Skip to main content

DNA Fingerprinting Techniques for Plant Identification

  • Chapter

Abstract

Advances in knowledge about the molecular structure of plant genome and development of techniques to rapidly characterise genomic variations have established DNA fingerprinting as a powerful tool for identifying plant species, varieties, clones, individuals and even plant products. This article provides details of DNA polymorphism in plants and classical and more recent molecular marker techniques based on restriction fragment length polymorphism (RFLP), polymerase chain reaction (PCR), DNA microarrays and sequencing. The advantages and limitations of each technique are given along with some recent examples of their application in plant identification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    CAS  PubMed  Google Scholar 

  • Akbari M, Wenzl P, Caig V et al (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    CAS  PubMed  Google Scholar 

  • Akond M, Jin S, Wang X (2012) Molecular characterization of selected wild species and miniature roses based on SSR markers. Sci Hortic 147:89–97

    CAS  Google Scholar 

  • Archak S, Gaikwad AB, Gautam D et al (2003) Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome 46:362–369

    CAS  PubMed  Google Scholar 

  • Arya L, Verma M, Gupta VK, Karihaloo JL (2009) Development of EST-SSRs in finger millet (Eleusine coracana ssp coracana) and their transferability to pearl millet (Pennisetum glaucum). J Plant Biochem Biotechnol 18:97–100

    CAS  Google Scholar 

  • Bachem CB, Oomen RFJ, Visser RF (1998) Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Rep 16:157–173

    CAS  Google Scholar 

  • Bassil NV, Postman J, Hummer K et al (2009) SSR fingerprinting panel verifies identities of clones in backup hazelnut collection of USDA gene bank. Acta Horticult 845:95–102

    CAS  Google Scholar 

  • Bateman A, Quackenbush J (2009) Bioinformatics for next generation sequencing. Bioinformatics 25:429

    CAS  PubMed  Google Scholar 

  • Bekele WA, Wieckhorst S, Friedt W, Snowdon RJ (2013) High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array. Plant Biotechnol J 11:1112–1125

    CAS  PubMed  Google Scholar 

  • Ben-Ayed R, Grati-Kamoun N, Sans-Grout C et al (2012) Characterization and authenticity of virgin olive oil (Olea europaea L.) cultivars by microsatellite markers. Eur Food Res Technol 234:263–271

    CAS  Google Scholar 

  • Bertea CM, Gnavi G (2012) Restriction fragment length polymorphism of the 5S-rRNA-NTS region: a rapid and precise method for plant identification. Methods Mol Biol 862:89–101

    CAS  PubMed  Google Scholar 

  • Bertea CM, Luciano P, Bossi S et al (2006) PCR and PCR–RFLP of the 5S-rRNA-NTS region and salvinorin A analyses for the rapid and unequivocal determination of Salvia divinorum. Phytochemistry 67:371–378

    CAS  PubMed  Google Scholar 

  • Bhatia R, Singh KP, Jhang T, Sharma TR (2009) Assessment of clonal fidelity of micropropagated gerbera plants by ISSR markers. Sci Hortic 119:208–211

    CAS  Google Scholar 

  • Biswas MK, Xu Q, Deng X (2010) Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Sci Hortic 124:254–261

    CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caetano-Anolles G (1994) MAAP: a versatile and universal tool for genome analysis. Plant Mol Biol 25:1011–1026

    CAS  PubMed  Google Scholar 

  • Caetano-Anolles G, Bassam BJ, Gresshoff PM (1991) High-resolution DNA amplification fingerprinting (DAF): detection of amplification fragment length polymorphisms in soybean using very short arbitrary oligonucleotide primers. Soybean Genet Newsl US Dep Agric Agric Res Serv Apr 18:279–283

    Google Scholar 

  • Caramante M, Corrado G, Monti LM, Rao R (2011) Simple sequence repeats are able to trace tomato cultivars in tomato food chains. Food Control 22:549–554

    CAS  Google Scholar 

  • Chen WH, Tseng IC, Tsai WC et al (2006) AFLP fingerprinting and conversion to sequence-tag site markers for the identification of Oncidium cultivars. J Hortic Sci Biotechnol 81:791–796

    CAS  Google Scholar 

  • Chen S, Meng H, Cheng Z et al (2010a) Identification of two SRAP markers linked to green skin color in cucumber. Acta Horticult 859:351–356

    Google Scholar 

  • Chen S, Yao H, Han J et al (2010b) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613. doi:10.1371/journal.pone.0008613

    PubMed Central  PubMed  Google Scholar 

  • Cheng Z, Huang H (2009) SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci Hortic 120:188–193

    CAS  Google Scholar 

  • De Riek J (2001) Are molecular markers strengthening plant variety registration and protection? Acta Horticult 552:215–224

    Google Scholar 

  • de Souza DA, de Melo LC, Librelon SS et al (2010) Identification of hybrids of intra and interspecific crosses in Annonaceae by RAPD markers. Crop Breed Appl Biotechnol 10:110–115

    Google Scholar 

  • De Vicente MC, Fulton T (2003) Using molecular marker technology in studies on plant genetic diversity. International Plant Genetic Resources Institute/Institute for Genetic Diversity, Rome/Ithaca

    Google Scholar 

  • Durward E, Shiu OY, Luczak B, Mitchelson KR (1995) Identification of clones carrying minisatellite-like loci in an Arabidopsis thaliana YAC library. J Exp Bot 46:271–274

    CAS  Google Scholar 

  • Edwards JD, Janda J, Sweeney MT et al (2008) Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice. Plant Methods 4. doi:10.1186/1746-4811-4-13

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99:175–185

    CAS  PubMed  Google Scholar 

  • Faleiro FG, Cordeiro MCR, Pinto ACQ et al (2010) Fingerprinting analysis of mango (Mangifera indica L.) cultivars introduced in Brazil using RAPD markers. Acta Horticult 864:127–132

    CAS  Google Scholar 

  • Ferrari M, Mugnozza GTS, Gori M et al (2005) DNA fingerprinting of Corylus avellana L. accessions revealed by AFLP molecular markers. Acta Horticult 686:125–134

    CAS  Google Scholar 

  • Figueiredo E, Canhoto J, Ribeiro MM (2013) Fingerprinting and genetic diversity of Olea europaea L. ssp. europaea accessions from the cultivar Galega using RAPD markers. Sci Hortic 156:24–28

    CAS  Google Scholar 

  • Finkers DR (2014) 150+ Tomato resequencing project. http://www.tomatogenome.net/. Accessed 10 May 2014

  • Flavell AJ, Knox MR, Pearce SR, Ellis TH (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    CAS  PubMed  Google Scholar 

  • França LTC, Carrilho E, Kist TBL (2002) A review of DNA sequencing techniques. Q Rev Biophys 35:169–200

    PubMed  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    CAS  PubMed  Google Scholar 

  • Fu N, Wang P-Y, Liu X-D, Shen H (2014) Use of EST-SSR markers for evaluating genetic diversity and fingerprinting celery (Apium graveolens L.) cultivars. Molecules 19:1939–1955

    PubMed  Google Scholar 

  • Galbraith DW, Edwards J (2010) Applications of microarrays for crop improvement: here, there, and everywhere. Bioscience 60:337–348

    Google Scholar 

  • Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    CAS  PubMed  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A et al (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:e28334. doi:10.1371/journal.pone.0028334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gottlieb LD (1984) Isozyme evidence and problem solving in plant systematics. In: Grant WF (ed) Plant biosystematics. Academic, Orlando

    Google Scholar 

  • Grover A, Aishwarya V, Sharma PC (2007) Biased distribution of microsatellite motifs in the rice genome. Mol Genet Genomics 277:469–480

    CAS  PubMed  Google Scholar 

  • Grover A, Ramesh B, Sharma P (2009) Development of microsatellite markers in potato and their transferability in some members of Solanaceae. Physiol Mol Biol Plants 15:343–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta M, Chyi Y-S, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89:998–1006

    CAS  PubMed  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms (SNPs): a new paradigm in molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1997) Allozyme diversity in cultivated crops. Crop Sci 37:26–30

    CAS  Google Scholar 

  • Hayashi K (1991) PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. Genome Res 1:34–38

    CAS  Google Scholar 

  • He J, Wong K-L, Shaw P-C et al (2010) Identification of the medicinal plants in Aconitum L. by DNA barcoding technique. Planta Med 76:1622–1628

    CAS  PubMed  Google Scholar 

  • Henry RJ (2001) Plant genotyping: the DNA fingerprinting of plants. CABI Publishing, Oxford

    Google Scholar 

  • Heslop-Harrison JS (Pat), Schmidt T (2012) Plant nuclear genome composition. ELS. Wiley, Chichester. doi:10.1002/9780470015902.a0002014.pub2

  • Heslop-Harrison JSP, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33

    CAS  PubMed  Google Scholar 

  • Hillis DM, Moritz C (1990) Molecular systematics. Sinauer, Sunderland

    Google Scholar 

  • Hollingsworth PM (2011) Refining the DNA barcode for land plants. Proc Natl Acad Sci 108:19451–19452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollingsworth PM, Forrest LL, Spouge JL et al (2009) A DNA barcode for land plants. Proc Natl Acad Sci 106:12794–12797

    CAS  PubMed Central  Google Scholar 

  • Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE 6:e19254. doi:10.1371/journal.pone.0019254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Report 21:289–294

    CAS  Google Scholar 

  • Hu J, Ochoa O, Truco M, Vick B (2005) Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica 144:225–235

    Google Scholar 

  • Hu J, Mou B, Vick BA (2007) Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genet Resour Crop Evol 54:1667–1674

    CAS  Google Scholar 

  • Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayasinghe R, Kong S, Coram TE et al (2007) Construction and validation of a prototype microarray for efficient and high-throughput genotyping of angiosperms. Plant Biotechnol J 5:282–289

    CAS  PubMed  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985a) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    CAS  PubMed  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985b) Individual-specific ‘fingerprints’ of human DNA. Nature 316:76–79

    CAS  PubMed  Google Scholar 

  • Jiang G-L (2013) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) Plant breeding from laboratory to fields. InTech, Rijeka, pp 45–83

    Google Scholar 

  • Jiang N, Bao Z, Zhang X et al (2003) An active DNA transposon family in rice. Nature 421:163–167

    CAS  PubMed  Google Scholar 

  • Jiang S, Huang C, Zhang X et al (2010) Development of a highly informative microsatellite (SSR) marker framework for rice (Oryza sativa L.) genotyping. Agric Sci China 9:1697–1704

    CAS  Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S et al (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390

    CAS  Google Scholar 

  • Kacar YA, Cetiner MS, Cantini C, Iezzoni AF (2006) Simple sequence repeat (SSR) markers differentiate Turkish sour cherry germplasm. J Am Pomol Soc 60:136–143

    Google Scholar 

  • Kafkas S, Özgen M, Dogan Y et al (2008) Molecular characterization of mulberry accessions in Turkey by AFLP markers. J Am Soc Hortic Sci 133:593–597

    Google Scholar 

  • Kalendar R, Grob T, Regina M et al (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    CAS  Google Scholar 

  • Karp A, Seberg O, Buiatti M (1996) Molecular techniques in the assessment of botanical diversity. Ann Bot 78:143–149

    CAS  Google Scholar 

  • Karp A, Kresovich S, Bhat KV et al (1997) Molecular tools in plant genetic resources conservation: a guide to the technologies. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Karp A, Isaac PG, Ingram DS (1998) Molecular tools for screening biodiversity. Chapman & Hall (Kluwer), London

    Google Scholar 

  • Kashyap S, Kaur R, Sharma DR et al (2005) Molecular characterization and genetic diversity in Fragaria genotypes as revealed by randomly amplified DNA polymorphisms (RAPDs). Acta Horticult 696:135–142

    Google Scholar 

  • Kehoe DM, Villand P, Somerville S (1999) DNA microarrays for studies of higher plants and other photosynthetic organisms. Trends Plant Sci 4:38–41

    PubMed  Google Scholar 

  • Keshavachandran R, Nazeem PA, Karihaloo JL (2007) Genetic fingerprinting of Piper nigrum L. and Piper longum L. cultivars using RAPD markers. In: Nazeem P, Girija D, John PS, Peter KV (eds) Recent trends in horticultural biotechnology, vol II. ICAR national symposium on biotechnological interventions for improvement of horticultural crops: issues and strategies, Vellanikkara, 10–12 Jan 2005, pp 635–640

    Google Scholar 

  • Kiani M, Memariani F, Zarghami H (2012) Molecular analysis of species of Tulipa L. from Iran based on ISSR markers. Plant Syst Evol 298:1515–1522

    CAS  Google Scholar 

  • Kim H, Terakami S, Nishitani C (2012) Development of cultivar-specific DNA markers based on retrotransposon-based insertional polymorphism in Japanese pear. Breed Sci 62:53–62

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kjos M, Fjellheim S, Rognli OA, Hvoslef-Eide AK (2010) Amplified fragment length polymorphism (AFLP) markers for fingerprinting of Argyranthemum frutescens cultivars. Sci Hortic 124:506–510

    CAS  Google Scholar 

  • Korir NK, Li XY, Leng XP (2013) A novel and efficient strategy for practical identification of tomato (Solanum lycopersicon) varieties using modified RAPD fingerprints. Genet Mol Res 12:1816–1828

    CAS  PubMed  Google Scholar 

  • Kuleung C, Baenziger PS, Dweikat I (2004) Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet 108:1147–1150

    CAS  PubMed  Google Scholar 

  • Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics 2012:1–15

    Google Scholar 

  • Kumar M, Ponnuswami V, Nagarajan P (2013) Molecular characterization of ten mango cultivars using simple sequences repeat (SSR) markers. Afr J Biotechnol 12:6568–6573

    Google Scholar 

  • Kwon S-J, Park K-C, Kim J-H (2005) Rim 2/Hipa CACTA transposon display; a new genetic marker technique in Oryza species. BMC Genet 6:15

    PubMed Central  PubMed  Google Scholar 

  • La Mantia M, Lain O, Caruso T, Testolin R (2005) SSR-based DNA fingerprints reveal the genetic diversity of Sicilian olive (Olea europaea L.) germplasm. J Hortic Sci Biotechnol 80:628–632

    Google Scholar 

  • Lamia K, Hedia B, Jean-Marc A, Neila TF (2010) Comparative analysis of genetic diversity in Tunisian apricot germplasm using AFLP and SSR markers. Sci Hortic 127:54–63

    CAS  Google Scholar 

  • Lee HC, Lai K, Lorenc MT et al (2011) Bioinformatics tools and databases for analysis of next-generation sequence data. Brief Funct Genomics. doi:10.1093/bfgp/elr037

    Google Scholar 

  • Lezar S, Myburg AA, Berger DK et al (2004) Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis. Theor Appl Genet 109:1329–1336

    CAS  PubMed  Google Scholar 

  • Li TX (2004) A novel method for screening species-specific gDNA probes for species identification. Nucleic Acids Res 32:e45. doi:10.1093/nar/gnh041

    PubMed Central  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    CAS  Google Scholar 

  • Li T-X, Wang J-K, Bai Y-F, Lu Z-H (2006) Diversity suppression-subtractive hybridization array for profiling genomic DNA polymorphisms. J Integr Plant Biol 48:460–467

    CAS  Google Scholar 

  • Li X-Q, Haroon M, Coleman SE et al (2008) A simplified procedure for verifying and identifying potato cultivars using multiplex PCR. Can J Plant Sci 88:583–592

    CAS  Google Scholar 

  • López M, Cid N, González MV et al (2009) Microsatellite and AFLP analysis of autochthonous grapevine cultivars from Galicia (Spain). Am J Enol Vitic 60:215–222

    Google Scholar 

  • Louarn S, Torp AM, Holme IB et al (2007) Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea. Genet Resour Crop Evol 54:1717–1725

    CAS  Google Scholar 

  • Lu X, Liu L, Gong Y et al (2009) Cultivar identification and genetic diversity analysis of broccoli and its related species with RAPD and ISSR markers. Sci Hortic 122:645–648

    CAS  Google Scholar 

  • Lukyanov SA, Rebrikov D, Buzdin AA (2007) Suppression subtractive hybridization. In: Buzdin A, Lukyanov S (eds) Nucleic acids hybridization modern applications. Springer, Dordrecht, pp 53–84

    Google Scholar 

  • Mantri N, Olarte A, Li CG et al (2012) Fingerprinting the Asterid species using subtracted diversity array reveals novel species-specific sequences. PLoS ONE 7:e34873. doi:10.1371/journal.pone.0034873

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGregor CE, Lambert CA, Greyling MM et al (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113:135–144

    CAS  Google Scholar 

  • Menke U, Mueller-Roeber B (2001) RNA fingerprinting of specific plant cell types: adaptation to plants and optimization of RNA arbitrarily primed PCR (RAP-PCR). Plant Mol Biol Report Mar 19:33–48

    CAS  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6. doi:10.3835/plantgenome2013.03.0001in

  • Miller MR, Dunham JP, Amores A et al (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miñano HS, González-Benito ME, Martín C (2009) Molecular characterization and analysis of somaclonal variation in chrysanthemum cultivars using RAPD markers. Sci Hortic 122:238–243

    Google Scholar 

  • Morgante M, Depaoli E, Radovic S (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10:149–155

    CAS  PubMed  Google Scholar 

  • Naito K, Cho E, Yang G et al (2006) Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci 103:17620–17625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura Y, Leppert M, O’Connell P et al (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235:1616–1622

    CAS  PubMed  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J Cell Mol Biol 14:387–392

    CAS  Google Scholar 

  • Newmaster SG, Grguric M, Shanmughanandhan D et al (2013) DNA barcoding detects contamination and substitution in North American herbal products. BMC Med 11:222

    PubMed Central  PubMed  Google Scholar 

  • Niu L, Mantri N, Li CG et al (2011) Array-based techniques for fingerprinting medicinal herbs. Chin Med 6:18

    PubMed Central  PubMed  Google Scholar 

  • Nybom H, Weising K, Rotter B (2014) DNA fingerprinting in botany: past, present, future. Investig Genetics 5:1

    Google Scholar 

  • Olarte A, Mantri N, Nugent G et al (2013a) A gDNA microarray for genotyping Salvia species. Mol Biotechnol 54:770–783

    CAS  PubMed  Google Scholar 

  • Olarte A, Mantri N, Nugent G, Pang ECK (2013b) Subtracted diversity array identifies novel molecular markers including retrotransposons for fingerprinting Echinacea species. PLoS ONE 8:e70347. doi:10.1371/journal.pone.0070347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olson M, Hood L, Cantor C, Botstein D (1989) A common language for physical mapping of the human genome. Science 245:1434–1435

    CAS  PubMed  Google Scholar 

  • Pang X, Song J, Zhu Y et al (2011) Applying plant DNA barcodes for Rosaceae species identification. Cladistics 27:165–170

    Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    CAS  PubMed  Google Scholar 

  • Park YH, Ahn SG, Choi YM et al (2010) Rose (Rosa hybrida L.) EST-derived microsatellite markers and their transferability to strawberry (Fragaria spp.). Sci Hortic 125:733–739

    CAS  Google Scholar 

  • Parkinson J, Blaxter M (2009) Expressed sequence tags: an overview. In: Parkinson J (ed) Expressed sequence tags (ESTs). Methods in Molecular Biology 533:1–12

    Google Scholar 

  • Pathak D, Ali S (2012) Repetitive DNA: a tool to explore animal genomes/transcriptomes. Functional genomics. InTech, Rijeka, pp 155–180

    Google Scholar 

  • Pathak H, Dhawan V (2010) Molecular analysis of micropropagated apple rootstock MM 111 using ISSR markers for ascertaining clonal fidelity. Acta Horticult 865:73–80

    Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M et al (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97:1248–1255

    CAS  Google Scholar 

  • Peng X, Li W, Wang W, Bai G (2010) Identification of Lonicera japonica by PCR-RFLP and allele-specific diagnostic PCR based on sequences of internal transcribed spacer regions. Planta Med 76:497–499

    CAS  PubMed  Google Scholar 

  • Polashock JJ, Vorsa N (2002) Development of SCAR markers for DNA fingerprinting and germplasm analysis of American cranberry. Am Soc Hortic Sci 127:677–684

    CAS  Google Scholar 

  • Pooler MR, Townsend AM (2005) DNA fingerprinting of clones and hybrids of American elm and other elm species with AFLP markers. J Environ Hortic 23:113–117

    CAS  Google Scholar 

  • Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    CAS  Google Scholar 

  • Prakash NS, Combes MC, Dussert S et al (2005) Analysis of genetic diversity in Indian robusta coffee genepool (Coffea canephora) in comparison with a representative core collection using SSRs and AFLPs. Genet Resour Crop Evol 52:333–343

    CAS  Google Scholar 

  • Priest HD, Fox SE, Filichkin SA, Mockler TC (2010) Utility of next-generation sequencing for analysis of horticultural crop transcriptomes. Acta Horticult 859:283–288

    Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    CAS  PubMed  Google Scholar 

  • Riaz S, Tenscher AC, Smith BP et al (2008) Use of SSR markers to assess identity, pedigree, and diversity of cultivated Muscadine grapes. J Am Soc Hortic Sci 133:559–568

    Google Scholar 

  • Saghai Maroof MA, Biyashev RM, Yang GP et al (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci 91:5466–5470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saiki R, Gelfand D, Stoffel S et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarwat M, Das S, Srivastava PS (2008) Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Rep 27:519–528

    CAS  PubMed  Google Scholar 

  • Semagn K, Bjørnstad A, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568

    CAS  Google Scholar 

  • Sharma PC, Winter P, Bunger T et al (1995) Abundance and polymorphism of di-, tri- and tetra-nucleotide tandem repeats in chickpea (Cicer arietinum L.). Theor Appl Genet 90:90–96

    CAS  PubMed  Google Scholar 

  • Sharma PC, Grover A, Kahl G (2007) Mining microsatellites in eukaryotic genomes. Trends Biotechnol 25:490–498

    CAS  PubMed  Google Scholar 

  • Shiran B, Sorkheh K, Rouhi V et al (2009) Molecular characterization of Iranian almond cultivars and related wild species using amplified fragment-length polymorphisms (AFLPs). Acta Horticult 814:137–142

    CAS  Google Scholar 

  • Singh S, Karihaloo JL, Gaikwad AB (2007) DNA fingerprinting of some mango (Mangifera indica L.) cultivars using anchored-ISSR Markers. J Plant Biochem Biotechnol 16:113–117

    CAS  Google Scholar 

  • Singh H, Deshmukh RK, Singh A et al (2010) Highly variable SSR markers suitable for rice genotyping using agarose gels. Mol Breed 25:359–364

    Google Scholar 

  • Skinner DM, Beattie WG, Blattner FR (1974) The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (-T-A-G-G-)n x (-A-T-C-C-)n. Biochemistry 13:3930–3937

    CAS  PubMed  Google Scholar 

  • Somsri S, Bussabakornkul S (2008) Identification of certain papaya cultivars and sex identification in papaya by DNA amplification fingerprinting (DAF). Acta Horticult 787:197–206

    CAS  Google Scholar 

  • Sonah H, Bastien M, Iquira E et al (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8:e54603. doi:10.1371/journal.pone.0054603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    CAS  PubMed  Google Scholar 

  • Spaniolas S, May ST, Bennett MJ, Tucker GA (2006) Authentication of coffee by means of PCR-RFLP analysis and lab-on-a-chip capillary electrophoresis. J Agric Food Chem 54:7466–7470

    CAS  PubMed  Google Scholar 

  • Spooner DM (2009) DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. Am J Bot 96:1177–1189. doi:10.3732/ajb.0800246

    CAS  PubMed  Google Scholar 

  • Spooner DM, van Treuren R, de Vicente MC (2005) Molecular markers for genebank management. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Staub JE, Serquen FC, Gupta M (1996) Genetic markers, map construction, and their application in plant breeding. HortSci 31:729–741

    CAS  Google Scholar 

  • Syed NH, Sureshsundar S, Wilkinson MJ et al (2005) Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theor Appl Genet 110:1195–1202

    CAS  PubMed  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Testolin R, Cipriani G (2010) Molecular markers for germplasm identification and characterization. Acta Horticult 859:59–72

    CAS  Google Scholar 

  • Tiwari SK, Karihaloo JL, Hameed N, Gaikwad AB (2009) Molecular characterization of brinjal (Solanum melongena L) cultivars using RAPD and ISSR markers. J Plant Biochem Biotechnol 18:189–195

    CAS  Google Scholar 

  • Tripathi AM, Tyagi A, Kumar A et al (2013) The internal transcribed spacer (ITS) region and trnhH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PLoS ONE 8:e57934. doi:10.1371/journal.pone.0057934

    CAS  PubMed Central  PubMed  Google Scholar 

  • UPOV (2010) Guidelines for DNA-profiling: molecular marker selection and database construction (“BMT guidelines”). International Union for the Protection of Plant Varieties (UPOV), Geneva

    Google Scholar 

  • Va D, De N, Broeck N et al (1998) Transposon display identifies individual transposable elements in high copy number lines. Plant J 13:121–129

    Google Scholar 

  • Vidal JR, Delavault P, Coarer M, Defontaine A (2000) Design of grapevine (Vitis vinifera L.) cultivar-specific SCAR primers for PCR fingerprinting. Theor Appl Genet 101:1194–1201

    CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Sun H, Kwon WS et al (2010) A simplified method for identifying the Panax ginseng cultivar gumpoong based on 26S rDNA. Planta Med 76:399–401

    CAS  PubMed  Google Scholar 

  • Waugh R, McLean K, Flavell AJ et al (1997) Genetic distribution of Bare–1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    CAS  PubMed  Google Scholar 

  • Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants: principles, methods, and applications. Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welsh J, Chada K, Dalal SS et al (1992) Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res 20:4965–4970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wenz H, Robertson JM, Menchen S et al (1998) High-precision genotyping by denaturing capillary electrophoresis. Genome Res 8:69–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams MNV, Pande N, Nair S et al (1991) Restriction fragment length polymorphism analysis of polymerase chain reaction products amplified from mapped loci of rice (Oryza sativa L.) genomic DNA. Theor Appl Genet 82:489–498

    CAS  PubMed  Google Scholar 

  • Wolfsberg TG, Landsman D (2001) Expressed sequence tags (ESTs). In: Baxevanis AD, Ouellette BFF (eds) Bioinformatics: a practical guide to the analysis of genes and proteins, 2nd edn. Wiley, New York, pp 283–301

    Google Scholar 

  • Wu K, Jones R, Danneberger L, Scolnik PA (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res 22:3257–3258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xi M, Sun L, Qiu S et al (2012) In vitro mutagenesis and identification of mutants via ISSR in lily (Lilium longiflorum). Plant Cell Rep 31:1043–1051

    CAS  PubMed  Google Scholar 

  • Xuan H, Wang R, Buchele M et al (2009) Microsatellite markers (SSR) as a tool to assist in identification of sweet (Prunus avium) and sour cherry (Prunus cerasus). Acta Horticult 839:507–514

    Google Scholar 

  • Yang L, Fu S, Khan MA et al (2013) Molecular cloning and development of RAPD-SCAR markers for Dimocarpus longan variety authentication. SpringerPlus 2:501

    PubMed Central  PubMed  Google Scholar 

  • Ye C, Yu Z, Kong F et al (2005) R-ISSR as a new tool for genomic fingerprinting, mapping, and gene tagging. Plant Mol Biol Report 23:167–177

    CAS  Google Scholar 

  • Yin Y, Liu Y, Li H et al (2014) Genetic diversity of Pleurotus pulmonarius revealed by RAPD, ISSR, and SRAP fingerprinting. Curr Microbiol 68:397–403

    CAS  PubMed  Google Scholar 

  • Yu ML, Wang WY, Ma RJ et al (2012) An improved strategy based on RAPD markers efficiently identified 95 peach cultivars. Genet Mol Res 11:1158–1168

    CAS  PubMed  Google Scholar 

  • Zabeau M, Vos P (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Office, publication 0 534 858 A1, bulletin 93/13

    Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H et al (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208

    CAS  PubMed  Google Scholar 

  • Zhang W, Liping YIN, Shasha WEI et al (2013) RAPD marker conversion into a SCAR marker for rapid identification of Johnsongrass [Sorghum halepense (L.) Pers.]. Not Bot Horti Agrobot Cluj-Napoca 41:306–312

    CAS  Google Scholar 

  • Zhou L, Kappel F, Wiersma PA et al (2005) Genetic analysis and DNA fingerprinting of sweet cherry cultivars and selections using amplified fragment length polymorphisms (AFLP). Acta Horticult 667:137–144

    Google Scholar 

  • Zhu S, Fushimi H, Komatsu K (2008) Development of a DNA microarray for authentication of ginseng drugs based on 18S rRNA gene sequence. J Agric Food Chem 56:3953–3959

    CAS  PubMed  Google Scholar 

  • Zhu Y, Hu J, Han R et al (2011) Fingerprinting and identification of closely related wheat (Triticum aestivum L.) cultivars using ISSR and fluorescence-labeled TP-M13-SSR markers. Aust J Crop Sci 5:846–850

    CAS  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Karihaloo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Karihaloo, J.L. (2015). DNA Fingerprinting Techniques for Plant Identification. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_9

Download citation

Publish with us

Policies and ethics