Skip to main content

Interactions Between Arbuscular Mycorrhizal Fungi and Potassium-Solubilizing Microorganisms on Agricultural Productivity

  • Chapter
  • First Online:
Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

Microbial interaction is a key determinant of soil fertility, plant health, and crop productivity. Arbuscular mycorrhizal fungi (AMF) belonging to the phylum Glomeromycota are a ubiquitous component of most natural and agroecosystems. These fungi associate with most of the plant species and provide several benefits including better nutrition and increased tolerance to various biotic and abiotic stresses. Mycorrhizal symbiosis can affect the microbial population and their activity in the rhizosphere both qualitatively and quantitatively including mineral solubilization by microorganisms. These changes are mediated through the so-called mycorrhizosphere effect resulting from direct or indirect changes in root exudation (composition and quantity) patterns or through fungal exudates. In most instances, the interaction between AMF and nutrient-solubilizing microorganisms is synergistic resulting in stimulation of plant growth through improved nutrient acquisition and inhibition of plant pathogens. The ecological impact of AMF interactions with microorganisms involved in potassium solubilization is not well resolved compared to those involved in phosphate solubilization. Although direct studies on the interactions between AMF and potassium-solubilizing microorganisms (KSMs) on plant growth are limited, studies on plant growth-promoting microorganisms (PGPMs) and AMF do involve organisms with K-solubilizing capabilities. Evidence does exist on the influence of KSMs on mycorrhizal formation and function. Interactions between AMF and KSMs are vital in sustainable low-input crop production systems that rely on biological processes to achieve improved plant growth and yield in addition to maintaining soil fertility. This article examines the interactions between AMF and KSMs on plant growth, development, and crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Rahman SSA, Abdel-Kader AAS, Khalil SE (2011) Response of three sweet basil cultivars to inoculation with Bacillus subtilis and arbuscular mycorrhizal fungi under salt stress conditions. Nat Sci 9:93–111

    Google Scholar 

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Alam M, Khaliq A, Sattar A, Shukla RS, Anwar M, Dharni S (2011) Synergistic effect of arbuscular mycorrhizal fungi and Bacillus subtilis on the biomass and essential oil yield of rose-scented geranium (Pelargonium graveolens). Arch Agron Soil Sci 57:889–898

    Article  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol 7:1952–1966

    Article  CAS  PubMed  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Babu AG, Reddy AS (2011) Aspergillus tubingensis improves the growth and native mycorrhizal colonization of bermuda grass in Bauxite residue. Biorem J 15:157–164

    Article  Google Scholar 

  • Basak BB, Biswas DR (2010) Coinoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    Article  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2013) The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci Hortic 164:145–154

    Article  CAS  Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Mineral Mag 8:149–150

    Article  Google Scholar 

  • Bertaux J, Schmid M, Chemidlin Prevost-Boure N, Chrin JL, Hartmann A, Garbaye J, Frey-Klatt P (2003) In situ identification of intracellular bacteria related to Paenibacillus ssp. In the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 68:4243–4248

    Article  Google Scholar 

  • Bharadwaj DP, Lundquist P-O, Alströma S (2008) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol Biochem 40:2494–2501

    Article  CAS  Google Scholar 

  • Bhromsiri C, Bhromsiri A (2010) The effects of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi on the growth, development and nutrient uptake of different vetiver ecotypes. Thai J Agric Sci 43:239–249

    Google Scholar 

  • Bianciotto V, Minerdi D, Perotto S, Bonfante P (1996) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123–131

    Article  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soil borne fungal pathogens. Appl Environ Microbiol 65:5148–5150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caravaca F, Alguacil MM, Azcónb R, Díaz G, Roldán A (2004) Comparing the effectiveness of mycorrhizal inoculation and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L. Appl Soil Ecol 25:169–180

    Article  Google Scholar 

  • Casieri L, Lahmidi NA, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D (2013) Biotrophic transportome in mutualistic plant fungal interactions. Mycorrhiza 23:597–625

    Article  CAS  PubMed  Google Scholar 

  • Cerezine PC, Nahas E, Banzatto DA (1988) Phosphate accumulation by Aspergillus niger from fluorapatite. Appl Microbiol Biotechnol 29:501–505

    Article  CAS  Google Scholar 

  • Chamizo A, Ferrera-Cerrato R, González-Chávez MC, Ortiz-Solorio CA, Santizo-Rincón JA, Alarcón LVA (2009) Alfalfa inoculation with arbuscular mycorrhizal fungi and rhizobacteria in two soil types. Terra Latinoam 27:197–205

    Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D.Don). Soil Biol Biochem 34:487–499

    Article  CAS  Google Scholar 

  • Constantino M, Gómez-Álvarez R, Álvarez-Solís JD, Geissen V, Huerta E, Barba E (2008) Effect of inoculation with rhizobacteria and arbuscular mycorrhizal fungi on growth and yield of Capsicum chinense Jacquin. J Agric Rural Dev Trop Subtrop 109:169–180

    Google Scholar 

  • Cruz AF, Ishii T (2012) Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil borne pathogens. Biol Open 1:52–57

    Article  PubMed  Google Scholar 

  • Deubel A, Gransee A, Merbak W (2000) Transformation of organic rhizodeposits by rhizoplane bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr Soil Sci 163:387–392

    Article  CAS  Google Scholar 

  • Drew MC, Nye PH (1969) the supply of nutrient ions by diffusion to plant roots in soil. II. The effect of root hairs on the uptake of potassium by roots of ryegrass (Lolium multiflorum). Plant Soil 31:407–424

    Article  CAS  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere micro-organisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:1–9

    Article  CAS  Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizers. Omega Scientific Publishers, New Delhi

    Google Scholar 

  • Ghori TK, Anusuya D, Geetha M (2014) Response of papaya to inoculation with Frateuria aurentia (potassium mobilizer) and plant growth promoting rhizomicroorganism (PGPR). Indian J Appl Res 4:86–87

    Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, microbiology monographs, vol 18. Springer, Heidelberg, pp 333–364

    Chapter  Google Scholar 

  • Gupta SS (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227

    Article  Google Scholar 

  • Han HS, Supanjani, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Hemashenpagam N, Selvaraj T (2011) Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPRs) on medicinal plant Solanum viarum seedlings. J Environ Biol 32:579–583

    CAS  PubMed  Google Scholar 

  • Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner F-J, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadah F, Satei A, Ramezanpou MR (2011) Effects of mycorrhiza and plant growth promoting rhizobacteria on growth, nutrients uptake and physiological characteristics in Calendula officinalis L. Middle East J Sci Res 8:947–953

    CAS  Google Scholar 

  • Hu XF, Chen J, Guo JF (2006) Two phosphate and potassium solubilizing bacteria isolated from Tianmu mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Jaizme-Vega MDC, Rodríguez-Romer AS, Núňez LAB (2006) Effect of the combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on papaya (Carica papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits 61:151–162

    Article  Google Scholar 

  • Johansson SAE, Campbell JL (1988) PIXE, a novel technique for elemental analysis. Wiley, Chichester

    Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Lee PJ, Koske RE (1994) Gigaspora gigantea: parasitism of spores by fungi and actinomycetes. Mycol Res 98:458–466

    Article  Google Scholar 

  • Leigh RA, Wyn-Jones RG (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97:1–13

    Article  CAS  Google Scholar 

  • Li B, Ravnskov S, Xie GL, Larsen J (2008) Differential effects of Paenibacillus spp. on cucumber mycorrhizas. Mycol Prog 7:277–284

    Article  CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2007) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  Google Scholar 

  • Lopes-Assad ML, Avansini SM, Rosa MM, de Carvalho JRP, Ceccato-Antonini SR (2010) The solubilization of potassium-bearing rock powder by Aspergillus niger in small-scale batch fermentations. Can J Microbiol 56:598–605

    Article  CAS  PubMed  Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bødker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of inceptisol and alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Mayo K, Davis RE, Motta J (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78:426–431

    Article  Google Scholar 

  • McAllister CB, Garcia-Romera I, Martin J, Godeas A, Ocampo JA (1995) Interaction between Aspergillus niger van Tiegh. and Glomus mosseae. (Nicol. & Gerd.) Gerd. & Trappe. New Phytol 129:309–316

    Article  Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K- solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meyer JR, Linderman RG (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196

    Article  Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar T, Udaiyan K (2006) Growth of nursery grown bamboo to arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in two soil types with and without fertilizer application. New For 81:469–485

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K (2010) Growth response of Casuarina equisetifolia to bioinoculants under tropical nursery conditions. New For 40:101–118

    Article  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G, Valori F (2007) Microbial diversity and microbial activity in the rhizosphere. Ci Suelo (Argentina) 25:89–97

    Google Scholar 

  • Ndoye F, Kane A, Bakhoum N, Sanon A, Fall D, Diouf D, Sy MO, Noba K (2012) Response of Acacia senegal (L.) Willd. seedlings and soil bio-functioning to inoculation with arbuscular mycorrhizal fungi, rhizobia and Pseudomonas fluorescens. Afr J Microbiol Res 6:7176–7184

    Google Scholar 

  • Olsson PA, Hammer EC, Wallander H, Pallon J (2008) Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis. Appl Environ Microbiol 74:4144–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson PA, Hammer EC, Pallon J, van Aarle IM, Wallander H (2011) Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biol 115:643–648

    Article  CAS  PubMed  Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116

    Google Scholar 

  • Pallon J, Wallander H, Hammer E, Arteaga Marrero N, Auzelyte V, Elfman M, Kristiansson P, Nilsson C, Olsson PA, Wegdén M (2007) Symbiotic fungi that are essential for plant nutrient uptake investigated with NMP. Nucl Instrum Methods Phys Res B 260:149–152

    Article  CAS  Google Scholar 

  • Paulitz TC, Linderman RG (1989) Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytol 113:37–45

    Article  Google Scholar 

  • Perner H, Schwarz D, Bruns C, Mader P, George E (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474

    Article  PubMed  Google Scholar 

  • Pulido LE, Cabero A, Medina N (2003) Biofertilization using rhizobacteria and AMF in the production of tomato (Lycopersicon esculentum Mill.) and onion (Allium cepa L.) seedlings. II. Root colonization and nutritional status. Cultivos Tropicales 24:5–13

    Google Scholar 

  • Rodríguez-Romero AS, Guerra MSP, Jaizme-Vega MDC (2005) Effect of arbuscular mycorrhizal fungi and rhizobacteria on banana growth and nutrition. Agron Sustain Dev 25:395–399

    Article  Google Scholar 

  • Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K, Aragno M (2006) Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol Biochem 38:1111–1120

    Article  CAS  Google Scholar 

  • Schreiner RP, Mihara KL, McDaniel H, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–210

    Article  CAS  Google Scholar 

  • Schüßler A, Scharzott D, Walker C (2001) A new fungal phylum, the glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Microbiol 33:1069–1073

    Article  Google Scholar 

  • Selvaraj T, Sumithra P (2011) Effect of Glomus aggregatum and plant growth promoting rhizomicroorganisms on growth, nutrition and content of secondary metabolites in Glycyrrhiza glabra L. Indian J Appl Pure Biol 26:283–290

    Google Scholar 

  • Selvaraj T, Rajeskumar S, Nisha MC, Wondimo L, Tesso M (2008) Effect of Glomus mosseae and plant growth promoting rhizo-microorganisms (PGPRs) on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam. Maejo Int J Sci Technol 2:516–525

    CAS  Google Scholar 

  • Shirmardi M, Savaghebi GR, Khavazi K, Akbarzadeh A, Farahbakhsh M, Rejali F, Sadat A (2010) Effect of microbial inoculants on uptake of nutrient elements in two cultivars of sunflower (Helianthus annuus L.) in saline soils. Not Sci Biol 2:57–66

    CAS  Google Scholar 

  • Silva Filho GN, Narloch C, Scharf R (2002) Solubilizac¸a˜o de fosfatos naturais por microrganismos isolados de cultivos de Pinus e Eucalyptus de Santa Catarina. Pesq Agrop Bras 37:847–854 [In Portuguese]

    Article  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New York, p 787

    Google Scholar 

  • Sperber JI (1958) The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust J Agric Res 9:778–781

    Article  CAS  Google Scholar 

  • Srimathi Priya L, Kumutha K (2009) Effect of arbuscular mycorrhizal inoculum on enzyme activities and microbial population in the rhizosphere of Colous forskohlii Briq. Mycorrhiza News 20:14–21

    Google Scholar 

  • Sumithra P, Selvaraj T (2011) Influence of Glomus walkeri Blaszk and Renker and plant growth promoting rhizomicroorganisms on growth, nutrition and content of secondary metabolites in Sphaeranthes amaranthoides (L.) Burm. J Agric Technol 7:1685–1692

    Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on the plant growth and phosphorus content. Plant Soil 371:1–13

    Article  CAS  Google Scholar 

  • Velázquez MS, Elíades LA, Irrazabal GB, Saparrat CM, Cabello MN (2005) Mycobization with Glomus mosseae and Aspergillus niger in Lycopersicon esculentum plants. J Agric Technol 1:315–326

    Google Scholar 

  • Veresoglou SD, Mamolos AP, Thornton B, Voulgari OK, Sen R, Veresoglou S (2011) Medium-term fertilization of grassland plant communities masks plant species-linked effects on soil microbial community structure. Plant Soil 344:187–196

    Article  CAS  Google Scholar 

  • Vogeti S, Brunda devi K, Tilak KVBR, Bhadraiah B (2011) Dual inoculation of Glomus fasciculatum (Taxter) Migula on nutrient levels in sweet potato (Ipomoea batatas L.) Lam. Proc Nat Acad Sci India Sect B 81:428–432

    Google Scholar 

  • Walley FL, Germida JJ (1996) Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43–49

    Article  Google Scholar 

  • Walley FL, Germida JJ (1997) Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biol Fertil Soils 24:365–371

    Article  Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I, Müller AK, Sørensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357

    Article  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478

    Article  CAS  Google Scholar 

  • Younesi O, Moradi A (2014) Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L.). Agriculture (Poľnohospodárstvo) 60:10–21

    CAS  Google Scholar 

  • Zorb C, Senbayram M, Peiter E (2014) Potassium in agriculture – status and perspectives. J Plant Physiol 171:656–669

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thangavelu Muthukumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Priyadharsini, P., Muthukumar, T. (2016). Interactions Between Arbuscular Mycorrhizal Fungi and Potassium-Solubilizing Microorganisms on Agricultural Productivity. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_8

Download citation

Publish with us

Policies and ethics