Skip to main content

Recent Progress in the Genetic Engineering of Biofuel Crops

  • Chapter
  • First Online:
Biofuels: Greenhouse Gas Mitigation and Global Warming

Abstract

The utilization of biomass energy is increasingly considered as a promising means for the sustainable supply of energy and for long-term conservation of the global environment. In order to achieve the effective production of biomass-based energy, a key challenge will be the breeding of biofuel crops that enable high and stable biomass production. In this context, genetic engineering to optimize metabolism, create value-added biomass production, and enable environmental adaptability for growth on marginal land will be instrumental for establishing the next generation of biofuel crops. This review focuses on recent progress in the development of dedicated biofuel crops by means of genetic engineering, particularly switchgrass for lignocellulosic feedstock and jatropha and camelina for biodiesel feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by over expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  Google Scholar 

  • Baxter HL, Mazarei M, Labbe N, Kline LM, Cheng Q, Windham MT, Mann DGJ, Fu C, Ziebell A, Sykes RW, Rodriguez M Jr, Davis MF, Mielenz JR, Dixon RA, Wang Z-Y, Stewart CN Jr (2014) Two-year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnol J 12:914–924

    Article  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    Article  Google Scholar 

  • Bonawitz ND, Chapple C (2013) Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 24:336–343

    Article  Google Scholar 

  • Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, Schweiger B, Kinney A, Staswick P (2002) Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J 30:155–163

    Article  Google Scholar 

  • Chee PP, Fober KA, Slightom JL (1989) Transformation of soybean (Glycine max) by infecting germinating seeds with Agrobacterium tumefaciens. Plant Physiol 91:1212–1218

    Article  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  Google Scholar 

  • Choudhury R, Riesselman AJ, Pandey S (2014) Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa. Plant Biotechnol J 12:49–59

    Article  Google Scholar 

  • Dudley B (2014) BP statistical review of world energy. http://www.bp.com/statisticalreview

  • Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607

    Article  Google Scholar 

  • Eastmond PJ (2006) SUGAR-DEPENDENT 1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18:665–675

    Article  Google Scholar 

  • Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang ZY (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 108:3803–3808

    Article  Google Scholar 

  • Fu C, Sunkar R, Zhou C, Shen H, Zhang J-Y, Matts J, Wolf J, Mann DGJ, Stewart CN Jr, Tang Y, Wang Z-Y (2012) Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J 10:443–452

    Article  Google Scholar 

  • Girijashankar V, Swathisree V (2009) Genetic transformation of Sorghum bicolor. Physiol Mol Biol Plants 15:287–302

    Article  Google Scholar 

  • Gou J-Y, Felippes FF, Liu C-J, Weigel D, Wang J-W (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  Google Scholar 

  • Gu K, Mao H, Yin Z (2014) Production of marker-free transgenic Jatropha curcas expressing hybrid Bacillus thuringiensis δ-endotoxin Cry1Ab/1Ac for resistance to larvae of tortrix moth (Archips micaceanus). Biotechnol Biofuels 7:68

    Article  Google Scholar 

  • Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88

    Article  Google Scholar 

  • Hao Y, Charles TC, Glick BR (2010) ACC deaminase increases the Agrobacterium tumefaciens-mediated transformation frequency of commercial canola cultivars. FEMS Microbiol Lett 307:185–190

    Article  Google Scholar 

  • Homrich MS, Wiebke-Strohm B, Weber RLM, Bodanese-Zanettini MH (2012) Soybean genetic transformation: a valuable tool for the functional study of genes and the production of agronomically improved plants. Genet Mol Biol 35:998–1010

    Article  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  Google Scholar 

  • Jakob K, Zhou F, Paterson A (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol Plant 45:291–305

    Article  Google Scholar 

  • Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One 8:e71136

    Article  Google Scholar 

  • Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10:1067–1076

    Article  Google Scholar 

  • Kajikawa M, Morikawa K, Inoue M, Widyastuti U, Suharsono S, Yokota A, Akashi K (2012) Establishment of bispyribac selection protocols for Agrobacterium tumefaciens- and Agrobacterium rhizogenes-mediated transformation of the oil seed plant Jatropha curcas L. Plant Biotechnol 29:145–153

    Article  Google Scholar 

  • Kelly AA, Shaw E, Powers SJ, Kurup S, Eastmond PJ (2013) Suppression of the SUGAR-DEPENDENT 1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.) Plant Biotechnol J 11:355

    Article  Google Scholar 

  • Kim MJ, Yang SW, Mao HZ, Veena SP, Yin JL, Chua NH (2014) Gene silencing of sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels 7:36

    Article  Google Scholar 

  • King ZR, Bray AL, LaFayette PR, Parrott WA (2014) Biolistic transformation of elite genotype of switchgrass. Plant Cell Rep 33:313–322

    Article  Google Scholar 

  • Lardizabal K, Effertz R, Levering C, Mai J, Pedroso MC, Jury T, Aasen E, Gruys K, Bennett K (2008) Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol 148:89–96

    Article  Google Scholar 

  • Lee SB, Kim H, Kim RJ, Suh MC (2014) Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep 33:1535–1546

    Article  Google Scholar 

  • Li M, Li H, Jiang H, Pan X, Wu G (2008) Establishment of an Agrobacterium-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tissue Organ Cult 92:173–181

    Article  Google Scholar 

  • Li C, Luo L, Fu Q, Niu L, Xu Z-F (2014) Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas. BMC Plant Biol 14:125

    Article  Google Scholar 

  • Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep 27:273–278

    Article  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    Article  Google Scholar 

  • Mann DGJ, King ZR, Liu W, Joyce BL, Percifield RJ, Hawkins JS, LaFayette PR, Artelt BJ, Burris JN, Mazarei M, Bennetzen JL, Parrott WA, Stewart CN Jr (2011) Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. BMC Biotechnol 11:74

    Article  Google Scholar 

  • Mayavan S, Subramanyam K, Arun M, Rajesh M, Kapil Dev G, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32:1557–1574

    Article  Google Scholar 

  • McQualter RB, Somleva MN, Gebbie LK, Li X, Petrasovits LA, Snell KD, Nielsen LK, Brumbley SM (2014) Factors affecting polyhydroxybutyrate accumulation in mesophyll cells of sugarcane and switchgrass. BMC Biotechnol 14:83

    Article  Google Scholar 

  • Misra A, Khan K, Niranjan A, Nath P, Sane VA (2013) Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana. Phytochemistry 96:37–45

    Article  Google Scholar 

  • Nonaka S, Sugawara M, Minamisawa K, Yuhashi K, Ezura H (2008) 1-Aminocyclopropane-1-carboxylate deaminase enhances Agrobacterium tumefaciens-mediated gene transfer into plant cells. Appl Environ Microbiol 74:2526–2528

    Article  Google Scholar 

  • Park W, Feng Y, Ahn S-J (2014) Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpression of CsHMA3 in Camelina sativa. Biotechnol Biofuels 7:96

    Article  Google Scholar 

  • Patade VY, Khatri D, Kumar K, Grover A, Kumari M, Gupta SM, Kumar D, Nasim M (2014) RNAi mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.) Mol Biol Rep 41:4305–4312

    Article  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  Google Scholar 

  • Qu J, Mao H-Z, Chen W, Gao S-Q, Bai Y-N, Sun Y-W, Geng Y-F, Ye J (2012) Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels 5:10

    Article  Google Scholar 

  • Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton MDM (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 2014:379

    Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207

    Article  Google Scholar 

  • Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM (2011) Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulose treatment. PLoS One 6:e16416

    Article  Google Scholar 

  • Sang Y, Millwood RJ, Neal Stewart C Jr (2013) Gene use restriction technologies for transgenic plant bioconfinement. Plant Biotechnol J 11:649–658

    Article  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Article  Google Scholar 

  • Snapp AR, Kang J, Qi X, Lu C (2014) A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa. Planta 240:599–610

    Article  Google Scholar 

  • Snell KD, Peoples OP (2009) PHA bioplastic: a value-added coproduct for biomass biorefineries. Biofuel Bioprod Bior 3:456–467

    Article  Google Scholar 

  • Someya T, Nonaka S, Nakamura K, Ezura H (2013) Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells. Microbiol Open 2:873–880

    Google Scholar 

  • Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087

    Article  Google Scholar 

  • Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA (2008) Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnol J 6:663–678

    Article  Google Scholar 

  • Somleva MN, Xu CA, Ryan KP, Thilmony R, Peoples O, Snell KD, Thomson J (2014) Transgene autoexcision in switchgrass pollen mediated by the Bxb1 recombinase. BMC Biotechnol 14:79

    Article  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  Google Scholar 

  • Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants – a review. Biotechnol Adv 25:148–175

    Article  Google Scholar 

  • Tsuchimoto S, Cartagena J, Khemkladngoen N, Singkaravanit S, Kohinata T, Wada N, Sakai H, Morishita Y, Suzuki H, Shibata D, Fukui K (2012) Development of transgenic plants in Jatropha with drought tolerance. Plant Biotechnol 29:137–143

    Article  Google Scholar 

  • Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by overexpression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441

    Article  Google Scholar 

  • Wang X, Yamada T, Kong F-J, Abe Y, Hoshino Y, Sato H, Takamizo T, Kanazawa A, Yamada T (2011) Establishment of an efficient in vitro culture and particle bombardment-mediated transformation system in Miscanthus sinensis Anderss., a potential bioenergy crop. GCB Bioenergy 3:322–332

    Article  Google Scholar 

  • Weng JK, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172

    Article  Google Scholar 

  • Wigge PA (2011) FT, a mobile developmental signal in plants. Curr Biol 21:R374–R378

    Article  Google Scholar 

  • Williams LE, Mills RF (2005) P(1B)-ATPases – an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang J-W, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  Google Scholar 

  • Xing S, Salinas M, Hohmann S, Berndtgen R, Huijser P (2010) miR156-targeted and nontargeted SBP-Box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell 22:3935–3950

    Article  Google Scholar 

  • Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z, Shen H, Zhang YH, Dixon RA, Zhao B (2011) Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192:611–625

    Article  Google Scholar 

  • Xu B, Sathitsuksanoh N, Tang Y, Udvardi MK, Zhang J-Y, Shen Z, Balota M, Harich K, Zhang PYH, Zhao B (2012) Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS One 7:e47399

    Article  Google Scholar 

  • Yau YY, Wang Y, Thomson JG, Ow DW (2011) Method for Bxb1-mediated site-specific integration in planta. Methods Mol Biol 701:147–166

    Article  Google Scholar 

  • Yoo SY, Kim Y, Kim SY, Lee JS, Ahn JH (2007) Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS One 2:e642

    Article  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    Article  Google Scholar 

  • Zhang Y, Yu L, Yung KF, Leung DY, Sun F, Lim BL (2012) Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield. Biotechnol Biofuels 5:19

    Article  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefining 6:465–482

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Research Partnership for Sustainable Development (SATREPS) program by Japan Science and Technology Agency (JST)/Japan International Cooperation Agency (JICA), the New Energy and Industrial Technology Development Organization (NEDO), the Cooperative Research Grant of the Gene Research Center, University of Tsukuba, the Joint Research Program and the MRA Project of the Arid Land Research Center, Tottori University, and a Grant-in-Aid for Scientific Research from JSPS to K.A. (17K07755).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinya Akashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer (India) Pvt. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akashi, K., Nanasato, Y. (2018). Recent Progress in the Genetic Engineering of Biofuel Crops. In: Kumar, A., Ogita, S., Yau, YY. (eds) Biofuels: Greenhouse Gas Mitigation and Global Warming. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3763-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3763-1_18

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3761-7

  • Online ISBN: 978-81-322-3763-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics