Skip to main content

Part of the book series: GeoJournal Library ((GEJL,volume 96))

Abstract

Physical geography, in its many flavours, subdisciplines and application domains, has been a cornerstone of geography and the spatial sciences in general for a long time. Due to its affinity with the ‘hard’ natural sciences, quantitative techniques were introduced early on, followed later by ICT applications. Researchers readily adopted these technologies to support statistical, mapping and remote sensing techniques. Geo-ICT then moved from a supporting towards a facilitating and key enabling technology. Research into global change, monitoring of land use changes over large areas, simulating complex multidimensional processes and developing scenarios on the interaction between the social and natural spheres simply would not be possible without Geo-ICT.

Today, most research in physical geography is conducted from a wider environmental science perspective. This means a move towards a system dynamics approach, allowing analyses to be made of interconnected processes which are well beyond the reach of research methodologies that do not rely heavily on Geo-ICT. Although not yet capable of fully supporting system dynamics approaches, this systems science approach is opening up novel pathways for answering old questions like ‘What is there?’ ‘Why is it there?’ and ‘What does the fact that it is there mean?’ A range of technological innovations in remote sensing, positioning services, geospatial data types in databases, system dynamics models, real-time sensors and semantic web services are driving future development. Physical geography typically benefits from some early adopters, but established paradigms are slow to change. Connecting physical geography to ‘virtual representations’ using a set of Geo-ICT tools certainly requires more fundamental change than merely ‘automating’ traditional workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker, M. E., Wiley, M. J., Carlson, M. L., Seelbach, P. W. (2003): A GIS model of subsurface water potential for aquatic resource inventory, assessment, and environmental management. Environmental Management 32(6): 706–719.

    Article  Google Scholar 

  • Bogel, R. (1996): [Investigations on the flight activity and habitat utilization by the Griffon Vulture by use of telemetric monitoring]. Nationalpark Berchtesgaden Forschungsbericht 33: 1–168.

    Google Scholar 

  • Cornelius, S., Sear, D., Carver, S., and Heywood, I. (1994): GPS, GIS and geomorphological field work. Earth Surface Processes and Landforms 19(9): 777–787.

    Article  Google Scholar 

  • Deng, Y. (2007): New trends in digital terrain analysis: landform definition, representation, and classification. Progress in Physical Geography 31: 405–419.

    Article  Google Scholar 

  • Dikau, R. (1992): Aspects of constructing a digital geomorphological base map. Geologisches Jahrbuch, A122: 357–370.

    Google Scholar 

  • Dubayah, R. and Rich, P. M. (1995): Topographic solar radiation models for GIS. International. Journal of Geographic Information Systems 9: 405–413.

    Article  Google Scholar 

  • Duttmann, R. (1993): Prozeßorientierte Landschaftsanalyse mit dem Geoökologischen Informationssystem GOEKIS. Hannover: (= Geosynthesis, Bd. 4), 194 S

    Google Scholar 

  • Duttmann, R.; Franke, M. and Stelzer, R. (1993): ‘Die ´Digitale Geoökologische Karte'als Grundlage für prozeßorientierte Landschaftsbewertungen – Das Geoökologische Informationssystem: Konzeptionen, Anwendungen und Möglichkeiten der Integration zeitdynamischer Modelle. – In: Dollinger, F. and J. Strobl (Hrsg.): Angewandte Geographische Informationstechnologie V. Beiträge zum GIS-Symposium 7.–9. Juli 1993. Salzburg (= Salzburger Geographische Materialien, H. 20), S. 255–266

    Google Scholar 

  • Eastman, J. R., Jiang, H., and Toledano, J. (1998): Multi-criteria and multi-objective decision making for land allocation using GIS. In: E. Beinat and P. Nijkamp (Editors) Multicriteria Analysis for Land-Use Management. Kluwer Academic Publishers, Dordrecht, pp. 227–252.

    Google Scholar 

  • Evans, I. S. (1980): An integrated system for terrain analysis and slope mapping. Zeitschrift fur Geomorphologie 36:274–295.

    Google Scholar 

  • Evans, I. S. (1990): Cartographic techniques in geomorphology. In: A. Goudie (Editor), Geomorphological techniques. Unwin Hyman, London, pp. 97–108.

    Google Scholar 

  • Fuller, M. (1995): Wildlife Telemetry: Remote Monitoring and Tracking of Animals. Allen Press, Lawrence, KS.

    Google Scholar 

  • Goodchild, M., Parks, B., and Steyaert, L. (eds.) (1993): Environmental Modeling with GIS. Oxford University Press, Inc., New York, NY.

    Google Scholar 

  • Goodchild M., Parks, B., Steyaert, L., Johnston, C., Maidment, D., Crane, M. and Glendinning, S. (eds.) (1996): GIS and Environmental Modeling: Progress and Research Issues. Wiley, New York.

    Google Scholar 

  • Gualtieri, G. and Tartaglia, M. (1998): Predicting urban traffic air pollution: A GIS framework. Transportation Research Part D: Transport and Environment 3(5): 329–336.

    Article  Google Scholar 

  • Holden, J. (2004): Introduction to Physical Geography and the Environment. Prentice-Hall, London.

    Google Scholar 

  • Huber, M. (1994): The digital geoecological map. Concepts, GIS-Methods and Case Studies. (Die digitale geoökologische Karte. Konzepte, GIS-Methoden und Fallstudien). – In: Basel: (= Physiogeographica. Basler Beiträge zur Physiogeographie, Bd. 20), 144 S.

    Google Scholar 

  • Kemp, K. K. (1997a): Fields as a framework for integrating GIS and environmental process models. Part one: Representing spatial continuity. Transactions in GIS 1(3): 219–234.

    Article  Google Scholar 

  • Kemp, K. K. (1997b): Fields as a framework for integrating GIS and environmental process models. Part two: Specifying field variables. Transactions in GIS 1(3):235–246.

    Article  Google Scholar 

  • Kump, L., Kasting, J., and Crane, R. (2003): The Earth System. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Li, B., Tao, S., Dawson, R. W., Cao J., and Lam, K. (2002): GIS based road traffic noise prediction model. Applied Acoustics 63(6).

    Google Scholar 

  • Maidment, D. R. (ed.) (2002): Arc Hydro: GIS for Water Resources. ESRI Press, Redlands, CA.

    Google Scholar 

  • McKinney, D. C., and Cai, X. M. (2002): Linking GIS and water resources management models: an object-oriented method. Environmental Modeling and Software 17: 413–425.

    Article  Google Scholar 

  • OGC (2006): Sensor Web Enablement: Overview and High Level Architecture, Botts, Percivall, Reed and Davidson OGC White Paper, July 2006 open access publication.

    Google Scholar 

  • Ogden, F. L., Garbrecht, J., DeBarry, P. A., and Johnson, L. E. (2001): GIS and distributed watershed models II: Modules, interfaces, and models. Journal of Hydrologic Engineering, 6(6): 515–523.

    Article  Google Scholar 

  • Peuquet, D. (1994): A conceptual framework for the representation of temporal dynamics in geographic information systems. Annals of the Association of American Geographers, 84(3): 441–461.

    Article  Google Scholar 

  • Peuquet, D. (2002): Representations of Space and Time. Guilford, New York.

    Google Scholar 

  • Phillips, J. (2004): Laws, contingencies, irreversible divergence, and physical geography. The Professional Geographer 56(1): 37–43.

    Google Scholar 

  • Raper, J. and Livingstone, D. (1995): Development of a geomorphological spatial model using object-oriented design. International Journal of Geographical Information Systems 9(4): S359–S383.

    Article  Google Scholar 

  • Smith, M. W., Cox, N. J., and Bracken, L. J. (2007): Applying flow resistance equations to overland flows. Progress in Physical Geography 31: 363–387.

    Article  Google Scholar 

  • Stäblein, G. (1978): Geomorphologische Detailaufnahme. Beiträge zum GMK-Schwerpunktprogramm. Berliner Geographische Abhandlungen, 30. Geographisches Institut Berlin, Berlin.

    Google Scholar 

  • Vinken, R. (1986): Digital geoscientific maps: A priority program of the German Society for the Advancement of Scientific Research. Mathematical Geology 18(2).

    Article  Google Scholar 

  • Wesseling, C. G., Karssenberg, D., Van Deursen, W. P. A. and Burrough, P. A. (1996): Integrating dynamic environmental models in GIS: the development of a Dynamic Modelling language. Transactions in GIS 1: 40–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Strobl, J. (2009). Geo-ICT: Connecting Physical and Virtual Geographies. In: Scholten, H.J., van de Velde, R., van Manen, N. (eds) Geospatial Technology and the Role of Location in Science. GeoJournal Library, vol 96. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2620-0_10

Download citation

Publish with us

Policies and ethics