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Foreword

It is with great pleasure that I accepted invitation of Adnan Ibrahimbegovic
to write this preface, for this invitation gave me the privilege to be one of the
first to read his book and allowed me to once again emphasize the importance
for our discipline of solid mechanics, which is currently under considerable
development, to produce the reference books suitable for students and all
other researchers and engineers who wish to advance their knowledge on the
subject.
The solid mechanics has closely followed the progress in computer science and
is currently undergoing a true revolution where the numerical modelling and
simulations are playing the central role. In the industrial environment, the
‘virtual’ (or the computing science) is present everywhere in the design and
engineering procedures. I have a habit of saying that the solid mechanics has
become the science of modelling and in that respect expanded beyond its tra-
ditional frontiers. Several facets of current developments have already been
treated in different works published within the series ‘Studies in mechanics
of materials and structures’; for example, modelling heterogeneous materials
(Besson et al.), fracture mechanics (Leblond), computational strategies and
namely LATIN method (Ladevèze), instability problems (NQ Son) and veri-
fication of finite element method (Ladevèze-Pelle). To these (French) books,
one should also add the work of Lemaitre-Chaboche on nonlinear behavior
of solid materials and of Batoz on finite element method.
The book of Adnan Ibrahimbegovic also deals with nonlinear solid mechan-
ics, but with the unique approach of the author: each question is examined
from all different facets pertaining to either mechanics, mathematics or com-
putations with a special attention to the finite element methods. It is the
main strength of this book to provide as complete as possible answer to each
question. Such an exhaustive approach is also characteristic of list of differ-
ent topics studied that count among them some of the main difficulties of
modern mechanics: damage theory, localization and failure, discrete models,
multi-physics, multi-scale, parallelism etc. Only omission are the issues of ver-
ification and validation, which are just mentioned. Quite naturally, this work
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viii Foreword

is marked by the author’s research, demonstrating a thorough understanding
of the modern mechanics and a number of essential personal contributions.
Collecting in a single book such a broad knowledge and know-how led in-
evitably to restructuring the presentation of the nonlinear solid mechanics
and merging successfully the European and North-American schools, for the
greatest benefits of readers. Even if all points of view presented in the book
will not necessarily be shared by everybody, together they provide an unusu-
ally illuminating and lively image of the subject.

Cachan, August 2006 Pierre LADEVEZE
Professor at Ecole Normale Supérieure de Cachan

EADS Foundation Chair ‘Advanced Computational Structural Methods’

Professor Adnan Ibrahimbegovic belongs to a select group of active re-
searchers and developers of the ‘finite element method technology’ applied
to solving the nonlinear problems in mechanics of solids and structures with
complex constitutive behavior under static and dynamic loading; the latter
includes a wide spectrum that spans from theoretical modelling to valida-
tion tests and passing through all numerical implementation aspects. If this
kind of developments have been more numerous in eighties and nineties, they
have become more rare in 2006 because of the maturity that the discipline
has reached as the result of research works of a very active international
community of computational mechanics (which is organized within the In-
ternational Association of Computational Mechanics), with this author as its
active and established member, as well as the presence of fairly complete
and efficient commercial software packages. Nevertheless, there still exist
significant needs for improvement, not only in terms of theoretical formu-
lations (variational formulations) and numerical implementation (choice of
discrete models and consistent approximations), but also in terms of solu-
tion technics of discretized problems, which are nowadays highly nonlinear
and non-stationary with different coupling conditions, and without forgetting
the programming aspects since the final development stage is inevitably the
corresponding software product.
The book ‘Nonlinear solid mechanics: Theoretical formulations and finite el-
ement solution methods’ reflects the rich international teaching experience
to master and doctoral students, as well as the joint collaborative research
with a number of renown institutions in Europe and North-America (Uni-
versity of California at Berkeley, Swiss Federal Institute of Technology in
Lausanne, Compiègne University of Technology in France, Laval University
in Quebec, Ecole Normale Supérieure in Cachan, University of Ljubljana,
Technical University of Braunschweig). With this detailed and original work,
Adnan Ibrahimbegovic offers to master and doctoral students, and also to



Foreword ix

researchers and to computational software developers, the results and com-
pilation of a number of research works.
This book deals with the analysis of deformable solids accounting for:

– Nonlinear elastic constitutive behavior, plasticity and viscoplasticity
with damage, both for small and large deformations

– Contact conditions between deformable solids and the presence of inertia
terms.
The theoretical and numerical aspects are pertinent to:

– Hu-Washizu variational principles and associated mixed finite element
approximations and incompatible mode elements

– Time-integration schemes for inelastic constitutive models and nonlinear
dynamics

– Thermomechanical coupling (also for elastoplasticity) and micro–macro
approach

– Geometric and material instabilities.
We can think that the author will eventually publish one more book, deal-
ing with structural mechanics models of rods, plates and shells, given his
numerous contributions in that domain.
I wish that the present book meets the success equal to the international
reputation of the author.

Compiègne, September 2006 Jean-Louis BATOZ
Professor at Compiègne University of Technology



Preface

The roots of this book go back to my doctoral studies at the University of
California at Berkeley, from 1986 to 1989, funded by a Fullbright Grant. The
UC Berkeley in general, and Structural Engineering, Mechanics and Materi-
als Division in particular, provided an excellent study and research environ-
ment, with the opportunities to exchange the ideas with some extraordinary
talented people from all over the world. Subsequently, I had a good fortune to
stay on for another couple of years as a post-doc with my Berkeley mentors,
Professor Edward L. Wilson and Professor Robert L. Taylor, which allowed
me to explore a very wide variety of topics. The same good fortune was my
subsequent research appointment at the Swiss Federal Institute of Technology
in Lausanne at Structural and Continuum Mechanics Laboratory, directed by
Professor François Frey, who granted me complete freedom to carry on with
further explorations.
The work on the book started in 1994 with my first Professor appointment
in France at the Compiègne University of Technology, continued from 1999
at the Ecole Normale Supérieure of Cachan in France, and kept gradually
evolving as the result of a very fruitful interaction with graduate and un-
dergraduate students, my doctoral students and colleagues of both faculties,
in Cachan and in Compiègne. The final contents of the book was finally de-
cided while preparing the IPSI course on Computational Solid and Structural
Mechanics, which was taught several times in France, and more recently in
Germany and in Italy, together with my colleague Robert L. Taylor, Pro-
fessor at the University of California at Berkeley, to the audience of engi-
neers coming from a number of prominent European companies, university
teachers, researchers and graduate students. The first part of my sabbatical
leave from ENS-Cachan in 2005 allowed me to finally converge with this long
project. The work on French version of the book [115], which was published
in 2006 within the collection of graduate textbooks in mechanics edited by
Professor Paul Germain and Professor Pierre Ladevèze, was completed dur-
ing my stay at the Swiss Federal Institute of Technology in Lausanne, as well
as the subsequent stay at the University of Ljubljana, Slovenia. The work on
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the present English version of the book started during the second leg of my
sabbatical leave that I spent at the Technical University of Braunschweig,
Germany, which was made possible by the financial support of the Alexander
von Humboldt Foundation through the Research Award in Technical Me-
chanics for scientists with internationally recognized qualifications.

Cachan, August 2008 Adnan Ibrahimbegovic
Professor at Ecole Normale Supérieure de Cachan
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