Skip to main content

Role of Microorganisms in Microbial Fuel Cells for Bioelectricity Production

  • Chapter
Microbial Factories

Abstract

The catalytic microorganisms oxidise the organic matter to produce electrical energy in microbial fuel cells (MFCs). The microorganisms that can shuttle the electrons exogenously to the electrode surface without utilising artificial mediators are referred as exoelectrogens. The microorganisms produce specific proteins or genes for their inevitable performance towards electricity generation in MFCs. Multiple studies have confirmed the expression of certain genes for outer membrane multiheme cytochromes (e.g. OmcZ), redox-active compounds (e.g. pyocyanin), conductive pili, and their potential roles in the exoelectrogenic activity of various microorganisms, particularly in the members of Geobacteraceae and Shewanellaceae family. This chapter explores the various mechanisms of microorganisms that are advantageous for the technology: biofilm formation, metabolism, electron transfer mechanisms from inside the microorganisms to the electrodes and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M (2010) Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethane. Biosens Bioelectron 25:1796–1802. doi:10.1016/j.bios.2009.12.033

    Article  CAS  PubMed  Google Scholar 

  • Baron DB, LaBelle E, Coursolle D, Gralnick JA, Bond DR (2009) Electrochemical measurements of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem 284:28865–28873. doi:10.1074/jbc.M109.043455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Behera M, Jana PS, Ghangrekar JMM (2010) Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresour Technol 101:1183–1189. doi:10.1016/j.biortech.2009.07.089

    Article  CAS  PubMed  Google Scholar 

  • Bergel A, Féron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904. doi:10.1016/j.elecom.2005.06.006

    Article  CAS  Google Scholar 

  • Bonanni S, Massazza D, Busalmen JP (2013) Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms. Phys Chem Chem Phys 15:10300–10306. doi:10.1039/c3cp50411e

    Article  CAS  PubMed  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555. doi:10.1128/AEM.69.3.1548- 1555.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71:2186–2189. doi:10.1128/AEM.71.4.2186-2189.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode reducing microorganisms that harvest energy from marine sediments. Science 295:483–485. doi:10.1126/science.1066771

    Article  CAS  PubMed  Google Scholar 

  • Brutinel E, Gralnick J (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48. doi:10.1007/s00253-011-3653-0

    Article  PubMed  CAS  Google Scholar 

  • Carbajosa S, Malki M, Caillard R, Lopez MF, Palomares FJ, Martín-Gago J, De Lacey AL (2010) Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen. Biosens Bioelectron 26:877–880. doi:10.1016/j.bios.2010.07.037

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232, doi.org/10.1038/nbt867

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Chou TY, Whiteley CG, Lee DJ (2014) Anodic potential on dual-chambered microbial fuel cell with sulphate reducing bacteria biofilm. Int J Hydrog Energy 39:19225–19231. doi:10.1016/j.ijhydene.2014.03.236

    Article  CAS  Google Scholar 

  • Cournet A, Délia ML, Bergel A, Roques C, Bergé M (2010) Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive. Electrochem Commun 12:505–508. doi:10.1016/j.elecom.2010.01.026

    Article  CAS  Google Scholar 

  • Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467–474. doi:10.1128/JB.00925-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Craig L, Piquie ME, Tainer JA (2004) Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2:363–378. doi:10.1038/nrmicro885

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Rashid N, Hu N, Rehman MSU, Han JI (2014) Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Conv Manag 79:674–680. doi:10.1016/j.enconman.2013.12.032

    Article  CAS  Google Scholar 

  • Dietrich LE, Prince-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321. doi:10.1111/j.1365-2958.2006.05306.x

    Article  CAS  PubMed  Google Scholar 

  • Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43. doi:10.1046/j.1365-2958.2003.03672.x

    Article  CAS  PubMed  Google Scholar 

  • Dumas C, Basseguy R, Bergel A (2008) Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim Acta 53:5235–5241. doi:10.1016/j.electacta.2008.02.056

    Article  CAS  Google Scholar 

  • El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci U S A 107:18127–18131. doi:10.1073/pnas.1004880107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fitzgerald L, Petersen ER, Ray RI, Little BJ, Cooper CJ, Howard EC, Biffinger JC (2012) Shewanella oneidensis MR-1 Msh pilin proteins are involved in extracellular electron transfer in microbial fuel cells. Proc Biochem 47:170–174. doi:10.1016/j.procbio.2011.10.029

    Article  CAS  Google Scholar 

  • Freguia S, Masuda M, Tsujimura S, Kano K (2009) Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochem 76:14–18. doi:10.1016/j.bioelechem.2009.04.001

    Article  CAS  Google Scholar 

  • Freguia S, Tsujimura S, Kano K (2010) Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55:813–818. doi:10.1016/j.electacta.2009.09.027

    Article  CAS  Google Scholar 

  • Fuller SJ, McMillan DGG, Renz MB, Schmidt M, Burke IT, Stewart ID (2014) Extracellular electron transport-mediated Fe(III) reduction by a community of alkaliphilic bacteria that use flavins as electron shuttles. Appl Environ Microbiol 80:128–137. doi:10.1128/AEM.02282-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldbeck CP, Jensen HM, TerAvest M, Beedle N, Appling Y, Hepler M, Ajo-Franklin CM (2013) Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth Biol 2:150–159. doi:10.1021/sb300119v

    Article  CAS  PubMed  Google Scholar 

  • González del Campo A, Cañizares P, Rodrigo M, Fernández FJ, Lobato J (2013) Microbial fuel cell with an algae-assisted cathode: a preliminary assessment. J Power Sources 242:638–645. doi:10.1016/j.jpowsour.2013.05.110

    Article  CAS  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363. doi:10.1073/pnas.0604517103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604. doi:10.1111/j.1462-2920.2004.00593.x

    Article  CAS  PubMed  Google Scholar 

  • Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128. doi:10.1111/j.1365-2958.2005.05008.x

    Article  CAS  Google Scholar 

  • Holmes DE, Mester T, O’Neil RA, Perpetua LA, Larrahondo MJ, Glaven R, Sharma ML, Ward JE, Nevin KP, Lovley DR (2008) Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes. Microbiology 145:1422–1435. doi:10.1099/mic.0.2007/014365-0

    Article  CAS  Google Scholar 

  • Huang L, Chai X, Chen G, Logan BE (2011) Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol 45:5025–5031. doi:10.1021/es103875d

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Chai X, Quan X, Logan BE, Chen G (2012) Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresour Technol 111:167–174. doi:10.1016/j.biortech.2012.01.171

    Article  CAS  PubMed  Google Scholar 

  • Hubenova Y, Mitov M (2010) Potential application of Candida melibiosica in biofuel cells. Bioelectrochem 78:57–61. doi:10.1016/j.bioelechem.2009.07.005

    Article  CAS  Google Scholar 

  • Inglesby AE, Beatty DA, Fisher AC (2012) Rhodopseudomonas palustris purple bacteria fed Arthrospira maxima cyanobacteria: demonstration of application in microbial fuel cells. RSC Adv 2:4829–4838. doi:10.1039/C2RA20264F

    Article  CAS  Google Scholar 

  • Inoue K, Leang C, Franks AE, Woodard TL, Nevin KP, Lovley DR (2010a) Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. Environ Microbiol Rep 3:211–217. doi:10.1111/j.1758-2229.2010.00210.x

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Qian X, Morgado L, Kim BC, Mester T, Izallalen M, Lovley DR (2010b) Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens. Appl Environ Microbiol 76:3999–4007. doi:10.1128/AEM.00027-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishii S, Watanabe K, Yabuki S, Logan BE, Sekiguchi Y (2008) Comparison of electrode reducing rates of Geobacter sulfurreducens and an enriched electricity-generating mixed consortium in a microbial fuel cell. Appl Environ Microbiol 74:7348–7355. doi:10.1128/AEM.01639-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain A, Zhang X, Pastorella G, Connolly JO, Barry N, Woolley R, Marsili E (2012) Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode. Bioelectrochem 87:28–32. doi:10.1016/j.bioelechem.2011.12.012

    Article  CAS  Google Scholar 

  • Jayapriya J, Ramamurthy V (2012) Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells. Bioresour Technol 124:23–28. doi:10.1016/j.biortech.2012.08.034

    Article  CAS  PubMed  Google Scholar 

  • Jeans C, Singer SW, Chan CS, Verberkmoes NC, Shah M, Hettich RL, Banfield JF, Thelen MP (2008) Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J 2:542–550. doi:10.1038/ismej.2008.17

    Article  CAS  PubMed  Google Scholar 

  • Juarez K, Kim BC, Nevin K, Olvera L, Reguera G, Lovley DR, Methé BA (2009) PilR, a transcriptional regulator for pilin and other genes required for Fe(III) reduction in Geobacter sulfurreducens. J Mol Microbial Biotechnol 16:3–4. doi:10.1159/000115849

    Google Scholar 

  • Kang CS, Eaktasang N, Kwon DY, Kim HS (2014) Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell. Bioresour Technol 165:27–30. doi:10.1016/j.biortech.2014.03.148

    Article  CAS  PubMed  Google Scholar 

  • Keller KL, Rapp-Giles BJ, Semkiw ES, Porat I, Brown SD, Wall JD (2014) New model for electron flow for sulfate reduction in Desulfovibrio alaskensis G20. Appl Environ Microbiol 80:855–868. doi:10.1128/AEM.02963-13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kiely PD, Regan JM, Logan BE (2011) The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Curr Opin Biotechnol 22:378–385. doi:10.1016/j.copbio.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  • Kim BC, Postier BL, Didonato RJ, Chaudhuri SK, Nevin KP, Lovley DR (2008) Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. Bioelectrochem 73:70–75. doi:10.1016/j.bioelechem.2008.04.023

    Article  CAS  Google Scholar 

  • Kimura ZI, Chung KM, Itoh H, Hiraishi A, Okabe S (2014) Raoultella electrica sp. isolated from anodic biofilms of a glucose-fed microbial fuel cell. Int J Syst Evol Microbiol 64:1384–1388. doi:10.1099/ijs.0.058826-0

    Article  CAS  PubMed  Google Scholar 

  • Kotloski NJ, Jeffrey AG (2013) Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 4.1: e00553–12

    Google Scholar 

  • Leang C, Coppi MV, Lovley DR (2003) OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 185:2096–2103. doi:10.1128/JB.185.7.2096-2103.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leang C, Qian X, Mester T, Lovley DR (2010) Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl Environ Microbiol 76:4080–4084. doi:10.1128/AEM.00023-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leung KM, Wanger G, El-Naggar MY, Gorby Y, Southam G, Lau WM, Yang J (2013) Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behaviour. Nano Lett 13:2407–2411. doi:10.1021/nl400237p

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhong G, Qiao Y, Huang J, Weihua H, Wang X, Li C (2014) A high performance xylose microbial fuel cell enabled by Ochrobactrum sp. 575 cells. RSC Adv 4:39839–39843. doi:10.1039/C4RA05077K

    Article  CAS  Google Scholar 

  • Lifang D, Frang L, Shungui Z, Yin HD, Jinren NI (2010) A study of electron-shuttle mechanism in Klebsiella pneumoniae based microbial fuel cells. Environ Sci Technol 55:99–104. doi:10.1007/s11434-009-0563-y

    Google Scholar 

  • Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285. doi:10.1021/es034923g

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Rotaru A-E, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5:8982–8989. doi:10.1039/C2EE22459C

    Article  CAS  Google Scholar 

  • Liu D, Lei L, Yang B, Yu Q, Li Z (2013) Direct electron transfer from electrode to electrochemically active bacteria in a bioelectrochemical dechlorination system. Bioresour Technol 148:9–14. doi:10.1016/j.biortech.2013.08.108

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2014a) Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ Microbiol. doi:10.1111/1462-2920.12485

    Google Scholar 

  • Liu X, Tremblay P-L, Malvankar NS, Nevin KP, Lovley DR, Vargas M (2014b) A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production. Appl Environ Microbiol 80:1219–1224. doi:10.1128/AEM.02938-13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Logan BE (2004) Extracting hydrogen electricity from renewable resources. Environ Sci Technol 38:160–167. doi:10.1021/es040468s

    Article  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381. doi:10.1038/nrmicro2113

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690. doi:10.1126/science.1217412

    Article  CAS  PubMed  Google Scholar 

  • Malone JG, Jaeger T, Manfredi P, Dotsch A, Blanka A, Bos R, Cornelis GR, Haussler S, Jenal U (2012) The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. PLoS Pathog 8:e1002760. doi:10.1371/journal.ppat.1002760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malvankar NS, Lovley DR (2012) Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. Chem Sus Chem 5:1039–1046. doi:10.1002/cssc.201100733

    Article  CAS  Google Scholar 

  • Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim B-C, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovely DR (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579. doi:10.1038/nnano.2011.119

    Article  PubMed  Google Scholar 

  • Malvankar NS, Tuominen MT, Lovley DR (2012) Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens. Energy Environ Sci 5:8651–8659. doi:10.1039/C2EE22330A

    Article  CAS  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968–3973. doi:10.1073/pnas.0710525105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehta MG, Bond DR (2012) Geothrix fermentans secretes two different redox-active compounds to utilize electron acceptors across a wide range of redox potentials. Appl Environ Microbiol 78:6987–6995. doi:10.1128/AEM.01460-12

    Article  CAS  Google Scholar 

  • Mehta T, Childers SE, Glaven R, Lovley DR, Mester T (2006) A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens. Microbiology 152:2257–2264. doi:10.1099/mic.0.28864-0

    Article  CAS  PubMed  Google Scholar 

  • Merritt JH, Ha DG, Cowles KN, Lu W, Morales DK, Rabinowitz J, Gitai Z, O’Toolea GA (2010) Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. mBio1: e00183-10. doi:10.1128/mBio.00183-10

  • Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39:1675–1686. doi:10.1016/j.watres.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  • Nandy A, Kumar V, Kundu PP (2013) Utilization of proteinaceous materials for power generation in a mediatorless microbial fuel cell by a new electrogenic bacteria Lysinibacillus sphaericus VA5. Enzyme Microb Technol 53:339–344. doi:10.1016/j.enzmictec.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  • Orellana R, Leavitt JJ, Comolli LR, Csencsits R, Janot N, Flanagan KA, Gray AS, Leang C, Izallalen M, Mester T (2013) U(VI) reduction by a diversity of outer surface c-type cytochromes of Geobacter sulfurreducens. Appl Environ Microbiol 79:6369–6374. doi:10.1128/AEM.02551-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539. doi:10.1128/JB.01515-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandit S, Khilari S, Roy S, Pradhan D, Das D (2014) Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered microbial fuel cell: Effect of different anodic operating conditions. Bioresour Technol 166:451–457. doi:10.1016/j.biortech.2014.05.075

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306. doi:10.1006/anae.2001.0399

    Article  CAS  Google Scholar 

  • Park DH, Zeikus JG (1999) Utilization of electrically reduced neutral Red by Actinobacillus succinogenes: physiological function of neutral Red in membrane driven fumarate reduction and energy conservation. J Bacteriol 181:2403–2410

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parot S, Nercessian O, Delia ML, Achouak W, Bergel A (2009) Electrochemical checking of aerobic isolates from electrochemically active biofilms formed in compost. J Appl Microbiol 106:1350–1359. doi:10.1111/j.1365-2672.2008.04103.x

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Hagerhall C, Gorton L (2012) Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanal Rev 4:159–192. doi:10.1007/s12566-012-0033-x

    Article  Google Scholar 

  • Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe(III)- reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134. doi:10.1016/S0378-1097(03)00354-9

    Article  CAS  PubMed  Google Scholar 

  • Pham TH, Boon N, Aelterman P, Clauwaert P, Schamphelaire LD, Vanhaecke L, Maeyer KD, Hofte M, Verstraete W, Rabaey K (2008) Metabolites produced by Pseudomonas sp. enables a Gram positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77:1119–1129. doi:10.1007/s00253-007-1248-6

    Article  CAS  PubMed  Google Scholar 

  • Pirbadian S, El-Naggar MY (2012) Multistep hopping and extracellular charge transfer in microbial redox chains. Phys Chem Chem Phys 14:13802–13808. doi:10.1039/C2CP41185G

    Article  CAS  PubMed  Google Scholar 

  • Polizzi NF, Skourtis SS, Beratan DN (2012) Physical constraints on charge transport through bacterial nanowires. Faraday Discuss 155:43–61. doi:10.1039/C1FD00098E

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasad D, Arun S, Murugesan M, Padmanaban S, Satyanarayanan RS, Berchmans S, Yegnaraman V (2007) Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosens Bioelectron 22:2604–2610. doi:10.1016/j.bios.2006.10.028

    Article  CAS  PubMed  Google Scholar 

  • Prathap P, Cesar IT, Tyson B, Sudeep CP, Bradley GL, Bruce ER (2013) Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. Environ Sci Technol 47:4934–4940. doi:10.1021/es400321c

    Article  CAS  Google Scholar 

  • Qiao Y, Li CM, Bao SJ, Lu Z, Hong Y (2008) Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem Commun 11:1290–1292. doi:10.1039/B719955D

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuels: novel biotechnology for energy generation. Trends Biotechnol 23:291–298. doi:10.1016/j.tibtech.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535. doi:10.1023/A:1025484009367

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382. doi:10.1128/AEM.70.9.5373-5382.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rabaey K, Hofte M, Vesrtraete W, Boon N (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408. doi:10.1021/es048563o

    Article  CAS  PubMed  Google Scholar 

  • Raghavulu SV, Goud RK, Sarma PN, Mohan SV (2011) Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load. Bioresour Technol 102:2751–2757. doi:10.1016/j.biortech.2010.11.048

    Article  CAS  PubMed  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101. doi:10.1038/nature03661

    Article  CAS  PubMed  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and Nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348. doi:10.1128/AEM.01444-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren H, Lee HS, Chae J (2012) Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges. Microfluid Nanofluid 13:353–381. doi:10.1007/s10404-012-0986-7

    Article  CAS  Google Scholar 

  • Richter H, McCarthy K, Nevin KP, Johnson JP, Rotello VM, Lovley DR (2008) Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24:4376–4379. doi:10.1021/la703469y

    Article  CAS  PubMed  Google Scholar 

  • Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM (2009) Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ Sci 2:506–516. doi:10.1039/B816647A

    Article  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634. doi:10.1021/es052254w

    Article  CAS  PubMed  Google Scholar 

  • Rotaru AE, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler KP, Wardman C, Nevin KP, Lovley DR (2014) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7:408–415. doi:10.1039/C3EE42189A

    Article  CAS  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154. doi:10.1128/jb.184.4.1140-1154.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Banin G, Peres CM, Schimdt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599. doi:10.1038/nature07088

    Article  CAS  PubMed  Google Scholar 

  • Schroder U, Nieben J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem Int Ed Engl 42:2880–2883. doi:10.1002/anie.200350918

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Yong XY, Chen YL, Liao ZH, Si RW, Zhou J, Zheng T (2014) Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Bioresour Technol 167:490–494. doi:10.1016/j.biortech.2014.05.093

    Article  CAS  PubMed  Google Scholar 

  • Singh L, Wahid ZA (2015) Enhancement of hydrogen production from palm oil mill effluent via cell immobilisation technique. Int J Energy Res 39:215–222. doi:10.1002/er.3231

    Article  CAS  Google Scholar 

  • Singh L, Siddiqui MF, Ahmad A, Rahim MH, Sakinah M, Wahid ZA (2013) Biohydrogen production from palm oil mill effluent using immobilized mixed culture. J Ind Eng Chem 19:659–664. doi:10.1016/j.jiec.2012.10.001

    Article  CAS  Google Scholar 

  • Smith J, Lovley DR, Tremblay PL (2013) Outer cell surface components essential for Fe (III) oxide reduction by Geobacter metallireducens. Appl Environ Microbiol 79:901–907. doi:10.1128/AEM.02954-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith JA, Tremblay PL, Shrestha PM, Snoeyenbos-West OL, Franks AE, Nevin KP, Lovley DR (2014) Going wireless: Fe(III) Oxide reduction without Pili by Geobacter sulfurreducens Strain JS-1. Appl Environ Microbiol 80:4331–4340. doi:10.1128/AEM.01122-14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Snider RM, Strycharz-Glaven SM, Tsoi SD, Erickson JS, Tender LM (2012) Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc Natl Acad Sci U S A 109:15467–15472. doi:10.1073/pnas.1209829109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209. doi:10.1146/annurev.micro.56.012302.160705

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Call D, Wang A, Cheng S, Logan BE (2014a) Geobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions. Environ Microbiol Rep. doi:10.1111/1758-2229.12193

    Google Scholar 

  • Sun D, Wang A, Cheng S, Yates MD, Logan BE (2014b) Geobacter anodireducens sp. nov., a novel exoelectrogenic microbe in Bioelectrochemical systems. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.061598-0

    Google Scholar 

  • Thrash JC, Van Trump IV, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746. doi:10.1021/es062772m

    Article  CAS  PubMed  Google Scholar 

  • Torres CI, Marcus AK, Lee H-S, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17. doi:10.1111/j.1574-6976.2009.00191.x

    Article  CAS  PubMed  Google Scholar 

  • Vargas M, Malvankar NS, Tremblay PL, Leang C, Smith J, Patel P, Synoeyenbos-West O, Nevin KP, Lovley DR (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. mBio 4:e00105-13. doi:10.1128/mBio.00105-13

  • Von CH, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623. doi:10.1128/AEM.01387-07

    Article  CAS  Google Scholar 

  • Voordeckers JW, Kim BC, Izallalen M, Lovley DR (2010) Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2, 6- disulfonate. Appl Environ Microbiol 76:2371–2375. doi:10.1128/AEM.02250-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807. doi:10.1016/j.biotechadv.2013.10.001

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Lu L, Cui F, Liu D, Zhao Z, Xu Y (2012) Simultaneous bioelectrochemical degradation of algae sludge and energy recovery in microbial fuel cells. RSC Adv 2:7228–7234. doi:10.1039/C2RA20631E

    Article  CAS  Google Scholar 

  • Wang Y, Wang A, Zhou A, Liu W, Huang L, Xu M, Tao H (2014) Electrode as sole electrons donor for enhancing decolorization of azo dye by an isolated WYZ-2. Bioresour Technol 152:530–533. doi:10.1016/j.biortech.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  • Wrighton KC, Thrash JC, Melnyk RA, Bigi JP, Byrne-Bailey KG, Remis JP, Schichnes D, Auer M, Chang CJ, Coates JD (2011) Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77:7633–7639. doi:10.1128/AEM.05365-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu C, Liu XW, Li WW, Sheng GP, Zang GL, Cheng YY, Yu HQ (2012) A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell. Appl Energy 98:594–596. doi:10.1016/j.apenergy.2012.02.058

    Article  CAS  Google Scholar 

  • Xafenias N, Zhang Y, Banks CJ (2013) Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate. Environ Sci Technol 47:4512–4520. doi:10.1021/es304606u

    Article  CAS  PubMed  Google Scholar 

  • Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42:4146–4151. doi:10.1021/es800312v

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Guo-Zhen Z, Yan Q, Jing H, Weihua H, Xing-Guo W, Changming L (2014) A high performance xylose microbial fuel cell enabled by Ochrobactrum sp.575 cells. RSC Adv 4:39839–39843. doi:10.1039/C4RA05077K

    Article  CAS  Google Scholar 

  • Xu S, Liu H (2011) New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell. J Appl Microbiol 111:1108–1115. doi:10.1111/j.1365-2672.2011.05129.x

    Article  CAS  PubMed  Google Scholar 

  • Yong XY, Shi DY, Chen YL, Feng J, Xu L, Zhou J, Zheng T (2014) Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Bioresour Technol 152:220–224. doi:10.1016/j.biortech.2013.10.086

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Chen Q, Zhou S, Zhuang L, Hu P (2011) Bioelectricity generation and microcystins removal in a blue–green algae powered microbial fuel cell. J Hazard Mater 187:591–595. doi:10.1016/j.jhazmat.2011.01.042

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yang G, Zhou S, Wang Y, Yuan Y, Zhuang L (2013) Fontibacter ferrireducens sp., an Fe(III)-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63:925–929. doi:10.1099/ijs.0.040998-0

  • Zhou M, He H, Jin T, Wang H (2012) Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. J Power Sources 214:216–219. doi:10.1016/j.jpowsour.2012.04.043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhveer Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kumar, R., Singh, L., Wahid, Z.A. (2015). Role of Microorganisms in Microbial Fuel Cells for Bioelectricity Production. In: Kalia, V. (eds) Microbial Factories. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2598-0_9

Download citation

Publish with us

Policies and ethics