Skip to main content

On Two Approaches to the Bergman Theory for Slice Regular Functions

  • Chapter
Advances in Hypercomplex Analysis

Part of the book series: Springer INdAM Series ((SINDAMS,volume 1))

Abstract

In this paper we show that the classical Bergman theory admits two possible settings for the class of slice regular functions. Let Ω be a suitable open subset of the space of quaternions ℍ that intersects the real line and let \(\mathbb{S}^{2}\) be the unit sphere of purely imaginary quaternions. Slice regular functions are those functions f:Ω→ℍ whose restriction to the complex planes ℂ(i), for every \(\mathbf{i}\in \mathbb{S}^{2}\), are holomorphic maps. One of their crucial properties is that from the knowledge of the values of f on Ω∩ℂ(i) for some \(\mathbf{i}\in \mathbb{S}^{2}\), one can reconstruct f on the whole Ω by the so called Representation Formula. We will define the so-called slice regular Bergman theory of the first kind. By the Riesz representation theorem we provide a Bergman kernel which is defined on Ω and is a reproducing kernel. In the slice regular Bergman theory of the second kind we use the Representation Formula to define another Bergman kernel; this time the kernel is still defined on Ω but the integral representation of f requires the calculation of the integral only on Ω∩ℂ(i) and the integral does not depend on \(\mathbf{i}\in \mathbb{S}^{2}\).

M.E. Luna-Elizarrarás and M. Shapiro were partially supported by CONACYT projects as well as by Instituto Politécnico Nacional in the framework of COFAA and SIP programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergman, S.: The Kernel Function and Conformal Mapping. Am. Math. Soc., Providence (1970)

    MATH  Google Scholar 

  2. Bergman, S., Schiffer, M.: Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Academic Press, New York (1953)

    MATH  Google Scholar 

  3. Brackx, F., Delanghe, R.: Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. Am. Math. Soc. 37, 545–576 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Research Notes in Mathematics, vol. 76 (1982)

    MATH  Google Scholar 

  5. Colombo, F., Sabadini, I.: A structure formula for slice monogenic functions and some of its consequences. In: Hypercomplex Analysis. Trends in Mathematics, pp. 101–114. Birkhäuser, Basel (2009)

    Google Scholar 

  6. Colombo, F., Sabadini, I.: The Cauchy formula with s-monogenic kernel and a functional calculus for noncommuting operators. J. Math. Anal. Appl. 373, 655–679 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colombo, F., Gentili, G., Sabadini, I., Struppa, D.C.: Extension results for slice regular functions of a quaternionic variable. Adv. Math. 222, 1793–1808 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colombo, F., Sabadini, I., Struppa, D.C.: Slice monogenic functions. Isr. J. Math. 171, 385–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colombo, F., Gentili, G., Sabadini, I.: A Cauchy kernel for slice regular functions. Ann. Glob. Anal. Geom. 37, 361–378 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colombo, F., Sabadini, I., Sommen, F.: The Fueter mapping theorem in integral form and the -functional calculus. Math. Methods Appl. Sci. 33, 2050–2066 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colombo, F., Sabadini, I., Struppa, D.C.: An extension theorem for slice monogenic functions and some of its consequences. Isr. J. Math. 177, 369–389 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colombo, F., González-Cervantes, J.O., Sabadini, I.: The Bergman-Sce transform for slice monogenic functions. Math. Methods Appl. Sci. 34, 1896–1909 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constales, D.: The Bergman and Szegö kernels for separately monogenic functions. Z. Anal. Anwend. 9, 97–103 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Constales, D., Kraußhar, R.S.: Bergman kernels for rectangular domains and multiperiodic functions in Clifford analysis. Math. Methods Appl. Sci. 25, 1509–1526 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Constales, D., Kraußhar, R.S.: Bergman spaces of higher-dimensional hyperbolic polyhedron-type domains I. Math. Methods Appl. Sci. 29, 85–98 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delanghe, R.: On Hilbert modules with reproducing kernel. In: Functional and Theoretical Methods: Partial Differential Equations, Proceedings of the International Symposium, Darmstadt, 1976. Lecture Notes in Mathematics, vol. 561, pp. 158–170 (1976)

    Chapter  Google Scholar 

  17. Gentili, G., Struppa, D.C.: A new theory of regular functions of a quaternionic variable. Adv. Math. 216, 279–301 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. González-Cervantes, J.O., Luna-Elizarrarás, M.E., Shapiro, M.: On some categories and functors in the theory of quaternionic Bergman spaces. Adv. Appl. Clifford Algebras 19(2), 325–338 (2009)

    Article  MATH  Google Scholar 

  19. Krantz, S.G.: Function Theory of Several Complex Variables, 2nd edn. Wadsworth & Brooks, Belmont (1982)

    MATH  Google Scholar 

  20. Shapiro, M., Vasilevski, N.: On the Bergman kernel function in hyperholomorphic analysis. Acta Appl. Math. 46, 1–27 (1977)

    Article  MathSciNet  Google Scholar 

  21. Shapiro, M., Vasilevski, N.: On the Bergman kernel function in Clifford analysis. In: Bracks, F., et al. (eds.) Clifford Analysis and Their Applications in Mathematical Physics, Proceedings of the Third Conference, Deinze, Belgium, 1993. Fundamental Theories of Physics, vol. 55, pp. 183–192. Kluwer Academic, Dordrecht (1993)

    Chapter  Google Scholar 

  22. Shapiro, M., Vasilevski, N.: On the Bergman kernel functions in quaternionic analysis. Russ. Math. (Izv. VUZ) 42(2), 81–85 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Colombo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Colombo, F., González-Cervantes, J.O., Luna-Elizarrarás, M.E., Sabadini, I., Shapiro, M. (2013). On Two Approaches to the Bergman Theory for Slice Regular Functions. In: Gentili, G., Sabadini, I., Shapiro, M., Sommen, F., Struppa, D. (eds) Advances in Hypercomplex Analysis. Springer INdAM Series, vol 1. Springer, Milano. https://doi.org/10.1007/978-88-470-2445-8_3

Download citation

Publish with us

Policies and ethics