Skip to main content

Nutrient Management in Substrate Systems

  • Chapter
  • First Online:
Plant Nutrition of Greenhouse Crops

Abstract

Speaking about nutrient solutions in soilless cultivation, different solutions can be discerned. Originally, in soilless culture only one nutrient solution was taken into account, being the solution in the containers in which the plants were grown. Such solutions were intensively moved by air bubbling and thus, the composition of the solution in the whole root environment was equal. The root environment was restricted to the container in which the plants were grown and thus, the whole root system of the plant was surrounded by the same nutrient solution. However, this is not the case for hydroponics and substrate systems under practical growing conditions, where great differences occur in time and place within the root environment. The main reason for these differences of salt concentrations between spots within the root environment are the inequality of water supply and water uptake by the crop as discussed in Section 6.3, at the one hand and the lack of movement of the solution within the root environment to equalize them on the other. In Chapter 8 some examples were shown of the inequality of the distribution of nutrients and salts within the root environment of substrate grown plants and the consequences of it on plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams P and El-Gizawy A M 1986. Effect of salinity and watering level on the calcium content of tomato fruit. Acta Hort. 190, 253–259.

    Google Scholar 

  • Adams P and Ho L C 1993. Effects of the environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant Soil 154, 127–132.

    Article  CAS  Google Scholar 

  • Bakker S Welles G W H Janse J De Kreij C and Buitelaar K 1989. The effect of air humidity in combination with the composition of the nutrient solution on yield, the incidence of blossom end rot and keeping quality of aubergine in an autumn crop. Glasshouse crops Research Station Naaldwijk, The Netherlands, Annual Report 1989, 42.

    Google Scholar 

  • Barker A V and Mills H A 1980. Ammonium and nitrate nutrition of horticultural crops. Hort. Rev. 2, 395–423.

    CAS  Google Scholar 

  • Boertje G A 1982. Spoorelementen bij tomaten op veen. Tuinderij 62(13), 46–49.

    Google Scholar 

  • Bromfield S M 1978. The effect of manganese oxidising bacteria and pH on the availability of manganous ions and manganese oxides to oats in nutrient solutions. Plant Soil 49, 23–39.

    Article  CAS  Google Scholar 

  • Clement C R Hopper M J and Jones L H P 1978. The uptake of nitrate by Lolium perenne from flowing nutrient solution. J. Exp. Bot. 29, 453–464.

    Article  CAS  Google Scholar 

  • Conover C A and Poole R T 1986. Nitrogen source effects on growth and tissue content of selected foliage plants. HortSci. 21, 1008–1009.

    Google Scholar 

  • De Kreij C and Van den Berg 1990. Effect of electrical conductivity of the nutrient solution and fertilization regime on spike production and quality of Cymbidium. Scientia Hort. 44, 293–300.

    Article  Google Scholar 

  • De Kreij C Janse J Van Goor B J and Van Doesburg J D J 1992. The incidence of calcium oxalate crystals in fruit walls of tomato (Lycopersicon esculentum Mill.) as affected by humidity, phosphate and calcium supply. J. Hort. Sci. 67, 45–50.

    Google Scholar 

  • De Kreij C Martignon G and Van Elderen C W 1993. Comparison of water, DTPA, and nitric acid as extractants to assess the availability of copper in peat substrates. Comm. Soil Sci. Plant Anal. 24, 227–236.

    Article  Google Scholar 

  • De Kreij C 1996. Interactive effects of air humidity, calcium and phosphate on blossom-end rot, leaf deformation, productivity and nutrient contents of tomato. J. Plant Nutr. 19, 361–377.

    Article  Google Scholar 

  • De Kreij C Voogt W Van den Bos A L and Baas R 1997. Voedingsoplossingen voor de teelt van tomaat in gesloten teeltsystemen. Proefstation voor Tuinbouw onder Glas te Naaldwijk, The Netherlands, Brochure VG 2, 21 pp.

    Google Scholar 

  • De Kreij C Voogt W Van den Bos A L and Baas R 1999. Bemestingsadviesbasis Substraten. Proefstation voor Bloemisterij en Glasgroente Naaldwijk The Netherlands, 145 pp.

    Google Scholar 

  • Feigin A Ginzburg C Ackerman A and Gilead S 1984. Response of roses growing in volcanic rock substrate to different NH4/NO3 ratios in the nutrient solution. In: Proc. 6th Internat. Congr. Soilless Culture, Lunteren, 1984 ISOSC, Wageningen, The Netherlands, 207–214.

    Google Scholar 

  • Feigin A Ginzburg C Gilead S and Ackerman A 1986. Effect of NH4/NO3 ratio in nutrient solution on growth and yield of greenhouse roses. Acta Hort. 189, 127–135.

    Google Scholar 

  • Garcia-Mina J Cantera RG Zamarreno A 2003. Interaction of different iron chelates with an alkaline and calcareous soil: a complementary methodology to evaluate the performance of iron compounds in the correction of iron chlorosis. J. Pl. Nutr. 26, 1943–1954.

    Article  CAS  Google Scholar 

  • Graves C J 1983. The nutrient film technique. Hort. Rev. 5: 1–44.

    Google Scholar 

  • Ho L C and Adams P 1989. Calcium deficiency – a matter of inadequate transport to rapidly growing organs. Plants Today 2, 202–207.

    Google Scholar 

  • Ho L C and Adams P 1994. Regulation of partitioning of dry matter and calcium in relation to fruit growth and salinity. Ann. Bot. 539–545.

    Google Scholar 

  • Howell W and Bernhard R L 1961. Phosphorus response of soybean varieties. Crop Sci. 1, 311–313.

    Article  Google Scholar 

  • Ingestad T 1970. A definition of optimum nutrient requirements in birch seedling I. Physiol. Plant. 23, 1127–1138.

    Article  Google Scholar 

  • Ingestad T 1972. Mineral nutrition requirements of cucumber seedlings. Plant Physiol. 52, 332–338.

    Article  Google Scholar 

  • Ikeda H and Osawa T 1980. Comparison of adaptability to nitrogen source among vegetable crops. II. Growth response and accumulation of ammonium and nitrate nitrogen by leafy vegetables cultured in nutrient solution containing nitrate, ammonium and nitrite as nitrogen source. J. Japan. Soc. Hort. Sci. 48, 435–442

    CAS  Google Scholar 

  • Ikeda H and Osawa T 1983. Effects of ratios of NO3 to NH4 and concentrations of N source in the nutrient solution on growth and leaf N constituents of vegetable crops and solution pH. J. Japan. Soc. Hort. Sci. 52, 159–166.

    Article  Google Scholar 

  • Jensen M H and Collins W L 1985. Hydroponic vegetable production. Hort. Rev. 7, 483–558.

    Google Scholar 

  • Lindsay W L Hodgson J F and Norvell W A 1967. The physico-chemical equilibrium of metal chelates in soils and their influence on the availability of micro nutrient cations. Intern. Soc. Soil Sci. (Scotland 1966) Trans. Comm. II and IV, 305–316.

    Google Scholar 

  • Lindsay W L and Norvell W A 1969. Equilibrium relationships of Zn2+, Fe3+, Ca2+, and H+ with EDTA and DTPA in soils. Soil Sci. Soc. Amer. Proc. 33, 62–68.

    Article  CAS  Google Scholar 

  • Lucas R E and Davis J F 1961. Relationship between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci. 92, 177–182.

    Article  CAS  Google Scholar 

  • Maloupa E 2002. Hydroponic systems. In: Savvas D and Passam H (eds) Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens, 143–176.

    Google Scholar 

  • Marti H R and Mills H A 1991. Nutrient uptake and yield of sweet peppers as affected by stage of development and N form. J. Planr Nutr. 14, 1165–1175.

    Article  CAS  Google Scholar 

  • Masui M Nukaya A and Ishida A 1982. Effects of nitrogen form on growth of muskmelons. J. Japan. Soc. Hort. Sci. 50, 475–480.

    CAS  Google Scholar 

  • Massey D and Winsor G W 1980. Some response of tomato to nitrogen in recirculation solutions. Acta Hort. 98, 127–137.

    Google Scholar 

  • McNeal B L Oster J D and Hatcher J T 1979. Calculation of the electrical conductivity from solution composition data as an aid to in situ estimation of soil salinity. Soil Sci. 110, 405–414.

    Article  Google Scholar 

  • Mengel K and Kirkby E A 1987. Principles of plant nutrition. Int. Potash Inst. Bern, 4th edition 687 pp.

    Google Scholar 

  • Reichwein AM 2007. Model calculations micro element stability in relation to chelate type and environmental conditions, using MINEQL+. (personal communication)

    Google Scholar 

  • Roelofs Th and Van Emmerik P 1992. Teelt op veen vraagt extra aandacht voor element koper. Vakblad Bloemisterij 47(29), 55.

    Google Scholar 

  • Robson A D and Pitman M G 1983. Interactions between nutrients in higher plants. In: Läuchli A and Bieleski R L (eds), Inorganis Plant Nutrition, Encyclopedia of Plant Physiol. (New series) 15a, Springer-Verlag, Berlin, 147–180.

    Google Scholar 

  • Runia W 1995. A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hort. 382, 221–229.

    Google Scholar 

  • Sakamoto Y Watanabe S Okano K 2001. Growth and Quality of chrysanthemum (Dendranthema grandiflora) grown in wet sheet culture and deep flow technique. Acta Hort. 548, 459–467.

    Google Scholar 

  • Savvas D and Lenz F 1994. Influence of salinity on the incidence of the physiological disorder “internal rot” in hydroponical-grown eggplants. Angew. Bot. 68, 32–35.

    Google Scholar 

  • Savvas D Ntatsi G Passam H C 2008. Plant nutrition and physiological disorders in greenhouse grown tomato, sweet pepper and eggplant. Europ. J. Plant Sci. Biotechn. 2, 45–61.

    Google Scholar 

  • Sidiqi M Y Kronzucker H J Britto D T and Glass A D M 1998. Growth of a tomato crop at reduced nutrient concentrations as a strategy to limit eutrophication. J. Plant Nutr. 21, 1879–1895.

    Article  Google Scholar 

  • Sonneveld C Koornneef P and Van den Ende J 1966. De osmotische druk en het electrische geleidingsvermogen van enkele zoutoplossingen. Meded. Dir. Tuinb. 29, 471–474.

    CAS  Google Scholar 

  • Sonneveld C and Voogt S J 1980. The application of manganese in nutrient solutions for tomato grown in a recirculating system. Acta Hort. 98, 171–178.

    Google Scholar 

  • Sonneveld C and De Bes S S 1984. Micro nutrient uptake of glasshouse cucumbers grown on rockwool. Comm. Soil Sci. Plant Anal. 15, 519–535.

    Article  CAS  Google Scholar 

  • Sonneveld C and Voogt W 1985. Growth and cation absorption of some fruit-vegetable crops grown on rockwool as affected by different cation ratios in the nutrient solution. J. Plant Nutr. 8, 585–602.

    Article  CAS  Google Scholar 

  • Sonneveld C De Bes S S and Voogt W 1986. Zinc uptake and distribution in tomatoes grown in rockwool. Soilless Culture 2 no 2, 49–60.

    Google Scholar 

  • Sonneveld C 1988. Kali-Calciumverhoudingen bij meloen in steenwol. Proefstation voor Tuinbouw onder Glas Naaldwijk, Intern Rapport no 18, 13 pp.

    Google Scholar 

  • Sonneveld C 1991. Rockwool as a substrate for greenhouse crops. In: Bajaj Y P S (ed) Biotechnology in Agriculture and Forestry 17, High-Tech and Micro-propagation I, Springer-Verlag, Berlin, 285–312.

    Google Scholar 

  • Sonneveld C and Van der Burg A M M 1991. Sodium chloride salinity in fruit vegetable crops in soilless culture. Neth. J. Agric. Sci. 39, 115–122.

    CAS  Google Scholar 

  • Sonneveld C Van den Bos A L Van der Burg A M M and Voogt W 1991. Fertigation in the greenhouse industry in The Netherlands. In: Fertigation/Chemigation, FAO, Rome 1991, 186–193.

    Google Scholar 

  • Sonneveld C 1993. An overview of nutrition in hydrponics. In: Hanger B and Laffer B, Hydroponics and the Environment, Proc. Australian Hydroponic Conference Monash University Melbourne, Australia 1993, 21–36.

    Google Scholar 

  • Sonneveld C and Straver N 1994. Nutrient solutions for Vegetables and Flowers grown in water or substrates. Research Station for Floriculture and Glasshouse Vegetables, Aalsmeer/Naaldwijk, The Netherlands, Series: Voedingsoplossingen Glastuinbouw 8, 45 pp.

    Google Scholar 

  • Sonneveld C and Van Elderen C W 1994. Chemical analysis of peaty growing media by means of water extraction. Comm. Soil Sci. Plant Anal. 25, 3199–3208.

    Article  CAS  Google Scholar 

  • Sonneveld C and Voogt W 1994. Effects of calcium and ammonium on the appearance of secondary shoot chlorosis in rockwool grown cucumbers. Proc. Sino Intern. Coll. Soilless Culture, Hangzou 1994, 88–94.

    Google Scholar 

  • Sonneveld C and Van den Bos A L 1995. Effects of nutrient levels on growth and quality of radish (Raphanus sativis L.) grown on different substrates. J. Plant Nutr. 18, 501–513.

    Article  CAS  Google Scholar 

  • Sonneveld C and Voogt W 1997. Effects of pH value and Mn application on yield and nutrient absorption with rockwool grown gerbera. Acta Hort. 450, 139–147.

    CAS  Google Scholar 

  • Sonneveld C and De Kreij C 1999. Response of cucumber (Cucumis sativis L.) to an unequal distribution of salts in the root environment. Plant Soil 209, 47–56.

    Article  CAS  Google Scholar 

  • Sonneveld C Baas R Nijssen H M C and De Hoog J 1999. Salt tolerance of flower crops grown in soilless culture. J. Plant Nutr. 22, 1033–1048.

    Article  CAS  Google Scholar 

  • Sonneveld C 2000. Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture. Thesis Wageningen University, Netherlands, 151 pp.

    Google Scholar 

  • Sonneveld C and Voogt W 2001. Chemical analysis in substrate systems and hydroponics – use and interpretation. Acta Hort. 548, 247–259.

    CAS  Google Scholar 

  • Sonneveld C 2002. Composition of Nutrient solutions. In: Savvas D and Passam H (ed) Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens, 179–210.

    Google Scholar 

  • Sonneveld C Van den Bos A L and Voogt W 2004, Modelling osmotic salinity effects on yield characteristics of substrate grown greenhouse crops. J. Plant Nutrition 27, 1931–1951.

    Article  CAS  Google Scholar 

  • Sonneveld C 2004. Nutrient solutions in substrate culture – composition and use. I Congreso Internacional de Horticultura Intensiva. 2 y 3 deciembre 2004, Centro de la Fundación Ruralcaja Valencia, 82–88.

    Google Scholar 

  • Sonneveld C and Welles G W H 2005. Cation concentrations of plant tissues of fruit-vegetable crops as affected by the EC of the external nutrient solution and by humidity. Acta Hort. 697, 377–386.

    CAS  Google Scholar 

  • Sonneveld C and Voogt W 2008. Nutrient concentrations of plant tissues of greenhouse crops as affected by the EC of the external nutrient solution. Acta Hort. 779, 313–320.

    CAS  Google Scholar 

  • Sonneveld C and Voogt W 2009. Determination of micro nutrients in substrates by water extraction and interpretation of analytical data. Acta Hort. 819, 87–98.

    Google Scholar 

  • Van den Bos A L, 1995. EC in relatie tot het type substraat bij de teelt van sla in een gesloten teeltsysteem. Proefstation voor Bloemisterij en Glasgroente Naaldwijk The Netherlands, Intern verslag 4, 22 pp.

    Google Scholar 

  • Van den Bos A L, 1997. Stikstofaanbod en NO3-gehalte bij koolrabi. Proefstation voor Bloemisterij en Glasgroente Naaldwijk The Netherlands, Intern verslag 90, 25 pp.

    Google Scholar 

  • Van Os P C 1991. Lage EC geeft goede kwaliteit en hoge productie. Vakblad Bloemisterij 46(25), 52–53.

    Google Scholar 

  • Van Os E C Gieling Th H and Ruijs M N A 2002. Equipment for hydroponic installations. In: Savvas D and Passam H (eds) Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens, 103–141.

    Google Scholar 

  • Verhagen J B G M 1992. Ervaringen met de teelt van chrysant op veensubstraat in een gesloten teeltsysteem. Proefstation voor Tuinbouw onder Glas Naaldwijk, The Netherlands, Intern Verslag 67, 16 pp.

    Google Scholar 

  • Verloo M G 1980. Peat as natural complexing agent for trace elements. Acta Hort. 99, 51–56.

    Google Scholar 

  • Voogt W Blok C Smulders P and De Visch D 1989. Grote pH verschillen in de steenwolmat. Groenten en Fruit 44(49), 38–39.

    Google Scholar 

  • Voogt W 1994. pH belangrijke factor productieverhoging bij roos. Vakblad Bloemisterij 49(43), 32–33.

    Google Scholar 

  • Voogt W 1995. Effect of the pH on rockwool grown carnation (Dianthus Caryophyllus) Acta Hort. 401, 327–336.

    Google Scholar 

  • Voogt W 1996. Komkommer: lage pH positief, effect NH4 beperkt. Groenten en Fruit/Glasgroenten 6(15), 16–17.

    Google Scholar 

  • Voogt W and Sonneveld C 1997. Nutrient management in closed growing systems for greenhouse production. In: E. Goto et al. (eds) Plant Production in Closed Ecosystems. Kluwer Academic Publishers, Dordrecht, The Netherlands, 83–102.

    Google Scholar 

  • Voogt W and Paternotte P 1997. Tomaat : lage pH veroorzaakt wortelverkurking. Groenten en Fruit Vakdeel Glasgroenten 7(49), 12–13.

    Google Scholar 

  • Voogt W 2002. Potassium management of vegetables under intensive growth conditions. In: Pasricha N S and Basal S K (eds) Potassium for sustainable crop production. Proc. Int. Symp. on role of potassium in Nutrient Management for sustainable crop production in India. Int. Potash Inst. Bern. 347–362.

    Google Scholar 

  • Voogt W and Sonneveld C 2004. Interactions between nitrate (NO3) and chloride (Cl) in nutrient solutions for substrate grown tomato. Acta Hort. 644, 359–368.

    CAS  Google Scholar 

  • Voogt W Garcia N Straver N Van den Burg N 2006. Onderzoek naar de mogelijkheden om rozen te telen met een permanent dan wel tijdelijk lagere N concentratie in het wortelmilieu om de N emissie te verminderen. Wageningen UR Glastuinbouw, Rapport 4161607, 38 pp.

    Google Scholar 

  • Voogt W and Sonneveld C 2009. The effect of Fe-chelate type and pH on the development of roses. Acta Hort. 819, 411–417.

    Google Scholar 

  • Wild A Jones L H P and Macduff J H 1987. Uptake of mineral nutrients and crop growth: the use of flowing nutrient solutions. Adv. Agron. 41, 171–219.

    Article  CAS  Google Scholar 

  • Zozorna P Caselles J and Carpena O 1987. Response of pepper plants to NO3:NH4 ratio and light intensity. J. Plant Nutr. 10, 773–782.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sonneveld, C., Voogt, W. (2009). Nutrient Management in Substrate Systems. In: Plant Nutrition of Greenhouse Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2532-6_13

Download citation

Publish with us

Policies and ethics