Skip to main content

Harnessing Plant-Microbe Interactions for Enhanced Protection Against Phytopathogens

  • Chapter
  • First Online:
Plant Microbes Symbiosis: Applied Facets

Abstract

Beneficial plant-microbe interactions have utmost importance for enhancing plant growth, improving soil structure, and managing plant diseases. Not surprisingly, such mutual interactions, where plants provide nourishment to rhizospheric microbes and in return microbes help in facilitating plant growth and stress amelioration, actually lay the foundation of sustainable agriculture. To cope with the major challenge of pathogen attack, beneficial rhizospheric microbes have proven their efficacy by induced systemic resistance (ISR). Therefore, such microbes are increasingly used in the form of biofertilizers and biopesticides. Moreover, such plant-microbe interactions elicit a range of defense-responsive activities in order to combat the pathogen challenge. The main microbes-mediated defense strategies adopted by plants include activation of antioxidant status of the plant by reprogramming defense-related enzymes, modulation of quorum sensing phenomenon, and activation of phenylpropanoid pathway leading to phenolics production, lignin deposition, and transgenerational defense response. In this chapter, we highlight the relevance of beneficial interactions between plant and microbes in enhancing plants’ innate immune system against pathogen attack. This review provides a better understanding of the recent advances and major outcome of positive plant-microbe interactions and linking their relevance to plant defense response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez MV, Moreira MR, Ponce A (2012) Antiquorum sensing and antimicrobial activity of natural agents with potential use in food. J Food Saf 32:379–387

    CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:234–266

    Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent pseudomonas spp. Phytopathology 97:239–243

    PubMed  Google Scholar 

  • Balakrishnan N, Subramanian KS (2012) Mycorrhizal symbiosis and bioavailability of micronutrients in maize grain. Maydica 57:129–138

    Google Scholar 

  • Banerjee M, Yesmin L (2002) Sulfur-oxidizing plant growth promoting rhizobacteria for enhanced canola performance. US Patent 07491535

    Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    PubMed  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    PubMed  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    PubMed  CAS  Google Scholar 

  • Bernards MA, Lewis NG (1998) The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47:915–933

    PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    PubMed  CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, InzĂ© D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cassán FD, GarcĂ­a de Salamone I (2008) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. AsociaciĂłn Argentina de MicrobiologĂ­a, Argentina, p 266

    Google Scholar 

  • Cazale AC, Droillard MJ, Wilson C, Heberle-Bors E, Barbier-Brygoo H, Laurière C (1999) MAP kinase activation by hypo-osmotic stress of tobacco cell suspensions: towards the oxidative burst response? Plant J 19:297–307

    PubMed  CAS  Google Scholar 

  • Clark RB, Zobel RW, Zeto SK (1999) Effects of mycorrhizal fungus isolates on mineral acquisition by Panicum virgatum acidic soils. Mycorrhiza 9:167–176

    CAS  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16(10):524–531

    PubMed  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    PubMed  CAS  PubMed Central  Google Scholar 

  • CrĂ©pin A, Barbey C, Beury-Cirou A, HĂ©lias V, Taupin L, Reverchon S, Nasser W, Faure D, Dufour A, Orange N, Feuilloley M, Heurlier K, Burini JF, Latour X (2012a) Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (Dickeya and Pectobacterium spp.). PLoS One 7(4):e35176

    PubMed  PubMed Central  Google Scholar 

  • CrĂ©pin A, Barbey C, Cirou A, TanniĂ©res M, Orange N, Orange N, Feuilloley M, Dessaux Y, Burini JF, Faure D, Latour X (2012b) Biological control of pathogen communication in the rhizosphere: a novel approach applied to potato soft rot due to Pectobacterium atrosepticum. Plant Soil 358:27–37

    Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, InzĂ© D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    PubMed  CAS  Google Scholar 

  • Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–462

    PubMed  CAS  PubMed Central  Google Scholar 

  • De Vleeschauwer D, Höfte M (2007) Using Serratia plymuthica to control fungal pathogens of plant. CAB Rev 2:46

    Google Scholar 

  • De Werra P, PĂ©chy-Tarr M, Keel C, Maurhofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 75:4162–4174

    PubMed  PubMed Central  Google Scholar 

  • Desikan R, A-HMackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptosome by oxidative stress. Plant Physiol 127:159–172

    PubMed  CAS  PubMed Central  Google Scholar 

  • Diallo S, CrĂ©pin A, Barbey C, Orange N, Burini JF, Latour X (2011) Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiol Ecol 75:351–364

    PubMed  CAS  Google Scholar 

  • Dicke M, Hilker M (2003) Induced plant defences: from molecular biology to evolutionary ecology. Basic Appl Ecol 4:3–14

    CAS  Google Scholar 

  • Dixon RA, Paiva N (1995) Stress induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  PubMed Central  Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 8:838–853

    Google Scholar 

  • Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dobbelare S, Vanderleydern J, Okon Y (2003) Plant-growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

    PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    PubMed  CAS  Google Scholar 

  • Friend J (1976) Lignification in infected tissue. In: Friend J, Threfall DR (eds) Biochemical aspects of plantparasite relationships. Academic, London, pp 291–303

    Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 252:1–7

    Google Scholar 

  • Gottlieb S, Pelczar MJ (1951) Microbiological aspects of lignin degradation. Bacteriol Rev 15:55–76

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gram L, Grossart H, Schlingloff A, Kiørboe T (2002) Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by roseobacter strains isolated from marine snow. Appl Environ Microbiol 8(68):4111–4116

    Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harman G, Shoresh M (2007) The mechanisms and applications of opportunistic plant symbionts. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, Amsterdam, pp 131–155

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    PubMed  CAS  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol 50:361–389

    CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    PubMed  CAS  Google Scholar 

  • Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54:33–45

    CAS  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    PubMed  CAS  Google Scholar 

  • Hummerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    Google Scholar 

  • Jain A, Singh S, Sarma BK, Singh HB (2012) Microbial consortium mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112:537–550

    PubMed  CAS  Google Scholar 

  • Jetiyanon K (2007) Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (IN937a and IN937b) against different pathogens. Biol Control 42:178–185

    Google Scholar 

  • Jeun YC, Park KS, Kim CH, Fowler WD, Kloepper JW (2004) Cytological observations of cucumber plants during induced resistance elicited by rhizobacteria. Biol Control 29:34–42

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    PubMed  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg BJJ (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365on the composition of organic acids and sugars in tomato root exudate. Mol Plant-Microbe Interact 19:1121–1126

    PubMed  CAS  Google Scholar 

  • Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544

    PubMed  CAS  Google Scholar 

  • Kim JM, To TK, Seki M (2012) An epigenetic integrator: new insights into genome regulation, environmental stress responses and developmental controls by histone deacetylase 6. Plant Cell Physiol 53(5):794–800

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang SA (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    PubMed  CAS  Google Scholar 

  • Lambert DH, Cole H, Baker DE (1980) The role of boron in plant response to mycorrhizal infection. Plant Soil 57:431–438

    CAS  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SVS, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatments with plant growth promoting rhizobacteria Serratia marcescens NBRI 1213. Curr Microbiol 52:363–368

    PubMed  CAS  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    PubMed  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) growth in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    CAS  Google Scholar 

  • Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV (2002) Microbe– plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    PubMed  CAS  Google Scholar 

  • Luna E, Ton J (2012) The epigenetic machinery controlling transgenerational systemic acquired resistance. Plant Signal Behav 7:615–618

    PubMed  CAS  PubMed Central  Google Scholar 

  • Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mäe A, Montesano M, Koiv V, Palva ET (2001) Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol Plant-Microbe Interact 14:1035–1042

    Google Scholar 

  • Mandal S, Mitra A (2007) Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiol Mol Plant Pathol 71:201–209

    CAS  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Ho¨fte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Defago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81

    PubMed  CAS  Google Scholar 

  • Morrissey JP, Dow JM, Mark L, O’Gara F (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5:922–926

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    CAS  Google Scholar 

  • Ongena M, Jourdan E, Scha¨ fer M, Kech C, Budzikiewicz H, Luxen A, Thonart P (2005) Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant Microbe Interact 18:562–569

    PubMed  CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    PubMed  CAS  Google Scholar 

  • Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria which induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol Control 18:2–9

    CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, KlĂĽsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    PubMed  CAS  Google Scholar 

  • Pierson EA, Wood D, Cannon JAW, Blachere FM, Pierson LS (1998a) Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant-Microbe Interact 11:1078–1084

    CAS  Google Scholar 

  • Pierson LS, Wood DW, Pierson EA (1998b) Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu Rev Phytopathol 36:207–225

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ (2012) Prime time for transgenerational defense. Plant Physiol 158:545

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pieterse CM, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12:564–569

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    PubMed  CAS  Google Scholar 

  • Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    PubMed  CAS  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    PubMed  CAS  Google Scholar 

  • Ran LX, Li ZN, Wu GJ, Van Loon LC, Bakker PAHM (2005) Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 113:59–70

    CAS  Google Scholar 

  • Ride JP (1978) The role of cell wall alterations in resistance to fungi. Ann Appl Biol 89:302–306

    Google Scholar 

  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM (2009) Versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Microbiol Rev 7:514–525

    CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX, ParĂ© PW, Kloepper JW (2003) Bacterial volatiles promote growth of Arabidopsis. Proc Natl Acad Sci 100:4927–4932

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare’ PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    PubMed  CAS  Google Scholar 

  • Schrey SD, Tarkka MT (2008) Friends and foes: Streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94:11–19

    PubMed  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-l-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    PubMed  CAS  Google Scholar 

  • Sederoff RR, MacKay JJ, Ralph J, Hatfield RD (1999) Unexpected variation in lignin. Curr Opin Plant Biol 2:145–152

    PubMed  CAS  Google Scholar 

  • Serfling A, Wirsel SGR, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97:523–531

    PubMed  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    PubMed  CAS  Google Scholar 

  • Silva HSA, Romeiro RDS, Macagnan D, Halfeld-Vieira BDA, Pereira MCB, Mounteer A (2004) Rhizobacterial induction of systemic resistance in tomato plants non-specific protection and increase in enzyme activities. Biol Control 29:288–295

    CAS  Google Scholar 

  • Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40

    PubMed  CAS  Google Scholar 

  • Singhai PK, Sarma BK, Srivastava JS (2011) Biological management of common scab of potato through Pseudomonas species and vermicompost. Biol Control 57:150–157

    Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith SE, Jakobsen I, Gronlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    PubMed  CAS  Google Scholar 

  • Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    PubMed  CAS  Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Ho¨fte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    PubMed  CAS  Google Scholar 

  • Truchado P, Tomás-Barberán F, Larrosa M, Allende A (2012) Food phytochemicals act as quorum sensing inhibitors reducing production and/or degrading autoinducers of Yersinia enterocolĂ­tica and Erwinia carotovora. Food Control 24:78–85

    CAS  Google Scholar 

  • Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M (2005) Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of lupin analysed by phytate utilization ability. Environ Microbiol 7:396–404

    PubMed  Google Scholar 

  • Van der Putten WH, Vet LM, Harvey JA, Wäckers FL (2001) Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • Van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC, Dicke M, Pieterse CMJ (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant-Microbe Interact 21:919–930

    PubMed  Google Scholar 

  • van Rhijn P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142

    Google Scholar 

  • van Wees SCM, de Swart EAM, van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate – and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:8711–8716

    PubMed  PubMed Central  Google Scholar 

  • Vance CP, Anderson JO, Sherwood RT (1976) Soluble and cell wall peroxidases in reed canary grass in relation to disease resistance and localized lignin formation. Plant Physiol 57:920–922

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    CAS  Google Scholar 

  • Whitmore FW (1978) Lignin-carbohydrate complex formed in isolated cell walls of callus. Phytochemistry 17:421–425

    CAS  Google Scholar 

  • Woo SL, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi and plants. Phytopathology 96:181–185

    PubMed  CAS  Google Scholar 

  • Yates IE, Bacon CW, Hinton DM (1997) Effects of endophytic infection by Fusarium moniliforme on corn growth and cellular morphology. Plant Dis 81:723–728

    Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Par’e PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

HBS and BKS are grateful to the Department of Biotechnology, Govt. of India, for providing financial support (BT/PR5990/AGR/5/587/2012). SM is thankful to UGC for awarding Dr. D.S. Kothari Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mishra, S., Singh, A., Keswani, C., Saxena, A., Sarma, B.K., Singh, H.B. (2015). Harnessing Plant-Microbe Interactions for Enhanced Protection Against Phytopathogens. In: Arora, N. (eds) Plant Microbes Symbiosis: Applied Facets. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_5

Download citation

Publish with us

Policies and ethics