kim, C.H., Zhang, H., Mikhail, G., von Stechow, D., Muller, R., Kim, H.S., Guo, X.E.: Effects of thresholding techniques on microCT-based finite element models of trabecular bone. J. Biomech. Eng. 129, 481–486 (2007)

    Article  Google Scholar 

  53. Kim, D.G., Christopherson, G.T., Dong, X.N., Fyhrie, D.P., Yeni, Y.N.: The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone. Bone 35, 1375–1382 (2004)

    Article  Google Scholar 

  54. Kim, D.G., Hunt, C.A., Zauel, R., Fyhrie, D.P., Yeni, Y.N.: The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies. Ann. Biomed. Eng. 35, 1907–1913 (2007)

    Article  Google Scholar 

  55. Kosmopoulos, V., Keller, T.S.: Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model. Med. Eng. Phys. 30(6), 725–732 (2007)

    Article  Google Scholar 

  56. Kosmopoulos, V., Schizas, C., Keller, T.S.: Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue. J. Biomech. 41, 515–522 (2008)

    Article  Google Scholar 

  57. Leung, S.Y., Browne, M., New, A.M.: Smooth surface micro finite element modelling of a cancellous bone analogue material. Proc. Inst. Mech. Eng. [H] 222, 145–149 (2008)

    Google Scholar 

  58. Link, T.M., Vieth, V., Stehling, C., Lotter, A., Beer, A., Newitt, D., Majumdar, S.: High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best? Eur. Radiol. 13, 663–671 (2003)

    Google Scholar 

  59. Liu, X., Wang, X., Niebur, G.L.: Effects of damage on the orthotropic matrerial symmetry of bovine tibial trabecular bone. J. Biomech. 36, 1753–1759 (2003)

    Article  Google Scholar 

  60. Liu, X., Wang, X., Niebur, G.L.: Effects of damage on the orthotropic material symmetry of bovine tibial trabecular bone. J. Biomech. 36, 1753–1759 (2003)

    Article  Google Scholar 

  61. Liu, X.S., Sajda, P., Saha, P.K., Wehrli, F.W., Bevill, G., Keaveny, T.M., Guo, X.E.: Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J. Bone Miner. Res. 23, 223–235 (2008)

    Article  Google Scholar 

  62. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph 21, 163–169 (1987)

    Article  Google Scholar 

  63. MacNeil, J.A., Boyd, S.K.: Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med. Eng. Phys. 29, 1096–1105 (2007)

    Article  Google Scholar 

  64. Majumdar, S., Newitt, D., Mathur, A., Osman, D., Gies, A., Chiu, E., Lotz, J., Kinney, J., Genant, H.: Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with x-ray tomographic microscopy and biomechanics. Osteoporos. Int. 6, 376–385 (1996)

    Article  Google Scholar 

  65. Makiyama, A.M., Vajjhala, S., Gibson, L.J.: Analysis of crack growth in a 3D voronoi structure: a model for fatigue in low density trabecular bone. J. Biomech. Eng. 124, 512–520 (2002)

    Article  Google Scholar 

  66. Morgan, E.F., Keaveny, T.M.: Dependence of yield strain of human trabecular bone on anatomic site. J. Biomech. 34, 569–577 (2001)

    Article  Google Scholar 

  67. Morgan, E.F., Yeh, O.C., Chang, W.C., Keaveny, T.M.: Nonlinear behavior of trabecular bone at small strains. J. Biomech. Eng. 123, 1–9 (2001)

    Article  Google Scholar 

  68. Morgan, E.F., Bayraktar, H.H., Yeh, O.C., Majumdar, S., Burghardt, A., Keaveny, T.M.: Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J. Biomech. 37, 1413–1420 (2004)

    Article  Google Scholar 

  69. Muller, M., Mitton, D., Moilanen, P., Bousson, V., Talmant, M., Laugier, P.: Prediction of bone mechanical properties using QUS and pQCT: study of the human distal radius. Med. Eng. Phys. 30(8), 761–767 (2007)

    Google Scholar 

  70. Nagaraja, S., Couse, T.L., Guldberg, R.E.: Trabecular bone microdamage and microstructural stresses under uniaxial compression. J. Biomech. 38, 707–716 (2005)

    Article  Google Scholar 

  71. Nazarian, A., Stauber, M., Muller, R.: Design and implementation of a novel mechanical testing system for cellular solids. J. Biomed. Mater. Res. B Appl. Biomater. 73, 400–411 (2005)

    Google Scholar 

  72. Newitt, D.C., van Rietbergen, B., Majumdar, S.: Processing and analysis of in vivo high-resolution mr images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos. Int. 13, 278–287 (2002)

    Article  Google Scholar 

  73. Newitt, D.C., Majumdar, S., van Rietbergen, B., von Ingersleben, G., Harris, S.T., Genant, H.K., Chesnut, C., Garnero, P., MacDonald, B.: In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos. Int. 13, 6–17 (2002)

    Article  Google Scholar 

  74. Niebur, G.L., Feldstein, M.J., Keaveny, T.M.: Biaxial failure behavior of bovine tibial trabecular bone. J. Biomech. Eng. 124, 699–705 (2002)

    Article  Google Scholar 

  75. Niebur, G.L., Feldstein, M.J., Keaveny, T.M.: Biaxial failure behavior of bovine tibial trabecular bone. J. Biomech. Eng. 124, 699–705 (2002)

    Article  Google Scholar 

  76. Niebur, G.L., Yuen, J.C., Hsia, A.C., Keaveny, T.M.: Convergence behavior of high-resolution finite element models of trabecular bone. J. Biomech. Eng. 121, 629–635 (1999)

    Article  Google Scholar 

  77. Niebur, G.L., Yuen, J.C., Burghardt, A.J., Keaveny, T.M.: Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions. J. Biomech. 34, 699–706 (2001)

    Article  Google Scholar 

  78. Niebur, G.L., Feldstein, M.J., Yuen, J.C., Chen, T.J., Keaveny, T.M.: High resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J. Biomech. 33, 1575–1583 (2000)

    Article  Google Scholar 

  79. Odgaard, A., Linde, F.: The underestimation of young’s modulus in compressive testing of cancellous bone specimens. J. Biomech. 24, 691–698 (1991)

    Article  Google Scholar 

  80. Padilla, F., Bossy, E., Haiat, G., Jenson, F., Laugier, P.: Numerical simulation of wave propagation in cancellous bone. Ultrasonics 44, e239–e243 (2006)

    Article  Google Scholar 

  81. Papka, S.D., Kyriakides, S.: In-plane crushing of a polycarbonate honeycomb. Int. J. Solids Struct. 35, 239–267 (1998)

    Article  MATH  Google Scholar 

  82. Papka, S.D., Kyriakides, S.: In-plane biaxial crushing of honeycombs-part II: analysis. Int. J. Solids Struct. 36, 4397–4423 (1999)

    Article  MATH  Google Scholar 

  83. Pistoia, W., van Rietbergen, B., Laib, A., Ruegsegger, P.: High-resolution three-dimensional-pQCT images can be an adequate basis for in-vivo microFE analysis of bone. J. Biomech. Eng. 123, 176–183 (2001)

    Article  Google Scholar 

  84. Pistoia, W., Van Rietbergen, B., Eckstein, F., Lill, C., Lochmuller, E.M., Ruegsegger, P.: Prediction of distal radius failure with microFE models based on 3d-pqct scans. Adv. Exp. Med. Biol. 496, 143–151 (2001)

    Google Scholar 

  85. Pistoia, W., van Rietbergen, B., Lochmuller, E.M., Lill, C.A., Eckstein, F., Ruegsegger, P.: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30, 842–848 (2002)

    Article  Google Scholar 

  86. Pothuaud, L., Porion, P., Lespessaillles, E., Benhamou, C.L., Levitz, P.: A new method for three dimensional skeleton graph analysis of porous media: application to trabecular bone microarchitecture. J. Microsc. 199, 149–161 (2000)

    Article  Google Scholar 

  87. Pothuaud, L., Van Rietbergen, B., Charlot, C., Ozhinsky, E., Majumdar, S.: A new computational efficient approach for trabecular bone analysis using beam models generated with skeletonized graph technique. Comput. Methods Biomech. Biomed. Eng. 7, 205–213 (2004)

    Article  Google Scholar 

  88. Pugh, J.W., Rose, R.M., Radin, E.L.: A structural model for the mechanical behavior of trabecular bone. J. Biomech. 6, 657–670 (1973)

    Article  Google Scholar 

  89. Raum, K., Leguerney, I., Chandelier, F., Bossy, E., Talmant, M., Saied, A., Peyrin, F., Laugier, P.: Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med. Biol. 31, 1225–1235 (2005)

    Article  Google Scholar 

  90. Reddy, J.N.: Introduction to the Finite Element Method, 3rd edn. pp. 495. McGraw-Hill, New York (2005)

    Google Scholar 

  91. Rüegsegger, P., Koller, B., Müller, R.: A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int. 58, 24–29 (1996)

    Article  Google Scholar 

  92. Saxena, R., Keller, T.S., Sullivan, J.M.: A three-dimensional finite element scheme to investigate the apparent mechanical properties of trabecular bone. Comput. Methods Biomech. Biomed. Eng. 2, 285–294 (1999)

    Article  Google Scholar 

  93. Silva, M.J., Gibson, L.J.: The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int. J. Mech. Sci. 37, 1161–1177 (1995)

    Article  MATH  Google Scholar 

  94. Silva, M.J., Gibson, L.J.: The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int. J. Mech. Sci. 39, 549–563 (1997)

    Article  MATH  Google Scholar 

  95. Silva, M.J., Gibson, L.J.: Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone 21, 191–199 (1997)

    Article  Google Scholar 

  96. Stauber, M., Muller, R.: Volumetric spatial decomposition of trabecular bone into rods and plates – a new method for local bone morphometry. Bone 38, 475–484 (2006)

    Article  Google Scholar 

  97. Stolken, J.S., Kinney, J.H.: On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure. Bone 33, 494–504 (2003)

    Article  Google Scholar 

  98. Thurner, P.J., Wyss, P., Voide, R., Stauber, M., Stampanoni, M., Sennhauser, U., Muller, R.: Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light. Bone 39, 289–299 (2006)

    Article  Google Scholar 

  99. Timoshenko, S.: Theory of Elasticity, pp. 506. McGraw-Hill, New York (1970)

    Google Scholar 

  100. Tomar, V.: Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method. J. Biomech. Eng. 130, 021021 (2008)

    Article  Google Scholar 

  101. Ulrich, D. van Rietbergen, B., Laib, A., Rueegsegger, P.: The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25, 55–60 (1999)

    Article  Google Scholar 

  102. Ulrich, D., van Rietbergen, B., Laib, A., Rüegsegger, P.: Load transfer analysis of the distal radius from in-vivo high-resolution CT-imaging. J. Biomech. 32, 821–828 (1999)

    Article  Google Scholar 

  103. Un, K., Bevill, G., Keaveny, T.M.: The effects of side-artifacts on the elastic modulus of trabecular bone. J. Biomech. 39, 1955–1963 (2006)

    Article  Google Scholar 

  104. Ural, A., Vashishth, D.: Cohesive finite element modeling of age-related toughness loss in human cortical bone. J. Biomech. 39, 2974–2982 (2006)

    Article  Google Scholar 

  105. van Lenthe, G.H., Stauber, M., Muller, R.: Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. Bone 39, 1182–1189 (2006)

    Article  Google Scholar 

  106. van Rietbergen, B.: Micro-fe analyses of bone: State of the art. Adv. Exp. Med. Biol. 496, 21–30 (2001)

    Google Scholar 

  107. Van Rietbergen, B., Weinans, H., Huiskes, R., Odgaard, A.: A new method to determine trabecular bone elastic properties and loading using micromechanical finite element models. J. Biomech. 28, 69–81 (1995)

    Article  Google Scholar 

  108. Van Rietbergen, B., Odgaard, A., Kabel, J., Huiskes, R.: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech 29, 1653–1657 (1996)

    Google Scholar 

  109. Van Rietbergen, B., Weinans, H., Huiskes, R., Polman, B.J.W.: Computational strategies for iterative solutions of large FEM applications employing voxel data. Int. J. Num. Meth. Eng. 39, 2743–2767 (1996)

    Article  MATH  Google Scholar 

  110. van Rietbergen, B., Majumdar, S., Newitt, D., MacDonald, B.: High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin. Biomech. (Bristol, Avon) 17, 81–88 (2002)

    Google Scholar 

  111. Van Rietbergen, B., Huiskes, R., Eckstein, F., Ruegsegger, P.: Trabecular bone tissue strains in the healthy and osteoporotic human femur. J. Bone Miner. Res. 18, 1781–1788 (2003)

    Article  Google Scholar 

  112. Van Rietbergen, B., Müller, R., Ulrich, D., Rüegsegger, P., Huiskes, R.: Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J. Biomech. 32, 165–173 (1999)

    Article  Google Scholar 

  113. Verhulp, E., van Rietbergen, B., Huiskes, R.: Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42, 30–35 (2008)

    Article  Google Scholar 

  114. Verhulp, E., van Rietbergen, B., Muller, R., Huiskes, R.: Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. J. Biomech. 41, 1479–1485 (2008)

    Article  Google Scholar 

  115. Wherli, F.W.: Editorial. Magn. Reson. Med. 44, 501–510 (2000)

    Article  Google Scholar 

  116. Yeh, O.C., Keaveny, T.M.: Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone. J. Orthop. Res. 19, 1001–1007 (2001)

    Article  Google Scholar 

  117. Yeni, Y.N., Hou, F.J., Ciarelli, T., Vashishth, D., Fyhrie, D.P.: Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone. Ann. Biomed. Eng. 31, 726–732 (2003)

    Article  Google Scholar 

  118. Yeni, Y.N., Christopherson, G.T., Dong, X.N., Kim, D.G., Fyhrie, D.P.: Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone. J. Biomech. Eng. 127, 1–8 (2005)

    Article  Google Scholar 

  119. Yeni, Y.N., Zelman, E.A., Divine, G.W., Kim, D.G., Fyhrie, D.P.: Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture. Bone 42, 591–596 (2008)

    Article  Google Scholar 

  120. Zauel, R., Yeni, Y.N., Bay, B.K., Dong, X.N., Fyhrie, D.P.: Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. J. Biomech. Eng. 128, 1–6 (2006)

    Article  Google Scholar 

  121. Zhang, X.H., Liu, X.S., Vasilic, B., Wehrli, F.W., Benito, M., Rajapakse, C.S., Snyder, P.J., Guo, X.E.: In vivo muMRI based finite element and morphological analyses of tibial trabecular bone in eugonadal and hypogonadal men before and after testosterone treatment. J. Bone Miner. Res. 23(9),1426–1434 (2008)

    Article  Google Scholar 

  122. Zhu, M., Keller, T.S., Spengler, D.M.: Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials. J. Biomech. 27, 57–66 (1994)

    Article  Google Scholar 

  123. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. Butterworth-Heinemann, Oxford, UK (2005)

    MATH  Google Scholar 

  124. Zysset, P.K.: A review of morphology–elasticity relationships in human trabecular bone: theories and experiments. J. Biomech. 36, 1469–1485 (2003)

    Article  Google Scholar 

  125. Zysset, P.K., Goulet, R.W., Hollister, S.J.: A global relationship between trabecular bone morphology and homogenized elastic properties. J. Biomech. Eng. 120, 640–646 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The publication was made possible through the support of the National Institutes of Health AR52008 (GLN) and AR49828, AR43784 (TMK), and the US ARMY Medical Research and Materiel Command PR054672 (GLN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen L. Niebur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Niebur, G.L., Keaveny, T.M. (2010). Computational Modeling of Trabecular Bone Mechanics. In: De, S., Guilak, F., Mofrad R. K., M. (eds) Computational Modeling in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3575-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3575-2_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3574-5

  • Online ISBN: 978-90-481-3575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics