Skip to main content

Properties and Types of Chitosan-Based Nanomaterials

  • Chapter
  • First Online:
Chitosan Based Nanomaterials in Plant Growth and Protection

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

Abstract

In the recent years, numerous natural as well as synthetic polymers have been examined for agricultural, biotechnological, medical and pharmaceutical applications (Kadajji and Betageri 2011). The basic advantage of these polymers used in plants or animals is that they don’t have any toxic effects on environment. Among such polymers, chitosan is a linear homo-polymer of glucosamine and N-acetyl glucosamine units linked by β (1–4) glycosidic linkage (Rajan and Raj 2013). As such chitosan is not present in nature and thus it can’t be extracted from naturally occurring resources. Indeed, chitosan is the deacetylated product of natural chitin; the second most abundant polysaccharide in nature. Due to unique characteristics, such as non-toxic, biocompatible, safe and biodegradable, it is globally used as an antibacterial, antifungal and adhesive agent either blended with other polymers or alone (Dutta et al. 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anitha A, SanojRejinold N, Bumgardner JD, Nair SV, Jayakumar R (2012) Approaches for functional modification or cross-linking of chitosan. In: Chitosan-based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics. Wiley, Chichester

    Google Scholar 

  • Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A (2009) Functional characterization of chitin and chitosan. Cur Chem Bio 3:203–230

    CAS  Google Scholar 

  • Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12:2163

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay DP, Inamdar MS (2012) Studies on synthesis, characterization and viscosity behaviour of nano Chitosan. Res J Eng Sci 1(4):9–15

    Google Scholar 

  • Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  • Deluisa A, Giandon P, Aichner M, Bortolami P, Bruna L, Lupetti A, Nardelli F, Stringari G (1996) Copper pollution in Italian vineyard soils. Commun Soil Sci Plant Anal 27:1537

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manango’n E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nano Res 14:11–25

    Article  Google Scholar 

  • Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389

    Article  CAS  Google Scholar 

  • Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and application. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  • Fan W, Yan W, Xu Z, Ni H (2012) Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B: Biointerfaces 90:21–27

    Article  CAS  PubMed  Google Scholar 

  • Huang KS, Sheu YR, Chao IC (2009) Preparation and properties of nano chitosan. Polym Plast Technol Eng 48:1239–1243

    Article  CAS  Google Scholar 

  • Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012:1–9

    Article  Google Scholar 

  • Kadajji VG, Betageri GV (2011) Water soluble polymers for pharmaceutical applications. Polymers 3:1972–2009

    Article  CAS  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Kumirska J, Weinhold MX, Czerwicka M, Kaczyński Z, Bychowska A, Brzozowski K, Thoming J, Stepnowski P (2011) Influence of the chemical structure and physicochemical properties of chitin- and chitosan-based materials on their biomedical activity. Biomedical Eng Trends Mat Sci

    Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Rajan M, Raj V (2013) Potential drug delivery applications of chitosan nased nanomaterials. IntRev Chemical Eng 5(2):145–155

    Google Scholar 

  • Rodrigues S, Rosa da Costa AM, Grenha A (2012) Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr Polym 89:282–289

    Article  CAS  PubMed  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  CAS  PubMed  Google Scholar 

  • Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticlesagainst pathogenic fungi of tomato. Int J Biol Macromol 75:346–353

    Article  CAS  PubMed  Google Scholar 

  • Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46

    Article  CAS  PubMed  Google Scholar 

  • Trung TS, Bao HND (2015) Physicochemical properties and antioxidant activity of chitin and chitosan prepared from pacific white shrimp waste. Int J Carbohydr Chem 2015:1–6

    Article  Google Scholar 

  • Vijayalakshmi K, Gomathi T, Sudha PN (2014) Preparation and characterization of nanochitosan/sodium alginate/ microcrystalline cellulose beads. Der Pharmacia Lett 6(4):65–77

    CAS  Google Scholar 

  • Wang XH, Du Y, Liu H (2004) Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydr Polym 56:21–26

    Article  CAS  Google Scholar 

  • Yang HC, Wang WH, Huang KS, Hon MH (2010) Preparation and application of nanochitosan to finishing treatment with anti-microbial and anti-shrinking properties. Carbohydr Polym 79:176–179

    Article  CAS  Google Scholar 

  • Yue ZG, Wei W, Lv PP, Hua Y, Wang LY, Su ZG, Ma GH (2011) Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 12:2440–2446

    Article  CAS  PubMed  Google Scholar 

  • Zambito Y (2013) Nanoparticles based on chitosan derivatives. Intech:243–263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Saharan, V., Pal, A. (2016). Properties and Types of Chitosan-Based Nanomaterials. In: Chitosan Based Nanomaterials in Plant Growth and Protection. SpringerBriefs in Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3601-6_3

Download citation

Publish with us

Policies and ethics