Skip to main content

Molecular Genetics of Lipid Metabolism in the Model Green Alga Chlamydomonas reinhardtii

  • Chapter
Lipids in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 30))

Summary

Research focusing on microalgae is currently experiencing a renaissance due to the potential of microalgae for providing biofuels without competing with food crops. Despite this potential, our knowledge of neutral and membrane lipid metabolism in microalgae is very limited, and opportunities to explore lipid metabolism in microalgae and contrast it to plant lipid metabolism abound. The unicellular green alga Chlamydomonas reinhardtii is currently the best genetic and genomic model for microalgal lipid research. This chapter summarizes the current knowledge of lipid metabolism in this alga. Chlamydomonas lipid metabolism differs in some aspects from that of seed plants. For example, Chlamydomonas lacks phosphatidylcholine and has in its place the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. This has important implications for lipid trafficking and lipid modification. These distinct aspects of algal lipid metabolism combined with the lower number of genes involved in lipid metabolism in Chlamydomonas provide several opportunities for basic research aimed at a more in-depth understanding of lipid metabolism in eukaryotic photosynthetic organisms in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACP:

Acyl carrier protein

CDP-DAG:

CDP-diacylglycerol

DAG:

Diacylglycerol

DGTS:

Dia-cylglyceryl-N,N,N-trimethylhomoserine

DGDG:

Digalac-tosyl -diacyl-gly cerol

ER:

Endoplasmic reticulum

FAS:

Fatty acid synthase

MGDG:

Monogalactosyldiacylg-lycerol

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

PUFA:

Polyunsaturated fatty acid

RNAi:

RNA interference

SQDG:

Sulfoquinovosyldiacylglycerol

TAG:

Triacylglycerol.

References

  • Babiychuk E, Müller F, Eubel H, Braun HP, Frentzen M and Kushnir S (2003) Arabidopsis phosphatidylglycerophos-phate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33: 899–909

    Article  PubMed  CAS  Google Scholar 

  • Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y and Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132: 681–697

    Article  PubMed  CAS  Google Scholar 

  • Benamotz A and Tornabene TG (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21: 72–81

    Article  CAS  Google Scholar 

  • Benamotz A, Shaish A and Avron M (1989) Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol 91: 1040–1043

    Article  CAS  Google Scholar 

  • Benning C (2008) A role for lipid trafficking in chloroplast biogenesis. Prog Lipid Res 47: 381–389

    Article  PubMed  CAS  Google Scholar 

  • Benning C and Ohta H (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280: 2397–2400

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Beatty JT, Prince RC and Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodo-bacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci USA 90: 1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Huang ZH and Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in cells of Rho-dobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317: 103–111

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Garavito RM, Shimojima M (2008) Sulfolipid biosynthesis and function in plants. In: Hell R, Dahl C, Knaff D and Leusteck T (eds) Sulfur Metabolism in Pho-totrophic Organisms. Springer, Dordrecht, pp. 185–200

    Chapter  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A and Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60: 497–503

    Article  PubMed  CAS  Google Scholar 

  • Blouin A, Lavezzi T and Moore TS (2003) Membrane lipid biosynthesis in Chlamydomonas reinhardtii. Partial characterization of CDP-diacylglycerol:myo-inositol 3-phos-phatidyltransferase. Plant Physiol Biochem 41: 11–16

    Article  CAS  Google Scholar 

  • Browse J and Somerville C (1991) Glycerolipid biosynthesis: Biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42: 467–506

    Article  CAS  Google Scholar 

  • Browse J, McCourt P and Somerville C (1985) A mutant of Arabidopsis lacking a chloroplast-specific lipid. Science 227: 763–765

    Article  PubMed  CAS  Google Scholar 

  • Browse J, Warwick N, Somerville CR and Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the “16:3” plant Arabidopsis thaliana. Biochem J 235: 25–31

    PubMed  CAS  Google Scholar 

  • Cedergren RA and Hollingsworth RI (1994) Occurrence of sulfoquinovosyl diacylglycerol in some members of the family Rhizobiaceae. J Lipid Res 35: 1452–1461

    PubMed  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: 294–306

    Article  PubMed  CAS  Google Scholar 

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H and Stymne H (2000) Phospholipid: diacylg-lycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97: 6487–6492

    Article  PubMed  CAS  Google Scholar 

  • Davies JP, Yildiz F and Grossman AR (1994) Mutants of Chlamydomonas with aberrant responses to sulfur deprivation. Plant Cell 6: 53–63

    PubMed  CAS  Google Scholar 

  • Davies JP, Yildiz FH and Grossman A (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15: 2150– 2159

    PubMed  CAS  Google Scholar 

  • Davies JP, Yildiz FH and Grossman AR (1999) Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. Plant Cell 11: 1179–1190

    PubMed  CAS  Google Scholar 

  • Dempster TA and Sommerfeld MR (1998) Effects of environmental conditions on growth and lipid accumulation in Nitzschia communis (Bacillariophyceae). J Phycol 34: 712–721

    Article  CAS  Google Scholar 

  • De Swaaf ME, de Rijk TC, Eggink G and Sijtsma L (1999) Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. J Biotech 70: 185–192

    Article  Google Scholar 

  • Dörmann P and Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7: 112–118

    Article  PubMed  Google Scholar 

  • Dubertret G, Mirshahi A, Mirshahi M, Gerard-Hirne C and Tremolieres A (1994) Evidence from in vivo manipulations of lipid composition in mutants that the Δ3-trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. Eur J Biochem 226: 473–482

    Article  PubMed  CAS  Google Scholar 

  • Dubertret G, Gerard-Hirne C and Tremolieres A (2002) Importance of trans3-hexadecenoic acid containing phosphatidylglycerol in the formation of the trimeric light-harvesting complex in Chlamydomonas. Plant Phys-iol Biochem 40: 829–836

    Article  CAS  Google Scholar 

  • Eichenberger W (1982) Distribution of diacylglyceryl-O-4′-(N,N,N-trimethyl)homoserine in different algae. Plant Sci Lett 24: 91–95

    Article  CAS  Google Scholar 

  • Eichenberger W (1993) Betaine lipids in lower plants. Distribution of DGTS, DGTA and phospholipids, and the intracellular localization and site of biosynthesis of DGTS. Plant Physiol Biochem 31: 213–221

    CAS  Google Scholar 

  • Eichenberger W and Boschetti A (1977) Occurrence of 1(3),2-diacylglyceryl-(3)-O-4′-(N,N,N-trimethyl)homo-serine in Chlamydomonas reinhardtii. FEBS Lett 88: 201–204

    Article  Google Scholar 

  • Essigmann B, Güler S, Narang RA, Linke D and Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950–1955

    Article  PubMed  CAS  Google Scholar 

  • Frentzen M (2004) Phosphatidylglycerol and sulfoquinovo-syldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7: 270–276

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann M, Stahlberg A, Govorunova E, Rank S and Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for photo-taxis and photophobic responses. J Cell Sci 114: 3857– 3863

    PubMed  CAS  Google Scholar 

  • Garnier J, Maroc J and Guyon D (1987) Characterization of new strains of photosynthetic mutants of Chlamydomonas reinhardtii. IV. Impaired excitation energy transfer in three low fluorescent mutants. Plant Cell Physiol 28: 1117–1131

    CAS  Google Scholar 

  • Garnier J, Wu B, Maroc J, Guyon D and Tremolieres A (1990) Restoration of both an oligomeric form of the light-harvesting antenna CP II and a fluorescence state II-state I transition by Δ3-trans-hexadecenoic acid-containing phosphatidylglycerol in cells of a mutant of Chlamydomonas reinhardtii. Biochim Biophys Acta 1020: 153–162

    Article  CAS  Google Scholar 

  • Giroud C, Gerber A and Eichenberger W (1988) Lipids of Chlamydomonas reinhardtii. Analysis of molecular species and intracellular site(s) of biosynthesis. Plant Cell Physiol 29: 587–595

    CAS  Google Scholar 

  • Gombos Z, Wada H and Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC 6803 to low-temperature photoinhibition. Proc Natl Acad Sci USA 89: 9959–9963

    Article  PubMed  CAS  Google Scholar 

  • Gounaris K and Barber J (1985) Isolation and characterisation of a photosytem II reaction center lipoprotein complex. FEBS Lett 188: 68–72

    Article  CAS  Google Scholar 

  • Grenier G, Guyon D, Roche O, Dubertret G and Tremo-lieres A (1991) Modification of the membrane fatty-acid composition of Chlamydomonas reinhardtii cultured in the presence of liposomes. Plant Physiol Biochem 29: 429–440

    CAS  Google Scholar 

  • Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S and Spalding MH (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10: 190–198

    Article  PubMed  CAS  Google Scholar 

  • Guckert JB and Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlo-rophyta) during high pH-induced cell cycle inhibition. J Phycol 26: 72–79

    Article  CAS  Google Scholar 

  • Hagio M, Gombos Z, Varkonyi Z, Masamoto K, Sato N, Tsuzuki M and Wada H (2000) Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. Plant Physiol 124: 795–804

    Article  PubMed  CAS  Google Scholar 

  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S and Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43: 1456–1464

    Article  PubMed  CAS  Google Scholar 

  • Härtel H, Dörmann P and Benning C (2000) DGD1-inde-pendent biosynthesis of extraplastidic galactolipids following phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97: 10649–10654

    Article  PubMed  Google Scholar 

  • Heinz E and Roughan G (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Hobbs DH, Lu C and Hills MJ (1999) Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidop-sis thaliana and its functional expression. FEBS Lett 452: 145–149

    Article  PubMed  CAS  Google Scholar 

  • Hofmann M and Eichenberger W (1996) Biosynthesis of diacylglyceryl-N,N,N-trimethylhomoserine in Rhodo-bacter sphaeroides and evidence for lipid-linked N meth-ylation. J Bacteriol 178: 6140–6144

    PubMed  CAS  Google Scholar 

  • Holzl G and Dörmann P (2007) Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res 46: 225–243

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M and Darzins A (2008) Microalgal triacylglycer-ols as feedstocks for biofuel production: perspectives and advances. Plant J 54: 621–639

    Article  PubMed  CAS  Google Scholar 

  • Janero DR and Barrnett R (1981a) Cellular and thylakoid-membrane glycolipids of Chlamydomonas reinhardtii 137+. J Lipid Res 22: 1119–1125

    CAS  Google Scholar 

  • Janero DR and Barrnett R (1981b) Cellular and thylakoid-membrane phospholipids of Chlamydomonas reinhardtii 137+. J Lipid Res 22: 1126–1130

    CAS  Google Scholar 

  • Janero DR and Barrnett R (1982) Isolation and characterization of an ether-linked homoserine lipid from the thylakoid membrane of Chlamydomonas reinhardtii 137+. J Lipid Res 23: 307–316

    PubMed  CAS  Google Scholar 

  • Jouhet J, Marechal E, Baldan B, Bligny R, Joyard J and Block MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167: 863–874

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Marechal E and Block MA (2007) Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res 46: 37–55

    Article  PubMed  CAS  Google Scholar 

  • Joyard J, Teyssier E, Miege C, Berny-Seigneurin D, Mare-chal E, Block MA, Dorne AJ, Rolland N, Ajlani G and Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118: 715–723

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa M, Yamato KT, Kohzu Y, Shoji S, Matsui K, Tanaka Y, Sakai Y and Fukuzawa H (2006) A front-end desaturase from Chlamydomonas reinhardtii produces pinolenic and coniferonic acids by ω 13 desaturation in methylotrophic yeast and tobacco. Plant Cell Physiol 47: 64–73

    Article  PubMed  CAS  Google Scholar 

  • Kathir P, LaVoie M, Brazelton WJ, Haas NA, Lefeb-vre PA and Silflow CD (2003) Molecular map of the Chlamydomonas reinhardtii nuclear genome. Euk Cell 2: 362–379

    Article  CAS  Google Scholar 

  • Kelly AA and Dörmann P (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalacto-syldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J Biol Chem 277: 1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Kennedy EP (1961) Biosynthesis of complex lipids. Fed Proc 20: 934–940

    PubMed  CAS  Google Scholar 

  • Khotimchenko SV and Yakovleva IM (2004) Effect of solar irradiance on lipids of the green alga Ulva fenestrata Pos-tels et Ruprecht. Bot Mar 47: 395–401

    Article  CAS  Google Scholar 

  • Khotimchenko SV and Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66: 73–79

    Article  PubMed  CAS  Google Scholar 

  • Khozin-Goldberg I and Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696–701

    Article  PubMed  CAS  Google Scholar 

  • Kim HU and Huang AH (2004) Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol 134: 1206–1216

    Article  PubMed  CAS  Google Scholar 

  • Kim HU, Li Y and Huang AH (2005) Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyl-transferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17: 1073–1089

    Article  PubMed  CAS  Google Scholar 

  • Klug RM and Benning C (2001) Two enzymes of diacylglyceryl-O-4′-(N,N,N-trimethyl)homoserine biosynthesis are encoded by btaA and btaB in the purple bacterium Rhodobacter sphaeroides. Proc Natl Acad Sci USA 98: 5910–5915

    Article  PubMed  CAS  Google Scholar 

  • Kroon JTM, Wei WX, Simon WJ and Slabas AR (2006) Identification and functional expression of a type 2 acyl-CoA: diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67: 2541–2549

    Article  PubMed  CAS  Google Scholar 

  • Kunst L, Browse J and Somerville C (1988) Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity. Proc Natl Acad Sci USA 85: 4143–4147

    Article  PubMed  CAS  Google Scholar 

  • Maanni AE, Dubertret G, Delrieu M, Rochon A and Tremo-lieres A (1998) Mutants of Chlamydomonas reinhardtii affected in phosphatidylglycerol metabolism and thyla-koid biogenesis. Plant Physiol Biochem 36: 609–619

    Article  Google Scholar 

  • Maroc J, Tremolieres A, Garnier J and Guyon D (1987) Oligomeric form of the light-harvesting chlorophyll a + b-protein complex CP-II, phosphatidyldiacylglyc-erol, Δ3-trans-hexadecenoic acid and energy transfer in Chlamydomonas reinhardtii, wild type and mutants. Bio-chim Biophys Acta 893: 91–99

    Article  CAS  Google Scholar 

  • McConn M and Browse J (1998) Polyunsaturated membranes are required for photosynthetic competence in a mutant of Arabidopsis. Plant J 15: 521–530

    Article  PubMed  CAS  Google Scholar 

  • Mendiola-Morgenthaler L, Eichenberger W and Bos-chetti A (1985) Isolation of chloroplast envelopes from Chlamydomonas. Lipid and polypeptide composition. Plant Sci Lett 41: 97–104

    Article  CAS  Google Scholar 

  • Menke W, Radunz A, Schmid GH, Koenig F and Hirtz RD (1976) Intermolecular interactions of polypeptides and lipids in the thylakoid membrane. Z Naturforsch [C] 31: 436–444

    Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS and Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnik-ova IV, Solovchenko AE, Khozin-Goldberg I and Cohen Z (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J Phycol 43: 833–843

    Article  CAS  Google Scholar 

  • Minoda A, Sato N, Nozaki H, Okada K, Takahashi H, Sonoike K and Tsuzuki M (2002) Role of sulfoquinovosyl diacylglyc-erol for the maintenance of photosystem II in Chlamydomonas reinhardtii. Eur J Biochem 269: 2353–2358

    Article  PubMed  CAS  Google Scholar 

  • Minoda A, Sonoike K, Okada K, Sato N and Tsuzuki M (2003) Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDG-deficient mutant of Chlamydomonas. FEBS Lett 553: 109–112

    Article  PubMed  CAS  Google Scholar 

  • Mongrand S, Besoule J-J, Cabantous F and Cassagne C (1998) The C16:3/C18:3 fatty acid balance in photosyn-thetic tissues from 468 plant species. Phytochemistry 49: 1049–1064

    Article  CAS  Google Scholar 

  • Mongrand S, Badoc A, Patouille B, Lacomblez C, Chavent M, Cassagne C and Bessoule JJ (2001) Taxonomy of gymnospermae: multivariate analyses of leaf fatty acid composition. Phytochemistry 58: 101–115

    Article  PubMed  CAS  Google Scholar 

  • Moore B (2004) Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends Plant Sci 9: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Moore TS, Du Z and Chen Z (2001) Membrane lipid biosynthesis in Chlamydomonas reinhardtii. In vitro biosynthesis of diacylglyceryltrimethylhomoserine. Plant Physiol 125: 423–429

    Article  PubMed  CAS  Google Scholar 

  • Murata N and Tasaka Y (1997) Glycerol-3-phosphate acyl-transferase in plants. Biochim Biophys Acta 1348: 10–16

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Tsuchiya M and Ohta H (2007) Plastidic phos-phatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282: 29013–29021

    Article  PubMed  CAS  Google Scholar 

  • Nerlich A, von Orlow M, Rontein D, Hanson AD and Dörmann P (2007) Deficiency in phosphatidylserine decarboxylase activity in the psd1 psd2 psd3 triple mutant of Arabidop-sis affects phosphatidylethanolamine accumulation in mitochondria. Plant Physiol 144: 904–914

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50: 333–359

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge J and Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957–970

    PubMed  CAS  Google Scholar 

  • Picaud A, Creach A and Tremolieres A (1991) Studies on the stimulation by light of fatty-acid synthesis in Chlamydomonas reinhardtii whole cells. Plant Physiol Biochem 29: 441–448

    CAS  Google Scholar 

  • Pick U, Gounaris K, Weiss M and Barber J (1985) Tightly bound sulfolipids in chloroplast CF0-CF1. Biochim Bio-phys Acta 808: 415–420

    Article  CAS  Google Scholar 

  • Pineau B, Girard-Bascou J, Eberhard S, Choquet Y, Tremo-lieres A, Gerard-Hirne C, Bennardo-Connan A, Decottig-nies P, Gillet S and Wollman FA (2004) A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas rein-hardtii. Eur J Biochem 271: 329–338

    Article  PubMed  CAS  Google Scholar 

  • Rabbani S, Beyer P, Von Lintig J, Hugueney P and Kleinig H (1998) Induced β-carotene synthesis driven by tria-cylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116: 1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Weber AP and Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41: 147–168

    Article  PubMed  CAS  Google Scholar 

  • Richardson K, Beardall J and Raven JA (1983) Adaptation of unicellular algae to irradiance — an analysis of strategies. New Phytol 93: 157–191

    Article  Google Scholar 

  • Riekhof WR and Benning C (2008) Glycerolipid biosynthesis. In: Stern D and Harris EH (eds) The Chlamydomonas Sourcebook: Organellar and Metabolic Processes, 2. Elsevier, Dordrecht, pp. 41–68

    Google Scholar 

  • Riekhof WR, Ruckle ME, Lydic TA, Sears BB and Benning C (2003) The sulfolipids 2′-O-acyl-sulfoquinovosyldia-cylglycerol and sulfoquinovosyldiacylglycerol are absent from a Chlamydomonas reinhardtii mutant deleted in SQD1. Plant Physiol 133: 864–874

    Article  PubMed  CAS  Google Scholar 

  • Riekhof WR, Andre C and Benning C (2005a) Two enzymes, BtaA and BtaB, are sufficient for betaine lipid biosynthesis in bacteria. Arch Biochem Biophys 441: 96–105

    Article  CAS  Google Scholar 

  • Riekhof WR, Sears BB and Benning C (2005b) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Euk Cell 4: 242–252

    Article  CAS  Google Scholar 

  • Roessler PG (1988) Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptica. J Phycol 24: 394–400

    CAS  Google Scholar 

  • Roughan PG and Slack CR (1982) Cellular organization of glycerolipid metabolism. Ann Rev Plant Physiol 33: 97–132

    Article  CAS  Google Scholar 

  • Roughan PG, Holland R and Slack CR (1980) The role of chloroplasts and microsomal fractions in polar-lipid synthesis from [1–14C]acetate by cell-free preparations from spinach (Spinacia oleracea) leaves. Biochem J 188: 17–24

    PubMed  CAS  Google Scholar 

  • Routaboul JM, Benning C, Bechtold N, Caboche M and Lep-iniec L (1999) The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Bio-chem 37: 831–840

    Article  CAS  Google Scholar 

  • Sanda S, Leustek T, Theisen M, Garavito M and Benning C (2001) Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head precursor UDP-sulfoquinovose in vitro. J Biol Chem 276: 3941–3946

    Article  PubMed  CAS  Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M and Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54: 608–620

    Article  PubMed  CAS  Google Scholar 

  • Sato N (1988) Dual role of methionine in the biosynthesis of diacylglyceryltrimethylhomoserine in Chlamydomonas reinhardtii. Plant Physiol 86: 931–934

    Article  PubMed  CAS  Google Scholar 

  • Sato N (1991) Lipids in Cryptomonas CR-1. II. Biosynthesis of betaine lipids and galactolipids. Plant Cell Physiol 32: 845–851

    CAS  Google Scholar 

  • Sato N (1992) Betaine lipids. Bot Mag Tokyo 105: 185–197

    Article  CAS  Google Scholar 

  • Sato N and Furuya M (1983) Isolation and identification of diacylglyceryl-O-4′-(N,N,N-trimethyl)-homoserine from the fern Adiantum capillus-veneris L. Plant Cell Physiol 24: 1113–1120

    CAS  Google Scholar 

  • Sato N and Kato K (1988) Analysis and biosynthesis of diacylglyceryl-N,N,N-trimethylhomoserine in cells of Marchantia in suspension culture. Plant Sci 55: 21–25

    Article  CAS  Google Scholar 

  • Sato N and Murata N (1991) Transition of lipid phase in aqueous dispersions of diacylglyceryltrimethylhomoser-ine. Biochim Biophys Acta 1082: 108–111

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Sonoike K, Tsuzuki M and Kawaguchi A (1995a) Impaired photosystem II in a mutant of Chlamydomonas reinhardtii defective in sulfoquinovosyl diacylglycerol. Eur J Biochem 234: 16–23

    Article  CAS  Google Scholar 

  • Sato N, Tsuzuki M, Matsuda Y, Ehara T, Osafune T and Kawaguchi A (1995b) Isolation and characterization of mutants affected in lipid metabolism of Chlamydomonas reinhardtii. Eur J Biochem 230: 987–993

    Article  CAS  Google Scholar 

  • Sato N, Fujiwara S, Kawaguchi A and Tsuzuki M (1997) Cloning of a gene for chloroplast omega6 desaturase of a green alga, Chlamydomonas reinhardtii. J Biochem 122: 1224–1232

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Hagio M, Wada H and Tsuzuki M (2000) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci USA 97: 10655–10660

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J and Somerville C (1991) Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci USA 88: 2510–2514

    Article  PubMed  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, and Roessler PA (1998) Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae. US Department of Energy National Renewable Energy Laboratory, http://www1.eere.energy.gov/biomass/pdfs/biodiesel_from_algae.pdf

  • Silflow CD and Lefebvre PA (2001) Assembly and motil-ity of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. Plant Physiol 127: 1500– 1507

    Article  PubMed  CAS  Google Scholar 

  • Sineshchekov OA, Jung KH and Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99: 8689–8694

    PubMed  CAS  Google Scholar 

  • Sirevag R and Levine RP (1972) Fatty acid synthetase from Chlamydomonas reinhardtii. J Biol Chem 247: 2586– 2591

    PubMed  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E and Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101: 87–96

    Article  PubMed  CAS  Google Scholar 

  • Stobart AK and Stymne S (1985) The regulation of the fatty acid composition of the triacyglycerols in microsomal preparations from avocado mesocarp and the developing cotyledons of safflower. Planta 163: 119–125

    Article  CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL and Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426: 413–418

    Article  PubMed  CAS  Google Scholar 

  • Suen Y, Hubbard JS, Holzer G and Tornabene TG (1987) Total lipid production of the green alga Nannochlorop-sis sp. QII under different nitrogen regimes. J Phycol 23: 289–296

    Article  CAS  Google Scholar 

  • Sugimoto K, Sato N and Tsuzuki M (2007) Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation. FEBS Lett 581: 4519–4522

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Midorikawa T, Tsuzuki M and Sato N (2008) Upregulation of PG synthesis on sulfur-starvation for PSI in Chlamydomonas. Biochem Biophys Res Commun 369: 660–665

    Article  PubMed  CAS  Google Scholar 

  • Tam LW and Lefebvre PA (1993) Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional muta-genesis. Genetics 135: 375–384

    PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thal-iana. Nature 408: 796–815

    Article  Google Scholar 

  • Tornabene TG, Holzer G, Lien S and Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enz Microb Tech 5: 435–440

    Article  CAS  Google Scholar 

  • Tsuzuki M, Ohnuma E, Sato N, Takaku T and Kawaguchi A (1990) Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiol 93: 851–856

    Article  PubMed  CAS  Google Scholar 

  • Vance JE and Steenbergen R (2005) Metabolism and functions of phosphatidylserine. Prog Lipid Res 44: 207–234

    Article  PubMed  CAS  Google Scholar 

  • Vijayan P, Routaboul JM and Browse J (1998) A genetic approach to investigating membrane lipid structure and photosynthetic function. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht, pp. 263–285

    Google Scholar 

  • Vogel G and Eichenberger W (1992) Betaine lipids in lower plants. Biosynthesis of DGTS and DGTA in Ochromonas danica (Chrysophyceae) and the possible role of DGTS in lipid metabolism. Plant Cell Physiol 33: 427–436

    CAS  Google Scholar 

  • Wallis JG and Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41: 254–278

    Article  PubMed  CAS  Google Scholar 

  • Weers P and Gulati R (1997) Growth and reproduction of Daphnia galeata in response to changes in fatty acids, phosphorus, and nitrogen in Chlamydomonas reinhardtii. Limnol Oceanogr 42: 1586–1589

    Article  Google Scholar 

  • Wolff RL and Christie WW (2002) Structures, practical sources (gymnosperm seeds), gas-liquid chromatographic data (equivalent chain lengths), and mass spectrometric characteristics of all-cis 5-olefinic acids. Eur J Lipid Sci Technol 104: 234–244

    Article  CAS  Google Scholar 

  • Wu-Scharf D, Jeong BR, Zhang CM and Cerutti H (2000) Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-Box RNA helicase. Science 290: 1159–1162

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Härtel H, Wada H, Hagio M, Yu B, Eakin C and Ben-ning C (2002) The pgp1 locus of Arabidopsis encodes a phosphatidylglycerol synthase with impaired activity. Plant Physiol 129: 594–604

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Cornish AJ, Froehlich JE and Benning C (2006) Phos-phatidylglycerol biosynthesis in chloroplasts of Arabidop-sis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase. Plant J 47: 296–309

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Mason CB, Pollock SV, Lavezzi T, Moroney JV and Moore TS (2004) Membrane lipid biosynthesis in Chlamydomonas reinhardtii: expression and characterization of CTP:phosphoethanolamine cytidylyltransferase. Biochem J 382: 51–57

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Xu C and Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99: 5732–5737

    Article  PubMed  CAS  Google Scholar 

  • Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A and Cohen Z (2002) Accumulation of oleic acid in Haema-tococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38: 325–331

    Article  CAS  Google Scholar 

  • Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattra-makki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC and Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40: 367–372

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G and Zou J (2003) Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15: 1872–1887

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Wei Y, Jako C, Kumar A, Selvaraj G and Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19: 645–653

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work on lipid biosynthesis in plants and algae in the Benning lab is currently supported, in part, by grants from the US Air Force Office of Scientific Research, the US National Science Foundation, the US Department of Energy, the Great Lakes Bioenergy Research Center, BASF-Plant Sciences, the MSU Center of Excellence for the Structural Biology Membrane Proteins, and the Michigan Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Benning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Moellering, E.R., Miller, R., Benning, C. (2009). Molecular Genetics of Lipid Metabolism in the Model Green Alga Chlamydomonas reinhardtii . In: Wada, H., Murata, N. (eds) Lipids in Photosynthesis. Advances in Photosynthesis and Respiration, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2863-1_7

Download citation

Publish with us

Policies and ethics