Skip to main content

Mechanisms of Heavy Metal Toxicity in Plants

  • Chapter
  • First Online:
Abiotic Stress Physiology of Horticultural Crops

Abstract

Pollution of the environment with the toxic heavy metals has become one of the major causes for worry for human health in both emerging and advanced countries. Metal contamination issues are becoming more and more common in India and elsewhere, with many documented cases of metal toxicity in mining industries, foundries, smelters, coal-burning power plants, and agriculture. As land application becomes one of the foremost waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, largely through plant uptake and animal transfer. Heavy metal buildup in soils is of concern in agricultural production due to the adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. Metal toxicity has high impact and relevance to plants, and consequently, it affects the ecosystem, where the plants form an integral component. A few metals, including copper, manganese, iron, cobalt, zinc, and chromium, are, however, essential to plant metabolism in trace quantities. It is only when metals are present in bioavailable forms and at excessive levels; they have the potential to turn out to be toxic to plants through formation of complex compounds within the cell. Plants growing in metal-contaminated sites exhibit altered metabolism, growth reduction, lower biomass production, and metal accumulation. Various physiological and biochemical processes in plants are affected by metal toxicities. The present-day investigations into toxicity and tolerance in metal-stressed plants are prompted by the growing metal pollution in the environment. This article details the range of heavy metals, toxicity for plants, and mechanisms of plants to cope with metal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizer RS, Rajagopel CK, Money NS (1975) Available zinc, copper, iron, and manganese status of the acid rice soils of Kuttanad, Kerala State. Agric Res J Kerala 13:15–19

    Google Scholar 

  • Alcantara E, Romera FJ, Canete M, De La Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe (III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898

    Article  CAS  Google Scholar 

  • Alia Prasad KVSK, Pardha Saradhi P (1995) Effect of zinc on free radical and proline in Brasica juncea and Cajanus cajan. Phytochem 39:45–47

    Article  Google Scholar 

  • Ames BA, Shingenaga MK, Park EM (1991) In: Elmsford (ed) Oxidative damage and repair: chemical, biological and medical aspects. Pergamon Press, New York, pp 181–187

    Chapter  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1995) Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiol 15:411–415

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1338

    CAS  Google Scholar 

  • Aust SD, Marehouse CE, Thomas CE (1985) Role of metals in oxygen radical reactions. J Free Radi Biol Med 1:3–25

    Article  CAS  Google Scholar 

  • Bachman GR, Miller WB (1995) Iron chelate inducible iron/ manganese toxicity in zonal geranium. J Plant Nutr 18:1917–1929

    Article  CAS  Google Scholar 

  • Baker WG (1972) Toxicity levels of mercury lead, copper and zinc in tissue culture systems of cauliflowers lettuce potato and carrot. Can J Bot 50:973–976

    Article  Google Scholar 

  • Bakkaus E, Gouget B, Gallien JP, Khodja H, Carrot H, Morel JL, Collins R (2005) Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Inst Methods B 231:350–356

    Article  CAS  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Func Plant Biol 30:57–64

    Article  CAS  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice-conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    Article  CAS  Google Scholar 

  • Bishnoi NR, Chugh LK, Sawhney SK (1993a) Effect of chromium on photosynthesis, respiration and nitrogen fixation in pea (Pisum sativum L) seedlings. J Plant Physiol 142:25–30

    Article  CAS  Google Scholar 

  • Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993b) Effect of chromium on seed germination, seedling growth and yield of peas. Agric Ecosyst Environ 47:47–57

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals-using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremed 4:87–100

    Article  CAS  Google Scholar 

  • Cakmak I, Marshner H (1993) Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: Barrow NJ (ed) Plant nutrition-from genetic engineering field practice. Kluwer, Dordrecht, pp 133–137

    Chapter  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, Jucoski GO, Battisti V, Redin M, Linares CEB, Dressler VL, Flores MM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1106

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty B, Srivastava S (1992) Toxicity of some heavy metals in vivo and in vitro in Helianthus annuus. Mutat Res 283:287–294

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  PubMed  Google Scholar 

  • Clarimont KB, Hagar WG, Davis EA (1986) Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant Physiol 80:291–293

    Article  Google Scholar 

  • Clements HF, Putnam EW, Suehisa RH, Yee GLN, Wehling ML (1974) Soil toxicities as causes of sugarcane leaf freckle, macadamia leaf chlorosis (Keaau) and Maui sugarcane growth failure. Hawaii Agric Exp Station Tech Bull 88, pp 52

    Google Scholar 

  • Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32:561–570

    CAS  Google Scholar 

  • Crawford TW, Stroehlein JL, Kuehl RO (1989) Manganese and rates of growth and mineral accumulation in cucumber. J Am Soc Hortic Sci 114:300–306

    CAS  Google Scholar 

  • Cunningham RP (1997) DNA repair: caretakers of the genome? Curr Biol 7:576–579

    Article  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  CAS  PubMed  Google Scholar 

  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25:2389–2407

    Article  CAS  Google Scholar 

  • de Dorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an inter specific rice. J Plant Nutr 28:1–20

    Article  CAS  Google Scholar 

  • De Filippis LF, Ziegler H (1993) Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J Plant Physiol 142:167–172

    Article  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Elamin OM, Wilcox GE (1986a) Effect of magnesium and manganese nutrition on muskmelon growth and manganese toxicity. J Am Soc Hortic Sci 111:582–587

    CAS  Google Scholar 

  • Elamin OM, Wilcox GE (1986b) Effect of magnesium and manganese nutrition on watermelon growth and manganese toxicity. J Am Soc Hortic Sci 111:588–593

    CAS  Google Scholar 

  • El‐Jaoual T, Cox DA (1998) Manganese toxicity in plants. J Plant Nutr 21:353–386. doi:10.1080/01904169809365409

    Article  Google Scholar 

  • Epstein E (1961) Mineral metabolism of halophytes. In: Rorison IH (ed) Ecological aspects of the mineral nutrition of plants. Blackwell Publishers, Oxford, pp 345–353

    Google Scholar 

  • Fodor A, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 14:787–792

    Google Scholar 

  • Fontes RLS, Cox FR (1998) Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutr 21:1723–1730

    Article  CAS  Google Scholar 

  • Foy CD (1978) The physiology of metal toxicity in plants. Ann Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • Foy CD, Weil RR, Coradetti CA (1995) Differential manganese tolerances of cotton genotypes in nutrient solution. J Plant Nutr 18:685–706

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzymes activities, proline and chlorophyll contents in wheat shoots. Biol Planta 50:653–659

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    Article  CAS  Google Scholar 

  • Gimeno-Garcia E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92:19–25

    Article  CAS  PubMed  Google Scholar 

  • Goldbold DJ, Hutterman A (1986) The uptake and toxicity of mercury and lead to spruce (Picea abies) seedlings. Water Air Soil Pollut 31:509–515

    Article  Google Scholar 

  • Goldstein S, Czapski C (1986) The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from the toxicity of O2 . J Free Radic Biol Med 2(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance in three Tuscan populations of Silene paradoxa. Physiol Planta 113:507–514

    Article  CAS  Google Scholar 

  • Gopal R, Dube BK, Sinha P, Chatterjee C (2003) Cobalt toxicity effects on growth and metabolism of tomato. Commun Soil Sci Plant Anal 34:619–628. doi:10.1081/CSS-120018963

    Article  CAS  Google Scholar 

  • Gruenhage L, Jager IIJ (1985) Effect of heavy metals on growth and heavy metals content of Allium Porrum and Pisum sativum. Angew Bot 59:11–28

    CAS  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Over expressing GSHI and AsPCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Cutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  • Han FX, Su Y, Monts DL, Waggoner AC, Plodinec JM (2006) Binding distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Sci Total Environ 368:753–768

    Article  CAS  PubMed  Google Scholar 

  • Hawkes JS (1997) Heavy metals. J Chem Educ 74:1369–1374

    Article  Google Scholar 

  • Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedings under cadmium stress. Plant Sci 160:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Hernandez LE, Carpena-Ruiz R, Garate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19:1581–1598

    Article  CAS  Google Scholar 

  • Hewilt EJ (1953) Metal inter-relationships in plant nutrition. J Exp Bot 4:59–64

    Article  Google Scholar 

  • Horiguchi T (1988) Mechanism of manganese toxicity and tolerance of plants. IV. Effects of silicon on alleviation of manganese toxicity of rice plants. Soil Sci Plant Nutr 34:65–73

    Article  CAS  Google Scholar 

  • Horst J (1988a) Beschreibung der Gleichgewichtslage des ionenaustauschs an schwach saoren harzen mit hilfe eines models der oberflachenkomplexbildung, doctoral thesis, University of Karlsruhe, Kfk report, 4464

    Google Scholar 

  • Horst WJ (1988b) The physiology of Mn toxicity. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 175–188

    Chapter  Google Scholar 

  • Hossain MA, Piyatida P, Jaime A, da Silva T, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot vol 2012, Article ID 872875, 37 pp. doi: 10.1155/2012/872875

    Google Scholar 

  • Huang CV, Bazzaz FA, Venderhoef LN (1974) The inhibition of soya bean metabolism by cadmium and lead. Plant Physiol 34:122–124

    Article  Google Scholar 

  • Huffman EWD Jr, Allaway HW (1973a) Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. J Agric Food Chem 21:982–986

    Article  PubMed  Google Scholar 

  • Huffman EWD Jr, Allaway WH (1973b) Growth of plants in solution culture containing low levels of chromium. Plant Physiol 52:72–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illan YA, Crapski C, Meisel D (1976) The one-electron transfer redox potentials of free radicals. 1. The oxygen/superoxide system. Biochim Biophys Acta 430:209–224

    Article  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598

    Article  CAS  PubMed  Google Scholar 

  • Izosimova A (2005) Modelling the interaction between calcium and nickel in the soil-plant system. FAL Agric Res Spec Issue 288:99

    Google Scholar 

  • Jain R, Srivastava S, Madan VK, Jain R (2000) Influence of chromium on growth and cell division of sugarcane. Indian J Plant Physiol 5:228–231

    CAS  Google Scholar 

  • Juwarkar AS, Shende GB (1986) Interaction of Cd-Pb effect on growth yield and content of Cd, Pb in barley. Indian J Environ Health 28:235–243

    CAS  Google Scholar 

  • Kaji T, Suzuki M, Yamamoto C, Mishima A, Sakamoto M, Kozuka H (1995) Severe damage of cultured vascular endothelial cell monolayer after simultaneous exposure to cadmium and lead. Arch Environ Contam Toxicol 28:168–172

    Article  CAS  PubMed  Google Scholar 

  • Kamal M, Ghalya AE, Mahmouda N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Kasprzak KS (1995) Possible role of oxidative damage in metal induced carcinogenesis. Cancer Invest 13:411–430

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Khan NN (1983) Influence of lead and cadmium on growth and nutrient concentration of tomato (Lycopersicum esculentum) and egg plant (Solanum melongena). Plant Soil 74:387–394

    Article  CAS  Google Scholar 

  • Kitao M, Lei TT, Koike T (1997a) Effects of manganese toxicity on photosynthesis of white birch (Betula platyphylla var. japonica) seedlings. Physiol Plant 101:249–256

    Article  CAS  Google Scholar 

  • Kitao M, Lei TT, Koike T (1997b) Effects of manganese in solution culture on the growth of five deciduous broad-leaved tree species with different successional characters from northern Japan. Photosynthesis 36:31–40

    Article  Google Scholar 

  • Kumar G, Singh RP, Sushila (1992) Nitrate assimilation and biomass production in Seasamum indicum (L.) seedlings in lead enriched environment. Water Soil Pollut 215:124–215

    Google Scholar 

  • L’Huillier L, d’Auzac J, Durand M, Michaud-Ferriere N (1996) Nickel effects on two maize (Zea mays) cultivars: growth, structure, Ni concentration, and localization. Can J Bot 74:1547–1554

    Article  Google Scholar 

  • Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT, Costa M (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 15:2547–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CW, Choi JM, Pak CH (1996) Micronutrient toxicity in seed geranium (Pelargonium x hortorum Bailey). J Am Soc Hortic Sci 121:77–82

    CAS  Google Scholar 

  • Lenntech Water Treatment and Air Purification (2004) Water treatment. Lenntech, Rotterdamseweg, http://www.excelwater.com/thp/filters/WaterPurification.htm

    Google Scholar 

  • Lewis S, Donkin ME, Depledge MH (2001) Hsp 70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277–291

    Article  CAS  PubMed  Google Scholar 

  • Li Z, McLaren RG, Metherell AK (2004) The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. N Z J Agric Res 47:33–43

    Article  CAS  Google Scholar 

  • Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986

    Article  CAS  PubMed  Google Scholar 

  • Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  • Luo Y, Han Z, Chin SM, Linn S (1994) Three chemically distinct types of oxidants formed by iron mediated Fenton reactions in the presence of DNA. Proc Natl Acad Sci U S A 91:12438–12442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer Briefs in Biometals. doi: 10.1007/978-94-007-4441

  • Marschner H (1986) Mineral nutrition of higher plants. Academic, London, p 674

    Google Scholar 

  • Mathys W (1975) Enzymes of heavy metal-resistant and non-resistant populations of Silene cucubalus and their interactions with some heavy metals in vitro and in vivo. Physiol Plant 33:161–165

    Article  CAS  Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanisms-constitutive and adaptive plant-response to elevated metal concentrations in the environment. Plant Cell Environ 17:989–993

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system; a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Mildvan AS (1970) Metal in enzymes catalysis. In: Boyer DD (ed) The enzymes, vol 11. Academic, London, pp 445–536

    Google Scholar 

  • Miller JE, Hassete JJ, Koppe DE (1975) Interaction of lead and cadmium of electron energy transfer reaction in corn mitochondria. Physiol Plant 28:166–171

    Article  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.). O Kuntze. Environ Toxicol 22:368–374

    Article  CAS  PubMed  Google Scholar 

  • Monni S, Salemma M, Millar N (2000) The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut 109:221–229

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Caselles J, Moral R, Pera-Espinosa A, Marcia MD (2000) Cadmium accumulation and distribution in cucumber plants. J Plant Nutr 23:243–250

    Article  CAS  Google Scholar 

  • Morzck E Jr, Funicclli NA (1982) Effect of lead and on germination of Spartina alterniflora Loisel seeds at various salinities. Environ Exp Bot 22:23–32

    Article  Google Scholar 

  • Mukherji S, Maitra P (1976) Toxic effects of lead growth and metabolism of germinating rice (Oryza sativa L.) seeds mitosis of onion (Allium cepa) root tip cells. Ind J Exp Biol 14:519–521

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nakos G (1979) Lead pollution: fate of lead in soil and its effects on Pinus haplenis. Plant Soil 50:159–161

    Google Scholar 

  • Neelima P, Reddy KJ (2002) Interaction of copper and cadmium with seedlings growth and biochemical responses in Solanum melongena. Envin Pollut Technol 1:285–290

    CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term heavy metals by a biologically and chemistry significant classification of metal ions. Environ Pollut B 1:3–26

    Article  CAS  Google Scholar 

  • Ouzounidou G (1994) Change in chlorophyll fluorescence as a result of copper treatment: dose response relations in Silene and Thlaspi. Photosynthetica 29:455–462

    Google Scholar 

  • Paivoke H (1983) The short term effect of zinc on growth anatomy and acid phosphate activity of pea seedlings. Ann Bot 20:307–309

    CAS  Google Scholar 

  • Panda SK, Patra HK (2000) Does chromium (III) produce oxidative stress in excised wheat leaves? J Plant Biol 27:105–110

    Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+, and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Pandolfini T, Gabbrielli R, Comparini C (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ 15:719–725

    Article  CAS  Google Scholar 

  • Parr PD, Taylor FG Jr (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7:197–202

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Patterson W, Olson JJ (1983) Effects of heavy metals on radicle growth of selected woody species germinated on filter paper, mineral and organic soil substrates. Can J Forest Res 13:233–238

    Article  CAS  Google Scholar 

  • Peralta JR, Gardea Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa) L. Bull Environ Contam Toxicol 66(6):727–734

    CAS  PubMed  Google Scholar 

  • Porter JR, Cheridan RP (1981) Inhibition of nitrogen fixation in alfalfa by arsenate, heavy metals, fluoride and simulated acid rain. Plant Physiol 68:143–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter EK, Peterson PJ (1975) Arsenic accumulation by plants on mine waste (United Kingdom). Environ Pollut 4:365–371

    CAS  Google Scholar 

  • Prasad MNV, Hagmeyer J (1999) Heavy metal stress in plants. Springer, Berlin, pp 16–20

    Book  Google Scholar 

  • Prasad MNV, Greger M, Landberg T (2001) Acacia nilotica L. bark removes toxic elements from solution: corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system. Int J Phytoremed 3:289–300

    Article  CAS  Google Scholar 

  • Pryor WA (1988) Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it is a rare combination of high electrophilicity, high thermo chemical reactivity, and a mode of production that occurs near DNA. Free Radic Biol Med 4:219–223

    Article  CAS  PubMed  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28:393–404

    Article  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyotsnakumari G, Thimmanayak S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Romero-Puertas MC, Rodriquez-Serrano M, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Ros R, Cook DT, Martinez-Cortina C, Picazo I (1992) Nickel and cadmium-related changes in growth, plasma membrane lipid composition, ATPase hydrolytic activity and proton pumping of rice (Oryza sativa L. cv. Bahia) shoots. J Exp Bot 43:1475–1481

    Article  CAS  Google Scholar 

  • Roseman IE, Levine RL (1987) Purification of a protease from Escherichia coli with specificity for oxidized glutamine synthetase. J Biol Chem 262(5):2101–2110

    CAS  PubMed  Google Scholar 

  • Rout GR, Sanghamitra S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L). Chemosphere 40:855–859

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley D, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  PubMed  Google Scholar 

  • Schmfger MEV (2001) Phytochelatins: complexation of metals and metalloids, studies on the phytochelatin synthase. PhD Thesis, Munich University of Technology (TUM), Munich

    Google Scholar 

  • Scholz RW, Graham KS, Wynn MK (1990) Interaction of glutathione and a-tocopherol in the inhibition of lipid peroxidation of rat liver microsomes. In: Eddy CC, Hamilton GA, Madyastha KM (eds) Biological oxidation systems. Academic, San Diego, pp 841–867

    Chapter  Google Scholar 

  • Shah K, Dubey RS (1998) Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant. Biol Plant 40:121–130

    Article  Google Scholar 

  • Shanker AK, Sudhagar R, Pathmanabhan G (2003a) Growth phytochelatin SH and antioxidative response of sunflower as affected by chromium speciation. In: 2nd international congress of plant physiology on sustainable plant productivity under changing environment, New Delhi

    Google Scholar 

  • Shanker AK, Djanaguiraman M, Pathmanabhan G, Sudhagar R, Avudainayagam S (2003b) Uptake and phytoaccumulation of chromium by selected tree species. In: Proceedings of the international conference on water and environment held in Bhopal, India

    Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Singh PK, Tewari SK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–117

    CAS  PubMed  Google Scholar 

  • Sinha SK, Srinivastava HS, Mishra SN (1988a) Nitrate assimilation in intact and excised maize leaves in the presence of lead. Bull Environ Contam Toxicol 41:419–422

    Article  CAS  PubMed  Google Scholar 

  • Sinha SK, Srinivastava HS, Mishra SN (1988b) Effect of lead on nitrate reductase activity and nitrate assimilation in pea leaves. Bot Pollut 57:457–463

    CAS  Google Scholar 

  • Sinha S, Guptha M, Chandra P (1997) Oxidative stress induced by iron in Hydrilla verticillata (i.f) royle: response of antioxidants. Ecotoxicol Environ Safe 38:286–291

    Article  CAS  Google Scholar 

  • Somasekharaiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxidase in chlorophyll degradation. Physiol Plant 85:85–89

    Article  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalysed reactions. Annu Rev Biochem 62:797–821

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008

    CAS  PubMed  Google Scholar 

  • Stiborova M, Pitrichova M, Brezinova A (1987) Effect of heavy metal ions in growth and biochemical characteristic of photosynthesis of barley and maize seedlings. Biol Plant 29:453–467

    Article  CAS  Google Scholar 

  • Sudhakar C, Symalabai L, Veeranjaveyuler K (1992) Lead tolerance of certain legume species grown on lead or tailing. Agric Ecosyst Environ 41:253–261

    Article  CAS  Google Scholar 

  • Tang SR, Wilke BM, Brooks RR, Tang SR (2001) Heavy-metal uptake by metal tolerant Elsholtzia haichowensis and Commelina communis from China. Commun Soil Sci Plant Anal 32:895–905

    Article  CAS  Google Scholar 

  • Thomas F, Malick C, Endreszl EC, Davies KS (1998) Distinct responses to copper stress in the halophyte, Mesembryanthemum crystallinum. Physiol Plant 102:360–368

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1983) Multiple effects of heavy metals on photosynthesis. In: Marcelle R (ed) Effects of stress on photosynthesis, vol 7. Nijhoff/Junk, The Hague, pp 371–382

    Chapter  Google Scholar 

  • Van Assche F, Clijsters H (1987) Enzymes analysis in plants as a tool for assessing phytotoxicity on heavy metal polluted soils. Med Fac Landouw Rijiksuniv Gent 52:1819–1824

    Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Varalakshmi LR, Ganeshamurthy AN (2009) Effect of cadmium on plant biomass and cadmium accumulation in amaranthus (Amaranthus tricolor) cultivars. Indian J Agric Sci 79(1):861–864

    CAS  Google Scholar 

  • Varalakshmi LR, Ganeshamurthy AN (2012) Heavy metal contamination of water bodies, soils and vegetables in peri-urban areas: a case study in Bengaluru. J Hortic Sci 7(1):62–67

    Google Scholar 

  • Varalakshmi LR, Ganeshamurthy AN (2013) Phytotoxicity of cadmium in radish and its effects on growth, yield and cadmium uptake. Commun Soil Sci Plant Anal 44:1444–1456

    Article  CAS  Google Scholar 

  • Vazques MD, Poschenrieder C, Barcelo J (1987) Chromium (VI) induced structural changes in bush bean plants. Ann Bot 59:427–438

    Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D, Penney N (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27:786–792

    Article  PubMed  Google Scholar 

  • Weckex JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35:405–410

    Google Scholar 

  • Winterhalder EK (1963) Differential resistance of two species of eucalyptus to toxic soil manganese levels. Aust J Sci 25:363–364

    CAS  Google Scholar 

  • Wintz H, Fox T, Vulpe C (2002) Responses of plants to iron, zinc and copper deficiencies. Biochem Soc Trans 30:766–768

    Article  CAS  PubMed  Google Scholar 

  • Wu S (1994) Effect of manganese excess on the soybean plant cultivated under various growth conditions. J Plant Nutr 17:993–1003

    Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115

    Article  CAS  Google Scholar 

  • Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Alva AK (1993) Effect of pH on growth and uptake of copper by Swingle citrumelo seedlings. J Plant Nutr 16:1837–1845

    Article  CAS  Google Scholar 

  • Zingg JM, Jones PA (1997) Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 18:869–882

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ganeshamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Kalaivanan, D., Ganeshamurthy, A.N. (2016). Mechanisms of Heavy Metal Toxicity in Plants. In: Rao, N., Shivashankara, K., Laxman, R. (eds) Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2725-0_5

Download citation

Publish with us

Policies and ethics