Skip to main content

The Natural Dynamic of Carbon in Forest Ecosystems

  • Chapter
  • First Online:
Carbon Sequestration in Forest Ecosystems

Abstract

Forest Ecosystems exchange energy, water, and nutrients and, in particular, carbon (C) with surrounding ecosystems, and play a major role in the global C cycle. Forests are major terrestrial C sinks, have large C densities and sequester large amounts of atmospheric carbon dioxide (CO2). By various natural processes, C is entering forest ecosystems in dissolved, gaseous and particulate form. The C is temporarily stored, and sequestered in above- and belowground pools in vegetation, detritus and soil. Efflux processes result in C losses to adjacent ecosystems. This chapter describes C in- and efflux processes, the C turnover within forest ecosystems and how C is sequestered in the different forest ecosystem pools with a focus on processes occurring in trees and soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, Melillo JM (2001) Terrestrial ecosystems. Academic, San Diego, CA

    Google Scholar 

  • Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–724

    Article  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytical review of responses to rising CO2 in photosynthesis, canopy properties and plant production. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Alo CA, Wang G (2008) Potential future changes of the terrestrial ecosystem based on climate projections bei eight general circulation models. J Geophys Res 113:G01004. doi:10.1029/2007JG000528

    Article  CAS  Google Scholar 

  • Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv Agron 100:155–250

    Article  CAS  Google Scholar 

  • Amthor JS (2003) Efficiency of lignin biosynthesis: a quantitative analysis. Ann Bot 91:673–695

    Article  CAS  PubMed  Google Scholar 

  • Andrews JA, Schlesinger WH (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochem Cy 15:149–162

    Article  CAS  Google Scholar 

  • Apps MJ, Bernier P, Bhatti JS (2006) Forests in the global carbon cycle: implications of climate change. In: Bhatti JS, Lal R, Apps MJ, Price MA (eds) Climate change and managed ecosystems. Taylor & Francis, Boca Raton, FL, pp 175–200

    Google Scholar 

  • Asshoff R, Zotz G, Körner C (2006) Growth and phenology of mature temperate forest trees in elevated CO2. Glob Change Biol 12:848–861

    Article  Google Scholar 

  • Atwell BJ, Henery ML, Whitehead D (2003) Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures. Tree Physiol 23:13–21

    CAS  PubMed  Google Scholar 

  • Aubrey DP, Teskey RO (2009) Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux. New Phytol (in press) doi: 10.1111/j.1469-8137.2009.02971.x

    Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  CAS  PubMed  Google Scholar 

  • Baldocchi D (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26

    Article  CAS  Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt KS (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641

    Article  PubMed  Google Scholar 

  • Beerling DJ, Hewitt CN, Pyle JA, Raven JA (2007) Critical issues in trace gas biogeochemistry and global change. Philos Trans R Soc A 365:1629–1642

    Article  CAS  Google Scholar 

  • Bengtson P, Bengtsson G (2007) Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures. Ecol Lett 10:783–790

    Article  PubMed  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin

    Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2007) Biochemistry. WH Freeman, New York

    Google Scholar 

  • Berhe AA, Harte J, Harden JW, Torn MS (2007) The significance of the erosion-induced terrestrial carbon sink. BioScience 57:337–346

    Article  Google Scholar 

  • Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240

    Article  CAS  Google Scholar 

  • Bernhardt ES, Barber JJ, Pippen JS, Taneva L, Andrews JA, Schlesinger WH (2006) Long-term effects of free air CO2 enrichment (FACE) on soil respiration. Biogeochemistry 77:91–116

    Article  Google Scholar 

  • Billings SA, Ziegler SE (2008) Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization. Glob Change Biol 14:1025–1036

    Article  Google Scholar 

  • Bird JA, Kleber M, Torn MS (2008) 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Org Geochem 39:465–477

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131

    Article  Google Scholar 

  • Blaschke L, Forstreuter M, Sheppard LJ, Keith IK, Murray MB, Polle A (2002) Lignification in beech (Fagus sylvatica) grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation. Tree Physiol 22:469–477

    CAS  PubMed  Google Scholar 

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity – evidence since the middle of the 20th century. Glob Change Biol 12:862–882

    Article  Google Scholar 

  • Bol R, Poirier N, Balesdent J, Gleixner G (2009) Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Commun Mass Spectrom 23:2551–2558

    Google Scholar 

  • Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. Global Biogeochem Cy 21, GB2018, doi:10.1029/2006GB002840

    Google Scholar 

  • Bradley KL, Pregitzer KS (2007) Ecosystem assembly and terrestrial carbon balance under elevated CO2. Trends Ecol Evol 22:538–547

    Article  PubMed  Google Scholar 

  • Brandt LA, Bohnet C, King JY (2009) Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J Geophys Res 114:G02004. doi:10.1029/2008JG000772

    Article  CAS  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644

    Article  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 116:363–372

    Article  CAS  PubMed  Google Scholar 

  • Burton AJ, Pregitzer KS (2008) Measuring forest floor, mineral soil, and root carbon stocks. In: Hoover CM (ed) Field measurements for forest carbon monitoring. Springer, New York, pp 129–142

    Google Scholar 

  • Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environ Sci Technol 41:4032–4037

    Article  CAS  PubMed  Google Scholar 

  • Calfapietra C, Scarascia-Mugnozza G, Karnosky DF, Loreto F, Sharkey TD (2008) Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. New Phytol 179:55–61

    Article  CAS  PubMed  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci USA 104:4990–4995

    Article  CAS  PubMed  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24

    Article  CAS  PubMed  Google Scholar 

  • Chang M (2006) Forest hydrology: an introduction to water and forests. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113:357–380

    Article  CAS  Google Scholar 

  • Chapin FS III, Schulze E-D, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Article  Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chapin FS III, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze E-D (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050

    Article  CAS  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Chen H, Rygiewicz PT, Johnson MG, Harmon ME, Tian H, Tang JW (2008) Chemistry and long-term decomposition of roots of douglas-fir grown under elevated atmospheric carbon dioxide and warming conditions. J Environ Q 37:1327–1336

    Article  CAS  Google Scholar 

  • Cheng W (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiol 19:313–320

    PubMed  Google Scholar 

  • Chenu C, Plante AF (2006) Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the ‘primary organo-mineral complex’. Eur J Soil Sci 57:596–607

    Article  Google Scholar 

  • Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52:345–353

    Article  CAS  Google Scholar 

  • Chung H, Zak DR, Lilleskov EA (2006) Fungal community composition and metabolism under elevated CO2 and O3. Oecologia 147:143–154

    Article  PubMed  Google Scholar 

  • Ciais P, Borges AV, Abril G, Meybeck M, Folberth G, Hauglustaine D, Janssens IA (2008) The impact of lateral carbon fluxes on the European carbon balance. Biogeosciences 5:1259–1271

    Article  CAS  Google Scholar 

  • Cisneros-Dozal LM, Trumbore S, Hanson PJ (2006) Partitioning sources of soil-respired CO2 and their seasonal variation using a unique radiocarbon tracer. Glob Change Biol 12:194–204

    Article  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370

    Article  Google Scholar 

  • Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Glob Change Biol 14:868–877

    Article  Google Scholar 

  • Cornelissen JHC, van Bodegom PM, Aerts R, Callaghan TV, Van Logtesijn RSP, Alatalo J, Chapin FS, Gerdol R, Guðmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jónsdóttir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenström A, Tolvanen A, Totland Ø, Wada N, Welker JM, Zhao X, Team MOL (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preston CM, Scarff F, Weedon JT, Wirth C, Zanne AE (2009) Plant traits and wood fate across the globe-rotted, burned, or consumed? Glob Change Biol doi: 10.1111/j.1365-2486.2009.01916.x

    Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Victoria VM, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Crockford RH, Richardson DP (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14:2903–2920

    Article  Google Scholar 

  • Crow SE, Filley TR, McCormick M, Szlávecz K, Stott DE, Gamblin D, Conyers G (2009) Earthworms, stand age, and species composition interact to influence particulate organic matter chemistry during forest succession. Biogeochemistry 92:61–82

    Article  Google Scholar 

  • Cseke LJ, Tsai C-J, Rogers A, Nelsen MP, White HL, Karnosky DF, Podila GK (2009) Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2]. New Phytol 182:891–911

    Google Scholar 

  • Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. Global Biogeochem Cy 21, GB3005, doi:10.1029/2006GB002798

    Google Scholar 

  • Dai K’OH, Johnson CE, Driscoll CT (2001) Organic matter chemistry and dynamics in clear-cut and unmanaged hardwood forest ecosystems. Biogeochemistry 54:51–83

    Article  Google Scholar 

  • Davey PA, Olcer H, Zakhleniuk O, Bernacchi CJ, Calfapietra C, Long SP, Raines CA (2006) Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant Cell Environ 29:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Change Biol 12:154–164

    Article  Google Scholar 

  • De Leeuw JW (2007) On the origin of sedimentary aliphatic macromolecules: a comment on recent publications by Gupta et al. Org Geochem 38:1585–1587

    Google Scholar 

  • De Leeuw JW, Versteegh GJM, Van Bergen PF (2006) Biomacromolecules of algae and plants and their fossil analogues. Plant Ecol 182:209–233

    Google Scholar 

  • Delpierre N, Soudani K, François C, Köstner B, Pontailler J-Y, Nikinmaa E, Misson L, Aubinet M, Bernhofer C, Granier A, Grünewald G, Heinesch B, Longdoz B, Ourcival JM, Rambal S, Vesala T, Dufrêne E (2009) Exceptional carbon uptake in European forests during the warm spring of 2007: a data-model analysis. Glob Change Biol 15:1455–1474

    Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Intergovernmental panel on climate change (ed) Climate change 2007: the physical science basis, Chapter 7. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Dignac M-F, Bahri H, Rumpel C, Rasse DP, Bardoux G, Balesdent J, Girardin C, Chenu C, Mariotti A (2005) Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France). Geoderma 128:3–17

    Article  CAS  Google Scholar 

  • Dijkstra FA, Cheng W (2007) Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett 10:1046–1053

    Article  PubMed  Google Scholar 

  • Diochon AC, Kellman L (2009) Physical fractionation of soil organic matter: destabilization of deep soil carbon following harvesting of a temperate coniferous forest. J Geophys Res 114:G01016. doi:10.1029/2008JG000844

    Article  CAS  Google Scholar 

  • Drennan PM, Nobel PS (2000) Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ 23:767–781

    Article  CAS  Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Article  Google Scholar 

  • Dueck TA, de Visser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstappen F, Bouwmeester H, Voeseneck LACJ, van der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. New Phytol 175:29–35

    Article  CAS  PubMed  Google Scholar 

  • Dueck T, van der Werf A (2008) Are plants precursors for methane? New Phytol 178:693–695

    Article  PubMed  Google Scholar 

  • Duhl TR, Helmig D, Guenther A (2008) Sesquiterpene emissions from vegetation: a review. Biogeosciences 5:761–777

    Article  CAS  Google Scholar 

  • Dutaur L, Verchot LV (2007) A global inventory of the soil CH4 sink. Global Biogeochem Cy 21, GB4013, doi:10.1029/2006GB002734

    Google Scholar 

  • Eissenstat DM, Yanai RD (2002) Root life span, efficiency, and turnover. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots – the hidden half. Marcel Dekker, New York, pp 221–238

    Google Scholar 

  • Ekberg A, Buchmann N, Gleixner G (2007) Rhizosphere influence on soil respiration and decomposition in a temperate Norway spruce stand. Soil Biol Biochem 39:2103–2110

    Article  CAS  Google Scholar 

  • Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F, Friedrich M, Gleixner G, Hartmann A, Kästner M, Marhan S, Miltner A, Scheu S, Wolters V (2008) Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J Plant Nutr Soil Sci 171:27–35

    Article  CAS  Google Scholar 

  • Elbert W, Weber B, Büdel B, Andreae MO, Pöschl U (2009) Microbiotic crusts on soil, rock and plants: neglected major players in the global cycles of carbon and nitrogen? Biogeosciences Discuss 6:6983–7015

    Google Scholar 

  • Epps KY, Comerford NB, Reeves III JB, Cropper Jr.WP, Araujo QR (2007) Chemical diversity – highlighting a species richness and ecosystem function disconnect. Oikos 116:1831–1840

    Google Scholar 

  • Ericsson T, Rytter L, Vapaavuori E (1996) Physiology of carbon allocation in trees. Biomass Bioenerg 11:115–127

    Article  CAS  Google Scholar 

  • Eswaran H, Reich PF, Kimble JM (2000) Global carbon stocks. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC, Boca Raton, FL, pp 15–25

    Google Scholar 

  • Evans CD, Chapman PJ, Clark JM, Monteith DT, Cresser MS (2006) Alternative explanations for rising dissolved organic carbon export from organic soils. Glob Change Biol 12:2044–2053

    Article  Google Scholar 

  • Fahey TJ, Siccama TG, Driscoll CT, Likens GE, Campbell J, Johnson CE, Battles JJ, Aber JD, Cole JJ, Fisk MC, Groffman PM, Hamburg SP, Holmes RT, Schwarz PA, Yanai RD (2005) The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75:109–176

    Article  CAS  Google Scholar 

  • Falloon PD, Smith P (2000) Modelling refractory soil organic matter. Biol Fertil Soils 30:388–398

    Article  Google Scholar 

  • Farquhar GD (1989) Models of integrated photosynthesis of cells and leaves. Philos Trans R Soc B 323:357–367

    Article  CAS  Google Scholar 

  • Feeley KJ, Wright SJ, Nur Surpadi MN, Kassim AR, Davies SJ (2007) Decelerating growth in tropical forest trees. Ecol Lett 10:461–469

    Article  PubMed  Google Scholar 

  • Feng X, Simpson AJ, Wilson KP, Williams DD, Simpson MJ (2008) Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat Geoscience 1:836–839

    Article  CAS  Google Scholar 

  • Fernandes SD, Trautmann NM, Streets DG, Roden CA, Bond TC (2007) Global biofuel use, 1850-2000. Global Biogeochem Cy 21, GB2019, doi:10.1029/2006GB002836

    Google Scholar 

  • Fernandez Monteiro JA, Zotz G, Körner C (2009) Tropical epiphytes in a CO2-rich atmosphere. Acta Oecol 35:60–68

    Article  Google Scholar 

  • Fiedler S, Höll BS, Jungkunst HF (2006) Discovering the importance of lateral CO2 transport from a temperate spruce forest. Sci Total Environ 368:909–915

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Lobell DB, Peters HA, Chiariello NR (2007) Feedbacks of terrestrial ecosystems to climate change. Annu Rev Environ Resour 32:7.1–7.29

    Google Scholar 

  • Fierer N, Colman BP, Schimel JP, Jackson RB (2006) Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Global Biogeochem Cy 20, GB3026, doi:10.1029/2005GB002644

    Google Scholar 

  • von Fischer JC, Hedin LO (2007) Controls on soil methane fluxes: tests of biophysical mechanisms using stable isotope tracers. Global Biogeochem Cy 21, GB2007, doi:10.1029/2006GB002687

    Google Scholar 

  • Fissore C, Giardina CP, Swanston CW, King GM, Kolka RK (2009) Variable temperature sensitivity of soil carbon in North American forests. Glob Change Biol 15:2295–2310

    Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–281

    Article  CAS  PubMed  Google Scholar 

  • Ford CR, Wurzburger N, Hendrick RL, Teskey RO (2007) Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. Tree Physiol 27:375–383

    CAS  PubMed  Google Scholar 

  • Fox O, Vetter S, Ekschmitt K, Wolters V (2006) Soil fauna modifies the recalcitrance–persistence relationship of soil carbon pools. Soil Biol Biochem 38:1353–1363

    Article  CAS  Google Scholar 

  • Franklin O (2007) Optimal nitrogen allocation controls tree responses to elevated CO2. New Phytol 174:811–822

    Article  CAS  PubMed  Google Scholar 

  • Franklin O, McMurtrie RE, Iversen CM, Crous KY, Finzi AC, Tissue DT, Ellsworth DS, Oren R, Norby RJ (2009) Forest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle. Glob Change Biol 15:132–144

    Google Scholar 

  • Frey SD (2007) Spatial distribution of soil organisms. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Elsevier, Amsterdam, pp 283–300

    Google Scholar 

  • Friend AL, Coleman MD, Isebrands JG (1994) Carbon allocation to root and shoot systems of woody plants. In: Davis TD, Haissig BE (eds) Biology of adventitious root formation. Plenum Press, New York, pp 245–273

    Google Scholar 

  • Gallo ME, Sinsabaugh RL, Cabaniss SE (2006) The role of ultraviolet radiation in litter decomposition in arid ecosystems. Appl Soil Ecol 34:82–91

    Article  Google Scholar 

  • Gaudinski JB, Torn MS, Riley WJ, Swanston C, Trumbore SE, Joslin JD, Majdi H, Dawson TE, Hanson PJ (2009) Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling. Glob Change Biol 15:992–1014

    Article  Google Scholar 

  • Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838

    Article  CAS  PubMed  Google Scholar 

  • Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, MdM J-G, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937

    Article  CAS  PubMed  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Change Biol 6:751–765

    Article  Google Scholar 

  • Giardina CP, Coleman MD, Hancock JE, King JS, Lilleskov EA, Loya WM, Pregitzer KS, Ryan MG, Trettin CC (2005) The response of belowground carbon allocation in forests to global change. In: Binkley D, Menyailo O (eds) Trees species effects on soils: implications for global change. NATO Science Series. Kluwer, Dordrecht, pp 119–154

    Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  CAS  PubMed  Google Scholar 

  • Gilbert GS, Strong DR (2007) Fungal symbionts of tropical trees. Ecology 88:539–540

    Article  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Glaser B, Knorr K-H (2008) Isotopic evidence for condensed aromatics from non-pyrogenic sources in soils – implications for current methods for quantifying soil black carbon. Rapid Commun Mass Spectrom 22:935–942

    Article  CAS  PubMed  Google Scholar 

  • Goddard MA, Mikhailova EA, Post CJ, Schlautman MA, Galbraith JM (2009) Continental United States atmospheric wet calcium deposition and soil inorganic carbon stocks. Soil Sci Soc Am J 73:989–994

    Article  CAS  Google Scholar 

  • Gonzalez-Meler MA, Taneva L, Trueman RJ (2004) Plant respiration and elevated atmospheric CO2 concentration: cellular responses and global significance. Ann Bot 94:647–656

    Article  CAS  PubMed  Google Scholar 

  • Grace J (2005) Role of forest biomes in the global carbon balance. In: Griffiths H, Jarvis PG (eds) The carbon balance of forest biomes. Taylor & Francis, Oxon, UK, pp 19–45

    Google Scholar 

  • de Graaff M-A, van Groenigen K-J, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–2091

    Article  Google Scholar 

  • Grandy AS, Neff JC (2008) Molecular C dynamics downstream: the biochemcial decomposition sequence and its impact on soil organic matter structure and function. Sci Total Environ 404:297–307

    Google Scholar 

  • Greenfield LG (1999) Weight loss and release of mineral nitrogen from decomposing pollen. Soil Biol Biochem 31:353–361

    Article  CAS  Google Scholar 

  • Gregorich EG, Beare MH, McKim UF, Skjemstad JO (2006) Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci Soc Am J 70:975–985

    Article  CAS  Google Scholar 

  • Van Groenigen K-J, Six J, Harris D, van Kessel C (2007) Elevated CO2 does not favor a fungal decomposition pathway. Soil Biol Biochem 39:2168–2172

    Article  CAS  Google Scholar 

  • Guenther A, Geron C, Pierce T, Lamb B, Harley P, Fall R (2000) Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos Environ 34:2205–2230

    Article  CAS  Google Scholar 

  • Gustafsson Ö, Kruså M, Zencak Z, Sheesley RJ, Granat L, Engström E, Praveen PS, Rao PSP, Leck C, Rodhe H (2009) Brown clouds over South Asia: biomass or fossil fuel combustion. Science 323:495–498

    Article  CAS  PubMed  Google Scholar 

  • Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997) Morphological adjustments of mature Quercus ilex trees to elevated CO2. Acta Oecol 18:361–365

    Article  Google Scholar 

  • Hagedorn F, Machwitz M (2007) Controls on dissolved organic matter leaching from forest litter grown under elevated atmospheric CO2. Soil Biol Biochem 39:1759–1769

    Article  CAS  Google Scholar 

  • Hamilton SK, Kurzman AL, Arango C, Jin L, Robertson GP (2007) Evidence for carbon sequestration by agricultural liming. Global Biogeochem Cy 21, GB2021, doi:10.1029/2006GB002738

    Google Scholar 

  • Hammes K, Schmidt MWI, Smernik RJ, Currie LA, Ball WP, Nguyen TH, Louchouran P, Houel S, Gustafsson Ö, Elmquist M, Cornelissen G, Skjemstad JO, Masiello CA, Song J, Peng P’A, Mitra S, Dunn JC, Hatcher PG, Hockaday WC, Smith DM, Hartkopf-Fröder C, Böhmer A, Lüer B, Huebert BJ, Amelung W, Brodowski S, Huang L, Zhang W, Gschwend PM, Xana Flores-Cervantes D, Largeau C, Rouzaud J-N, Rumpel C, Guggenberger G, Kaiser K, Rodionov A, Gonzalez-Vila FJ, Gonzalez-Perez JA, de la Rosa JM, Manning DAC, López-Capél E, Ding L (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem Cy 21, GB3016, doi:10.1029/2006GB002914

    Google Scholar 

  • Hammes K, Torn MS, Lapenas AG, Schmidt MWI (2008) Centennial black carbon turnover in a Russian steppe soil. Biogeosciences 5:1339–1350

    Article  CAS  Google Scholar 

  • Harley P, Greenberg J, Niinemets Ü, Guenther A (2007) Environmental controls over methanol emission from leaves. Biogeosciences 4:1083–1099

    Article  CAS  Google Scholar 

  • Harmon ME, Silver WL, Fasth B, Chen H, Burke IC, Parton WJ, Hart SC, Currie WS, LIDET (2009) Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob Change Biol 15:1320–1338

    Google Scholar 

  • Hart SC (2006) Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests: a soil transfer study. Glob Change Biol 12:1032–1046

    Article  Google Scholar 

  • Hartley IP, Armstrong AF, Murthy R, Barron-Gafford G, Ineson P, Atkin OK (2006) The dependence of respiration on photosynthetic substrate supply and temperature: integrating leaf, soil and ecosystem measurements. Glob Change Biol 12:1954–1968

    Article  Google Scholar 

  • Hartmann J, Kempe S (2008) What is the maximum potential for CO2 sequestration by “stimulated” weathering on the global scale? Naturwissenschaften 95:1159–1164

    Article  CAS  PubMed  Google Scholar 

  • Heald CL, Wilkinson MJ, Monson RK, Alo CA, Wang G, Guenther A (2009) Response of isoprene emission to ambient CO2 changes and implications for global budgets. Glob Change Biol 15:1127–1140

    Article  Google Scholar 

  • Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, deLeeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958

    Article  CAS  Google Scholar 

  • van Hees PAW, Jones DL, Finlay R, Godbold DL, Lundström US (2005) The carbon we do not see-the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37:1–13

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Heinemeyer A, Hartley IP, Evans SP, Da La Fuentes JAC, Ineson P (2007) Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Glob Change Biol 13:1786–1797

    Article  Google Scholar 

  • Heldt H-W (2005) Plant biochemistry. Elsevier, San Diego, CA

    Google Scholar 

  • Heredia, A (2003) Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim Biophys Acta 1620:1–7

    Google Scholar 

  • Hernes PJ, Hedges JI (2004) Tannin signature of barks, needles, leaves, cones, and wood at the molecular level. Geochim Cosmochim Acta 68:1293–1307

    Article  CAS  Google Scholar 

  • Hickler T, Smith B, Prentice IC, Mjöfors K, Miller P, Arneth A, Sykes MT (2008) CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob Change Biol 14:1531–1542

    Article  Google Scholar 

  • Hill PW, Farrar JF, Boddy EL, Gray AM, Jones DL (2006) Carbon partitioning and respiration – their control and role in plants at high CO2. In: Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (eds) Managed ecosystems and CO2 – case studies, processes, and perspectives. Springer, Berlin, pp 271–292

    Google Scholar 

  • Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007) Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems 10:999–1018

    Article  CAS  Google Scholar 

  • Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–2297

    Article  PubMed  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Google Scholar 

  • Högberg P, Högberg MN, Göttlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Näsholm T (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    PubMed  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Hofmann A, Heim A, Christensen BT, Miltner A, Gehre M, Schmidt MWI (2009) Lignin dynamics in two 13C-labelled arable soils during 18 years. Eur J Soil Sci 60:205–257

    Article  CAS  Google Scholar 

  • Hoosbeek MR, Scarascia-Mugnozza GE (2009) Increased litter build up and soil organic matter stabilization in a poplar plantation after 6 years of atmospheric CO2 enrichment (FACE): final results of POP-EuroFACE compared to other forest FACE experiments. Ecosystems 12:220–239

    Article  CAS  Google Scholar 

  • Hoosbeek MR, Vos JM, Meinders MBJ, Velthorst EJ, Scarascia-Mugnozza GE (2007) Free atmospheric CO2 enrichment (FACE) increased respiration and humification in the mineral soil of a poplar plantation. Geoderma 138:204–212

    Article  CAS  Google Scholar 

  • Hopkins DW, Chudek JA, Bignell DE, Frouz J, Webster EA, Lawson T (1998) Application of 13C NMR to investigate the transformations and biodegradation of organic materials by wood- and soil-feeding termites, and a coprophagus litter-dwelling dipteran larva. Biodegradation 9:423–431

    Article  CAS  PubMed  Google Scholar 

  • Horwath W (2007) Carbon cycling and formation of soil organic matter. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Elsevier, Amsterdam, pp 303–339

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hunter MD, Adl S, Pringle CM, Coleman DC (2003) Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition. Pedobiologia 47:101–115

    Article  CAS  Google Scholar 

  • Huang J-G, Bergeron Y, Denneler B, Berninger F, Tardif J (2007) Response of forest trees to increased atmospheric CO2. Crit Rev Plant Sci 26:265–283

    Article  CAS  Google Scholar 

  • Hungate BA, van Groenigen K-J, Six J, Jastrow JD, Luo Y, de Graaff M-A, van Kessel C, Osenberg CW (2009) Assessing the effect of elevated CO2 on soil C: a comparison of four meta-analyses. Glob Change Biol 15:2020–2034

    Google Scholar 

  • Huston MA, Wolverton S (2009) The global distribution of net primary production: resolving the paradox. Ecol Monogr 79:343–377

    Google Scholar 

  • Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  PubMed  CAS  Google Scholar 

  • Ito A, Oikawa T (2004) Global mapping of terrestrial primary productivity and light-use efficiency with a process-based model. In: Shiyomi M, Kawahata H, Koizumi H, Tsuda A, Awaya Y (eds) Global environmental change in the ocean and on land. Terrabup, Tokyo, Japan, pp 343–358

    Google Scholar 

  • Iversen CM, Ledford J, Norby RJ (2008) CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytol 179:837–847

    Article  CAS  PubMed  Google Scholar 

  • Jandl R, Lindner M, Vesterdahl L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007a) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Jandl R, Vesterdal L, Olsson M, Bens O, Badeck F, Rock J (2007b) Carbon sequestration and forest management. CAB Rev Perspect Agric Vet Sci Nutr Nat Res . doi:10.1079/PAVSNNR20072017

    Google Scholar 

  • Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE (2005) Elevated atmospheric carbon dioxide increases soil carbon. Glob Change Biol 11:2057–2064

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantiative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    Article  CAS  Google Scholar 

  • Johnson MG, Rygiewicz PT, Tingey DT, Phillips DL (2006) Elevated CO2 and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. New Phytol 170:345–356

    Article  CAS  PubMed  Google Scholar 

  • Jones HG (1998) Stomatal control of photosynthesis and transpiration. J Exp Bot 49:387–398

    Article  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31:711–725

    Article  CAS  Google Scholar 

  • Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sci 171:52–60

    Article  CAS  Google Scholar 

  • Kalbitz K, Kaiser K, Bargholz J, Dardenne P (2006) Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter. Eur J Soil Sci 57:504–516

    Article  CAS  Google Scholar 

  • Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–291

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Karberg NJ, Pregitzer KS, King JS, Friend AL, Wood JR (2005) Soil carbon dioxide partial pressure and dissolved inorganic carbon chemistry under elevated carbon dioxide and ozone. Oecologia 142:296–306

    Article  CAS  PubMed  Google Scholar 

  • Karnosky DF (2003) Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps. Environ Int 29:161–169

    Article  CAS  PubMed  Google Scholar 

  • Karnosky DF, Tallis M, Darbah J, Taylor G (2007) Direct effects of elevated carbon dioxide on forest tree productivity. In: Freer-Smith PH, Broadmeadow MSJ, Lynch JM (eds) Forestry and climate change. CAB International, Wallingford, UK, pp 136–142

    Chapter  Google Scholar 

  • Kasurinen A, Peltonen PA, Julkunen-Tiitto R, Vapaavuori E, Nuutinen V, Holopainen T, Holopainen JK (2007) Effects of elevated CO2 and O3 on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant Soil 292:25–43

    Article  CAS  Google Scholar 

  • Kaye JP, Burke IC, Mosier AR, Guerschman JP (2004) Methane and nitrous oxide fluxes from urban soils to the atmosphere. Ecol Appl 14:975–981

    Article  Google Scholar 

  • Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199

    Article  PubMed  Google Scholar 

  • Keeling CD (1960) The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12:200–203

    Article  Google Scholar 

  • Kelleher BP, Simpson AJ (2006) Humic substances in soils: are they really chemically distinct? Environ Sci Technol 40:4605–4611

    Article  CAS  PubMed  Google Scholar 

  • Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  CAS  PubMed  Google Scholar 

  • Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Brass M, Röckmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol 178:808–814

    Article  CAS  PubMed  Google Scholar 

  • Kesselmeier J, Ciccioli P, Kuhn U, Stefani P, Biesenthal T, Rottenberger S, Wolf A, Vitullo M, Valentini R, Nobre A, Kabat P, Andreae MO (2002) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Global Biogeochem Cy 16:1126. doi:10.1029/2001GB001813

    Article  CAS  Google Scholar 

  • Killham K, Prosser JI (2007) The prokaryotes. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Elsevier, Amsterdam, pp 119–144

    Google Scholar 

  • Killops S, Killops V (2005) Introduction to organic geochemistry. Blackwell, Malden, MA

    Google Scholar 

  • Kimmins JP (2004) Forest ecology. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • King JS, Hanson PJ, Bernhardt E, Deangelis P, Norby RJ, Pregitzer KS (2004) A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Glob Change Biol 10:1027–1042

    Article  Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Holmes WE, Schmidt K (2005) Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. Oecologia 146:318–328

    Article  CAS  PubMed  Google Scholar 

  • Kilpelainen A, Peltola H, Ryyppo A, Sauvala K, Laitinen K, Kellomaki S (2003) Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiol 23:889–897

    PubMed  Google Scholar 

  • Kirkby KJ, Smart SM, Black HIJ, Brunce RGH, Corney PM, Smithers RJ (2005) Long term ecological change in British woodland (1971–2001). English Nature Research Report 653, English Nature, London, UK

    Google Scholar 

  • Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition-still a topic of debate. Soil Biol Biochem 38:2510–2518

    Article  CAS  Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral associations in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24

    Article  Google Scholar 

  • Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? a review. Biogeochemistry 85:91–118

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Körner C (2004) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philos Trans R Soc Lond B 359:493–498

    Article  CAS  Google Scholar 

  • Körner C (2005) An introduction to the functional diversity of temperate forest trees. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Ecological studies, Vol. 176. Springer, Berlin, pp 13–37

    Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  PubMed  CAS  Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Körner C, Morgan J, Norby R (2007) CO2 fertilization: when, where, how much? In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 9–21

    Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. In: Scheper Th (ed) Advances in biochemical engineering/biotechnology, Vol 71. Springer-Verlag, Berlin, pp 1–49

    Google Scholar 

  • Kozlowski TT (1971a) Growth and development of trees – volume 1. Academic, New York

    Google Scholar 

  • Kozlowski TT (1971b) Growth and development of trees – volume 2. Academic, New York

    Google Scholar 

  • Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic, San Diego, CA

    Google Scholar 

  • Krull ES, Baldock JA, Skjemstad JO (2003) Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct Plant Biol 30:207–222

    Article  Google Scholar 

  • Kuhlbusch TAJ (1998) Black carbon and the carbon cycle. Science 280:1903–1904

    Article  CAS  Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Ladeau SL, Clark JS (2006) Pollen production by Pinus taeda growing in elevated atmospheric CO2. Funct Ecol 20:541–547

    Article  Google Scholar 

  • Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenerg 25:381–388

    Article  CAS  Google Scholar 

  • Landi A, Mermut AR, Anderson DW (2003) Origin and rate of pedogenic carbonate accumulation in Saskatchewan soils, Canada. Geoderma 117:143–156

    Article  CAS  Google Scholar 

  • Langley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG, Megonigal JP (2009) Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem. Soil Biol Biochem 41:54–60

    Article  CAS  Google Scholar 

  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51

    Google Scholar 

  • Lapenis AG, Lawrence GB, Bailey SW, Aparin BF, Shiklomanov AI, Speranskaya NA, Torn MS, Calef M (2008) Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon. Global Biogeochem Cy 22, GB2010, doi:10.1029/2007GB003077

    Google Scholar 

  • Leakey ADB, Xu F, Gillespie KM, McGrath JM, Ainsworth EA, Ort DR (2009) Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proc Natl Acad Sci USA 106:3597–3602

    Article  CAS  PubMed  Google Scholar 

  • Ledford H (2008) Forestry carbon dioxide projects to close down. Nature 456:289

    Article  PubMed  CAS  Google Scholar 

  • Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636

    Article  CAS  Google Scholar 

  • Lehmann J, Skjemstad J, Sohi S, Carter J, Barson M, Falloon P, Coleman K, Woodbury P, Krull E (2008a) Australian climate-carbon cycle feedback reduced by soil black carbon. Nat Geosci 1:832–835

    Article  CAS  Google Scholar 

  • Lehmann J, Solomon D, Kinyangi J, Dathe L, Wirick S, Jacobsen C (2008b) Spatial complexity of soil organic matter forms at nanometre scales. Nat Geosci 1:238–242

    Article  CAS  Google Scholar 

  • Lenton TM, Britton C (2006) Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Global Biogeochem Cy 20, GB3009, doi:10.1029/2005GB002678

    Google Scholar 

  • Lerdau MT (2003) Keystone molecules and organic chemical flux from plants. In: Melillo JM, Field CB, Moldan B (eds) Interactions of the major biogeochemical cycles: global change and human impacts. Island Press, Washington, D.C., pp 177–192

    Google Scholar 

  • Lerdau M (2007) A positive feedback with negative consequences. Science 316:212–213

    Article  CAS  PubMed  Google Scholar 

  • Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skierna S, Taghavi S, Zak D, Van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941

    Article  CAS  PubMed  Google Scholar 

  • Leslie M (2009) On the origin of photosynthesis. Science 323:1286–1287

    Article  CAS  PubMed  Google Scholar 

  • Leuzinger S, Körner C (2007) Water savings in mature deciduous forest trees under elevated CO2. Glob Change Biol 13:2498–2508

    Article  Google Scholar 

  • Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274:1–29

    Article  CAS  Google Scholar 

  • Lewis SL (2006) Tropical forests and the changing earth system. Philos Trans R Soc Lond B 361:195–210

    Article  Google Scholar 

  • Lewis SL, Malhi Y, Phillips OL (2004) Fingerprinting the impacts of global change on tropical forests. Philos Trans R Soc Lond B 359:437–462

    Article  CAS  Google Scholar 

  • Lichter J, Billings SA, Ziegler SE, Gaindh D, Ryals R, Finzi AC, Jackson RB, Stemmler EA, Schlesinger WH (2008) Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment. Glob Change Biol 14:2910–2922

    Article  Google Scholar 

  • Likens GE, Edgerton ES, Galloway JN (1983) The composition and deposition of organic carbon in precipitation. Tellus 35(B):16–24

    Google Scholar 

  • Lin C, Owen SM, Peñuelas J (2007) Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol Biochem 39:951–960

    Article  CAS  Google Scholar 

  • Lindroth A, Lagergren F, Aurelia M, Bjarnadottir B, Christensen T, Dellwik E, Grelle A, Ibrom A, Johansson T, Lankreijer H, Launiainen S, Laurila T, Mölder M, Nikinmaa E, Pilegaard K, Sigurdsson BD, Vesala T (2008) Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem respiration of Northern deciduous and coniferous forests. Tellus 60B:129–142

    Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Review: carbon allocation in forest ecosystems. Glob Change Biol 13:2089–2109

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2009) Soil organic carbon sequestration by biochemically recalcitrant biomacromolecules. In: Lal R, Follett RF (eds) Soil carbon sequestration and the greenhouse effect, 2nd edn. Soil Science Society of America Special Publication 57, Madison, WI, pp 207–222

    Google Scholar 

  • Lüttge U (2006) Photosynthetic flexibility and ecophysiological plasticity: questions and lessons from Clusia, the only CAM tree, in the neotropics. New Phytol 171:7–25

    Article  PubMed  CAS  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberger G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci 171:111–124

    Article  CAS  Google Scholar 

  • Ludley KE, Jickells SM, Chamberlain PM, Whitaker J, Robinson CH (2009) Distribution of monoterpenes between organic resources in upper soil horizons under monocultures of Picea abies, Picea sitchensis and Pinus sylvestris. Soil Biol Biochem 41:1050–1059

    Google Scholar 

  • Lukac M, Lagomarsino A, Moscatelli MC, De Angelis P, Cotrufo MF, Godbold DL (2009) Forest soil carbon cycle under elevated CO2 - a case of increased throughput? Forestry 82:75–86

    Article  Google Scholar 

  • Luo Y (2007) Terrestrial carbon-cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712

    Article  Google Scholar 

  • Luo Y, Chen JL, Reynolds JF, Field CB, Mooney HA (1997) Disproportional increases in photosynthesis and plant biomass in a Californian grassland exposed to elevated CO2: a simulation analysis. Funct Ecol 11:696–704

    Article  Google Scholar 

  • Luo ZB, Calfapietra C, Scarascia-Mugnozza G, Liberloo M, Polle A (2008) Carbon-based secondary metabolites and internal N pools in Populus nigra under Free Air CO2 Enrichment (FACE) and N fertilization. Plant Soil 304:45–57

    Article  CAS  Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze E-D, Wingate L, Matteucci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond J-M, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith M-L, Tang J, Valentini R, Vesala T, Janssens IA (2007) The CO2-balance of boreal, temperate and tropical forests derived from a global database. Glob Change Biol 13:2509–2537

    Google Scholar 

  • Madigan MT, Martinko JM (2006) Brock – biology of microorganisms. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Mahieu N, Powlson DS, Randall EW (1999) Statistical analysis of published carbon-13 CPMAS NMR spectra of soil organic matter. Soil Sci Soc Am J 63:307–319

    Article  CAS  Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740

    Article  CAS  Google Scholar 

  • Malhi Y, Meir P, Brown S (2002) Forests, carbon and global climate. Philos Trans R Soc Lond A 360:1567–1591

    Article  CAS  Google Scholar 

  • van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the western United States. Science 323:521–524

    Article  PubMed  CAS  Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321:684–686

    Article  CAS  PubMed  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110

    Article  CAS  Google Scholar 

  • Matthews E (1997) Global litter production, pools, and turnover times: estimates from measurement data and regression models. J Geophys Res 102:18771–18800

    Google Scholar 

  • McCarthy HR, Oren R, Finzi AC, Johnsen KH (2006) Canopy leaf area constrains [CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools. Proc Natl Acad Sci USA 103:19356–19361

    Article  CAS  PubMed  Google Scholar 

  • McDowell WH (2003) Dissolved organic matter in soils-future directions and unanswered questions. Geoderma 113:179–186

    Article  CAS  Google Scholar 

  • McMurtrie RE, Norby RJ, Medlyn BE, Dewar RC, Pepper DA, Reich PB, Barton CVM (2008) Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Funct Plant Biol 35:521–534

    Article  CAS  Google Scholar 

  • Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a preciptation gradient. Glob Change Biol 14:2081–2095

    Article  Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176

    Article  CAS  PubMed  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018

    Article  CAS  PubMed  Google Scholar 

  • Mi N, Wang S, Liu J, Yu G, Zhang W, Jobbágy EG (2008) Soil inorganic carbon storage pattern in China. Glob Change Biol 14:2380–2387

    Article  Google Scholar 

  • Millard P, Sommerkorn M, Grelet G-A (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol 175:11–28

    Article  CAS  PubMed  Google Scholar 

  • Miltner A, Kopinke F-D, Kindler R, Selesi D, Hartmann A, Kästner M (2005) Non-phototrophic CO2 fixation by soil microorganisms. Plant Soil 269:193–203

    Article  CAS  Google Scholar 

  • Mohan JE, Clark JS, Schlesinger WH (2007) Long-term CO2 enrichment of a forest ecosystem: implications for forest regeneration and succession. Ecol Appl 17:1198–1212

    Article  PubMed  Google Scholar 

  • Monson RK, Trahan N, Rosenstiel TN, Veres P, Moore D, Wilkinson M, Norby RJ, Volder A, Tjoelker MG, Briske DD, Karnosky DF, Fall R (2007) Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philos Trans.R Soc A 365:1677–1695

    Article  CAS  Google Scholar 

  • Montheith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Veseley J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–541

    Article  CAS  Google Scholar 

  • Mooney HA (1972) The carbon balance of plants. Annu Rev Ecol Syst 3:315–346

    Article  CAS  Google Scholar 

  • Moore BD, Cheng S-H, Sims D, Seemann JR (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 22:567–582

    Article  CAS  Google Scholar 

  • Moore DJP, Gonzalez-Meler MA, Taneva L, Pippen JS, Kim H-S, DeLucia EH (2008) The effect of carbon dioxide enrichment on apparent stem respiration from Pinus taeda L. is confounded by high levels of soil carbon dioxide. Oecologia 158:1–10

    Article  PubMed  Google Scholar 

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174

    Article  Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4:29–48

    Article  CAS  Google Scholar 

  • Neilson RP, Drapek RJ (1998) Potentially complex biosphere responses to transient global warming. Glob Change Biol 4:505–521

    Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Nierop KGJ, Filley TR (2008) Simultaneous analysis of tannin and lignin signatures in soils by thermally assisted hydrolysis and methylation using 13C-labeled TMAH. J Anal Appl Pyrolysis 83:227–231

    Article  CAS  Google Scholar 

  • Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, López-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Sriskantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Proc R Soc B . doi:101098/rspb.2008.1731

    PubMed  Google Scholar 

  • Nobel PS (2005) Physicochemical and environmental plant physiology. Elsevier, Amsterdam

    Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  Google Scholar 

  • Norby RJ, Jackson RB (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12

    Article  CAS  Google Scholar 

  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004) Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci USA 101:9689–9693

    Article  CAS  PubMed  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza G, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056

    Article  CAS  PubMed  Google Scholar 

  • Norby RJ, Rustad LE, Dukes JS, Ojima DS, Parton WJ, Del Grosso SJ, McMurtie RE, Pepper DA (2007) Ecosystem responses to warming and interacting global change factors. In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 23–36

    Google Scholar 

  • Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CRD, Benedict C, Dervinis C, Yu Q, Sykes R, Davis M, Martin TA, Peter GF, Kirst M (2009) Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol 182:878–890

    Google Scholar 

  • Nowak SR, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 - do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Google Scholar 

  • Oh N-H, Hofmockel M, Lavine ML, Richter DD (2007) Did elevated atmospheric CO2 alter soil mineral weathering? Glob Change Biol 13:2626–2641

    Article  Google Scholar 

  • Osler GHR, Sommerkorn M (2007) Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology 88:1611–1621

    Article  PubMed  Google Scholar 

  • Paré D, Boutin R, Larocque GR, Raulier F (2006) Effect of temperature on soil organic matter decomposition in three forest biomes of eastern Canada. Can J Soil Sci 86:247–256

    Google Scholar 

  • Parry ML, Canziani OF, Polutikopf JP, van der Linden PJ, Hanson CE (eds) (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Parsons WFJ, Bockheim JG, Lindroth RL (2008) Independent, interactive, and species-specific responses of leaf litter decomposition to elevated CO2 and O3 in a northern hardwood forest. Ecosystems 11:505–519

    Article  CAS  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  CAS  PubMed  Google Scholar 

  • Pataki DE, Xu T, Luo YQ, Ehleringer JR (2007) Inferring biogenic and anthropogenic carbon dioxide sources across an urban to rural gradient. Oecologia 152:307–322

    Article  CAS  PubMed  Google Scholar 

  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo Y, Patrick Megonigal J, Olsrud M, Ryan MG, Wan S (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–322

    Article  Google Scholar 

  • Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M (2002) Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89:147–162

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  CAS  PubMed  Google Scholar 

  • Poirier N, Derenne S, Balesdent J, Chenu C, Bardoux G, Mariotti A, Largeau C (2006) Dynamics and origin of the non-hydrolysable organic fraction in a forest and a cultivated temperate soil, as determined by isotopic and microscopic studies. Eur J Soil Sci 57:719–730

    Article  CAS  Google Scholar 

  • Pollierer MM, Langel R, Körner C, Maraun M, Scheu S (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736

    Article  PubMed  Google Scholar 

  • Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–2077

    Google Scholar 

  • Prescott CE (2005) Do rates of litter decomposition tell us anything we really need to know? For Ecol Manag 220:66–74

    Article  Google Scholar 

  • Quine TA, Van Oost K (2007) Quantifying carbon sequestration as a result of soil erosion and deposition: retrospective assessment using caesium-137 and carbon inventories. Glob Change Biol 13:2610–2625

    Article  Google Scholar 

  • Rae AM, Tricker PJ, Bunn SM, Taylor G (2007) Adapation of tree growth to elevated CO2: quantiative trait loci for biomass in Populus. New Phytol 175:59–69

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    Article  CAS  Google Scholar 

  • Ramanathan V, Feng Y (2008) On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc Natl Acad Sci USA 105:14245–14250

    Article  CAS  PubMed  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (2005) Biology of plants, 7th edn. WH Freeman & Co, New York

    Google Scholar 

  • Rawlins AJ, Bull ID, Poirier N, Ineson P, Evershed RP (2006) The biochemical transformation of oak (Quercus robur) leaf litter consumed by the pill millipede (Glomeris marginata). Soil Biol Biochem 38:1063–1076

    Article  CAS  Google Scholar 

  • Reich PB, Hungate BA, Luo Y (2006) Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu Rev Evol Syst 37:611–636

    Article  Google Scholar 

  • Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8:811–818

    Article  Google Scholar 

  • Reichstein M (2007) Impacts of climate change on forest soil carbon: principles, factors, models, uncertainties. In: Freer-Smith PH, Broadmeadow MSJ, Lynch JM (eds) Forestry and climate change. CAB International, Wallingford, UK, pp 127–135

    Google Scholar 

  • Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, Gessler A (2006) Physiological responses of forest trees to heat and drought. Plant Biol 8:556–571

    Article  CAS  PubMed  Google Scholar 

  • Reyes-García C, Andrade JL (2009) Crassulacean acid metabolism under global climate change. New Phytol 181:754–757

    Article  PubMed  Google Scholar 

  • Robinson D (2007) Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc R Soc B 274:2753–2759

    Article  CAS  PubMed  Google Scholar 

  • Rogers A, Ainsworth EA (2006) The response of foliar carbohydrates to elevated [CO2]. In: Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (eds) Managed ecosystems and CO2 – case studies, processes, and perspectives. Springer, Berlin, pp 293–308

    Google Scholar 

  • Romanou A, Liepert B, Schmidt GA, Rossow WB, Ruedy RA, Zhang Y (2007) 20th century changes in surface solar irradiance in simulations and observations. Geophys Res Lett 34:L05713. doi:10.1029/2006GL028356

    Article  Google Scholar 

  • Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313

    Article  CAS  PubMed  Google Scholar 

  • Runion GB, Entry JA, Prior SA, Mitchell RJ, Rogers HH (1999) Tissue chemistry and carbon allocation in seedlings of Pinus palustris subjected to elevated atmospheric CO2 and water strees. Tree Physiol 19:329–335

    CAS  PubMed  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Google Scholar 

  • Ryan MG, Lavigne MB, Gower ST (1997) Annual carbon costs of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J Geophys Res 102:871–883

    Google Scholar 

  • Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27

    Article  Google Scholar 

  • Sage RF (2001) Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biol 3:202–213

    Article  CAS  Google Scholar 

  • Salomé C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2009) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob Change Biol doi: 10.1111/j.1365-2486.2009.01884.x

    Google Scholar 

  • Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149:369–400

    Article  CAS  Google Scholar 

  • Schade GW, Hofmann R-M, Crutzen PJ (1999) CO emissions from degrading plant matter. Tellus 51B:889–908

    CAS  Google Scholar 

  • Schenk HJ (2008) The shallowest possible water extraction profile: a null model for global root distributions. Vadose Zone J 7:1119–1124

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2005) Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140

    Article  Google Scholar 

  • Scherer-Lorenzen M, Potvin C, Koricheva J, Schmid B, Hector A, Bornik Z, Reynolds G, Schulze E-D (2005) The design of experimental tree plantations for functional biodiversity research. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Ecological studies, Vol. 176. Springer, Berlin, pp 347–376

    Google Scholar 

  • Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–234

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry – an analysis of global change. Academic, San Diego, CA

    Google Scholar 

  • Schlesinger WH (2006) Inorganic carbon and the global C cycle. In: Lal R (ed) Encyclopedia of soil science. Taylor & Francis, London, pp 879–881

    Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem Cy 14:777–793

    Article  CAS  Google Scholar 

  • Schmidt MWI, Skjemstad JO, Jäger C (2002) Carbon isotope geochemistry and nanomorphology of soil black carbon: black chernozemic soils in central Europe originate from ancient biomass burning. Global Biogeochem Cy 16:1123. doi:10.1029/2002GB001939

    Article  CAS  Google Scholar 

  • Schulze E-D (2006) Biological control of the terrestrial carbon sink. Biogeosciences 3:147–166

    Article  CAS  Google Scholar 

  • Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Schweitzer JA, Madritch MD, Bailey JK, LeRoy CJ, Fischer DG, Rehill BJ, Lindroth RL, Hagerman AE, Wooley SC, Hart SC, Whitham TG (2008) From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11:1005–1020

    Article  CAS  Google Scholar 

  • Scott-Denton LE, Rosenstiel TN, Monson RK (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob Change Biol 12:205–216

    Article  Google Scholar 

  • Seco R, Peñuelas J, Filella I (2007) Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ 41:2477–2499

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Seth MK (2004) Trees and their economic importance. Bot Rev 69:321–376

    Article  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Williams DG (2009) Carbon and oxygen isotope analysis of leaf biomass reveals contrasting photosynthetic responses to elevated CO2 near geologic vents in Yellowstone National Park. Biogeosciences 6:25–31

    Article  CAS  Google Scholar 

  • Shibu ME, Leffelaar PA, Van Keulen H, Aggarwal PK (2006) Quantitative description of soil organic matter dynamics – a review of approaches with reference to rice-based cropping systems. Geoderma 137:1–18

    Article  CAS  Google Scholar 

  • Shindell D, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nat Geosci 2:294–300

    Article  CAS  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Google Scholar 

  • Simpson AJ, Simpson MJ, Smith E, Kelleher BP (2007) Microbially derived inputs to soil organic matter: are current estimates too low? Environ Sci Technol 41:8070–8076

    Article  CAS  PubMed  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Smith P (2004) How long before a change in soil organic carbon can be detected? Glob Change Biol 10:1–6

    Article  Google Scholar 

  • Smith P, Fang C, Dawson JJC, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Adv Agron 97:1–43

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  PubMed  Google Scholar 

  • Steinmann K, Siegwolf RTW, Saurer M, Körner C (2004) Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia 141:489–501

    Article  PubMed  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry. Wiley, New York

    Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant-herbivory interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Change Biol 13:1823–1842

    Article  Google Scholar 

  • Stiling P, Moon D, Rossi A, Hungate BA, Drake B (2009) Seeing the forest for the trees: long term exposure to elevated CO2 increases some herbivore densities. Glob Change Biol 15:1895–1902

    Google Scholar 

  • Stitt M, Schulze E-D (1994) Plant growth, storage, and resource allocation: from flux control in a metabolic chain to the whole-plant level. In: Schulze E-D (ed) Flux control in biological systems: from enzymes to populations and ecosystems. Academic Press, San Diego, CA, pp 57–118

    Google Scholar 

  • Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R (2008) Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319:456–458

    Article  CAS  PubMed  Google Scholar 

  • Subke J-A, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Change Biol 12:921–943

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley, CA

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer, Sunderland

    Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963

    Article  Google Scholar 

  • Taneva L, Gonzalez-Meler MA (2008) Decomposition kinetics of soil carbon of different age from a forest exposed to 8 years of elevated atmospheric CO2 concentration. Soil Biol Biochem 40:2670–2677

    Article  CAS  Google Scholar 

  • Tans P (2009) Trends in atmospheric carbon dioxide - global. http://www.esrl.noaa.gov/gmd/ccgg/trends/

  • Tarr MA, Miller WL, Zepp RG (1995) Direct carbon monoxide photoproduction from plant matter. J Geophys Res 100D:11403–11413

    Article  Google Scholar 

  • Taylor G, Tallis MJ, Giardina CP, Percy KE, Miglietta F, Gupta PS, Gioli B, Calfapietra C, Gielen B, Kubiske ME, Scarascia-Mugnozza G, Kets K, Long SP, Karnosky DF (2008) Future atmospheric CO2 leads to delayed autumnal senescence. Glob Change Biol 14:264–275

    Article  Google Scholar 

  • Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specifity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251

    Article  CAS  PubMed  Google Scholar 

  • Terazawa K, Ishizuka S, Sakata T, Yamada K, Takahashi M (2007) Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest. Soil Biol Biochem 39:2689–2692

    Article  CAS  Google Scholar 

  • Teske ME, Thistle HW (2004) A library of forest canopy structure for use in interception modeling. For Ecol Manag 198:341–350

    Article  Google Scholar 

  • Thauer RK (2007) A fifth pathway of carbon fixation. Science 318:1732–1733

    Article  CAS  PubMed  Google Scholar 

  • Thiet RK, Frey SD, Six J (2006) Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues. Soil Biol Biochem 38:837–844

    Article  CAS  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, NY, pp 235–336

    Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems – recent progress and challenges. Glob Change Biol 12:141–153

    Article  Google Scholar 

  • Trumbore SE, Gaudinski JB (2003) The secret lives of roots. Science 302:1344–1345

    Article  CAS  PubMed  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest types and species. Plant Soil 187:159–219

    Article  CAS  Google Scholar 

  • Urban O (2003) Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Phytosynthetica 41:9–20

    Article  CAS  Google Scholar 

  • Vancampenhout K, Wouters K, De Vos B, Buurman P, Swennen R, Deckers J (2009) Differences in chemical composition of soil organic matter in natrual ecosystems from different climatic regions – a pyrolysis-GC/MS study. Soil Biol Biochem 41:568–579

    Article  CAS  Google Scholar 

  • Wall DH, Bradford MA, John MGS, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Zadeh Gardel H, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Hefin Jones T, Kovarova M, Kranabetter JM, Kutny L, Lin K-C, Maryati M, Masse D, Pokarzhevski A, Rahman H, Sabará MG, Salamon J-A, Swift MJ, Varela A, Vasconcelos HL, White D, Zou Z (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol 14:2661–2677

    Google Scholar 

  • Wang K, Dickinson RE, Liang S (2009) Clear sky visibility has decreased over land globally from 1973 to 2007. Science 323:1468–1470

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-P, Han X-G, Wang GG, Song Y, Gulledge J (2008) Aerobic methane emission from plant in the Inner Mongolia steppe. Environ Sci Technol 42:62–68

    Article  CAS  PubMed  Google Scholar 

  • Wardlaw IF (1990) The control of carbon partitioning in plants. New Phytol 116:341–381

    Article  CAS  Google Scholar 

  • Waring RW, Running SW (2007) Forest ecosystems – analysis at multiple scales. Elsevier Academic, Burlington, MA

    Google Scholar 

  • WBCSD (World business council for sustainable development) (2007) The sustainable forest products industry, carbon and climate change – key messages for policy-makers. Geneva, Switzerland. www.wbcsd.org/DocRoot/IUMhw6W4Ia0Sbp4edftv/sfpi-carbon-climate.pdf

  • Webster EA, Tilston EL, Chudek JA, Hopkins DW (2008) Decompostion in soil and chemical characteristics of pollen. Eur J Soil Sci 59:551–558

    Article  CAS  Google Scholar 

  • Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56

    Article  PubMed  Google Scholar 

  • West LT, Drees LR, Wilding LP, Rabenhorst MC (1988) Differentiation of pedogenic and lithogenic carbonate forms in Texas. Geoderma 43:271–287

    Article  Google Scholar 

  • Wild M (2009) Global dimming and brightening: a review. J Geophys Res 114, D00D16, doi:10.1029/2008JD011470

    Google Scholar 

  • Wild M, Grieser J, Schär C (2008) Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys Res Lett 35:L17706. doi:10.1029/2008GL034842

    Article  Google Scholar 

  • Willett KM, Gillett NP, Jones PD, Thorne PW (2007) Attribution of observed surface humidity changes to human influence. Nature 449:710–713

    Article  CAS  PubMed  Google Scholar 

  • Wirth C, Schulze E-D, Lühker B, Grigoriev S, Siry M, Hardes G, Ziegler W, Backor M, Bauer G, Vygodskaya NN (2002) Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant Soil 242:41–63

    Article  CAS  Google Scholar 

  • Wolters V (2000) Invertebrate control of soil organic matter stability. Biol Fert Soils 31:1–19

    Article  CAS  Google Scholar 

  • Woodall CW, Liknes GC (2008) Climatic regions as an indicator of forest coarse and fine woody carbon stocks in the United States. Carbon Bal Manag 3:5

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Würth MKR, Peláez-Riedl S, Wright SJ, Körner C (2005) Non-structural carbohydrate pools in a tropical forest. Oecologia 143:11–24

    Article  PubMed  Google Scholar 

  • Wutzler T, Reichstein M (2007) Soils apart from equilibrium - consequences for soil carbon balance modelling. Biogeosciences 4:125–136

    Article  CAS  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    Article  CAS  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Xia J, Han Y, Zhang Z, Wan S (2009) Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeosciences 6:1361–1370

    Google Scholar 

  • Xu C, Gertner GZ, Scheller RM (2007) Potential effects of interaction between CO2 and temperature on forest landscape responses to global warming. Glob Change Biol 13:1469–1483

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lorenz, K., Lal, R. (2010). The Natural Dynamic of Carbon in Forest Ecosystems. In: Carbon Sequestration in Forest Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3266-9_2

Download citation

Publish with us

Policies and ethics