Skip to main content

Eco-Friendly Technologies for Heavy Metal Remediation: Pragmatic Approaches

  • Chapter
  • First Online:
Environmental Sustainability

Abstract

Heavy metal contamination is a universal problem that disrupts the environment as a consequence of several anthropogenic activities. This chapter provides a review on the remediation technologies of heavy metal contamination. The modern remediation techniques of heavy metal from the contaminated soil and water are expensive and environmentally destructive. Unlike organic compounds, metals cannot degrade, and so efficient cleanup involves their immobilization to reduce or remove toxicity. The use of plants and associated microorganisms are gaining more attention to remove, immobile or degrade the environmental destructive contaminants. Phytoremediation is an emerging technology for cleaning up contaminated sites, which is cost effective, and has aesthetic advantages and long-term applicability. Furthermore, the metal-resistant bacteria are reported to play an important role in phytoremediation for successful survival and growth of plants. Moreover, the metal-resistant bacteria are reported to promote plant growth by various mechanisms such as nitrogen fixation, solubilization of minerals, production of phytohormones and siderophores, and utilization of 1-aminocyclopropane-1-carboxylic acid as a sole N source and transformation of nutrient elements. A brief review on phytoremediation of heavy metals and its effect on plants has been compiled to provide a wide applicability of phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic and Professional, Glasgow, U.K.

    Book  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89

    Article  CAS  Google Scholar 

  • Bañuelos GS (2000) Phytoextraction of Se from soils irrigated with selenium-laden effluent. Plant Soil 224:251–258

    Article  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Boyd RS, Jaffré T (2001) Phytoenrichment of soil Ni content by Sebertia acuminata in New Caledonia and the concept of elemental allelopathy. S Afr J Sci 97:535–538

    CAS  Google Scholar 

  • Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    Article  CAS  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Chiapusio G, Pujol S, Toussaint ML, Badot PM, Binet P (2007) Phenanthrene toxicity and dissipation in rhizosphere of grassland plants (Lolium perenne L. and Trifolium pratense L.) in three spiked soils. Plant Soil 294:103–112

    Article  CAS  Google Scholar 

  • Child R, Miller CD, Liang Y, Sims RC, Anderson AJ (2007) Pyrene mineralization by Mycobacterium sp. strain KMS in a barley rhizosphere. J Environ Qual 36:1260–1265

    Article  CAS  Google Scholar 

  • Cotter-Howells JD, Caporn S (1996) Remediation of contaminated land by formation of heavy metal phosphates. Appl Geochem 11:335–342

    Article  CAS  Google Scholar 

  • Cotter-Howells JD, Champness PE, Charnock JM (1999) Mineralogy of Pb-P grains in the roots of Agrostis capillaris L. by ATEM and EXAFS. Min Mag (Lond) 63(6):777–789

    Article  CAS  Google Scholar 

  • Davis MA, Boyd RS, Cane JH (2001) Host switching does not circumvent the Ni-based defense of the Ni hyperaccumulator Streptanthus Polygaloides (Brassicaceae). S Afr J Sci 97:554–557

    CAS  Google Scholar 

  • Dushenkov S, Kapulnik R (2000) Phytofiltration of metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 89–106

    Google Scholar 

  • Fahnestock FM, Wickramanayake GB, Kratzke KJ, Major WR (1998) Biopile design, operation, and maintenance handbook for treating hydrocarbon contaminated soil. Battelle Press, Columbus

    Google Scholar 

  • Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Stipek K, Fischerova Z, Schweiger P, Köllensperger G, Ma LQ, Stingeder G (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008–5014

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose GM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Gopal B (2003) Perspectives on wetland science, application and policy. Hydrobiologia 490:1–10

    Article  Google Scholar 

  • Hardej M, Ozimek T (2002) The effect of sewage sludge flooding on growth and morphometric parameters of Phragmites australis (Cav.) Trin. ex Steudel. Ecol Eng 18:343–350

    Article  Google Scholar 

  • Helsen L, Van den Bulck E, Van den Broeck KVD, Vandecasteele C (1997) Low-temperature pyrolysis of CCA-treated wood waste: chemical determination and statistical analysis of metal input and output; mass balances. Waste Manag 17:79–86

    Article  CAS  Google Scholar 

  • Hemambika B, Rajesh Kannan V (2012) Intrinsic characteristics of Cr6+-resistant bacteria isolated from an electroplating industry polluted soils for plant growth-promoting activities. Appl Biochem Biotechnol 167:1653–1667

    Article  CAS  Google Scholar 

  • Hemambika B, Balasubramanian V, Rajesh Kannan V, Arthur James R (2013) Screening of chromium resistant-bacteria for plant growth promoting activities. Soil Sediment Contam 22:717–736

    Article  CAS  Google Scholar 

  • Hetland MD, Gallagher JR, Daly DJ, Hassett DJ and Heebink LV (2001) Processing of plants used to phytoremediate lead-contaminated sites. In: Leeson A, Foote EA, Banks MK, Magar VS (eds) Phytoremediation, wetlands, and sediments. The sixth international in situ and on-site bioremediation symposium, San Diego, California, 4–7 June. Battelle Press, Columbus/Richland, pp 129–136

    Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–928

    CAS  Google Scholar 

  • Jenssen P, Maehlum T, Krogstad T (1993) Potential use of constructed wetlands for wastewater treatment in northern environments. Water Sci Technol 28:149–157

    Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metals contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  Google Scholar 

  • Koppolu L, Agblevor FA, Clements LD (2003) Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: Lab-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass Bioenergy 25:651–663

    Article  CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi. Plant Physiol 112(4):1715–1722

    CAS  Google Scholar 

  • Lasat MM, Fuhrmann M, Ebbs SD, Cornish JE, Kochian LV (1998) Phytoremediation of radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J Environ Qual 27:165–169

    Article  CAS  Google Scholar 

  • Lehto NJ, Davison W, Zhang H, Tych W (2006) Theoretical comparison of how soil processes affect uptake of metals by diffusive gradients in thin films and plants. J Environ Qual 35(5):1903–1913

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889

    Article  CAS  Google Scholar 

  • Mohan D, Kumar H, Saraswat A, Alexandre-Franco M, Pittman CU Jr (2014) Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem Eng J 236:513–528

    Article  CAS  Google Scholar 

  • Mohanty K, Jha M, Meikap BC, Biswas MN (2005) Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chem Eng Sci 11:3049–3059

    Article  Google Scholar 

  • Nicks L, Chambers MF (1994) Nickel farm. Discover 19

    Google Scholar 

  • Pan W-P, Richards GN (1990) Volatile products of oxidative pyrolysis of wood: influence of metal ions. J Anal Appl Pyrolysis 17:261–273

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal contaminated land by trees – a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Purakayastha TJ, Viswanath T, Bhadraray S, Chhonkar PK, Adhikari PP, Suribabu K (2008) Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytoremediat 10:61–72

    Article  CAS  Google Scholar 

  • Puschenreiter M, Stöger G, Lombi E, Horak O, Wenzel WW (2001) Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: rhizosphere manipulation using EDTA and ammonium sulfate. J Plant Nutr Soil Sci 164(6):615–621

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Using plants to clean Up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Richards GN, Zheng G (1991) Influence of metal ions and of salts on products from pyrolysis of wood: applications to thermochemical processing of newsprint and biomass. J Anal Appl Pyrolysis 21:133–146

    Article  CAS  Google Scholar 

  • Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can J Bot 85:237–251

    Article  CAS  Google Scholar 

  • Rufyikiri G, Declerck S, Thiry Y (2004) Comparison of 233U and 33P uptake and translocation by the arbuscular mycorrhizal fungus Glomus intraradices in root organ culture conditions. Mycorrhiza 14:203–207

    Article  Google Scholar 

  • Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean Up the environment. Wiley, New York, pp 231–246

    Google Scholar 

  • Shahandeh H, Hossner LR (2002) Enhancement of uranium phytoaccumulation from contaminated soils. Soil Sci 167:269–280

    Article  CAS  Google Scholar 

  • Shams KM, Tichy G, Fischer A, Sager M, Peer T, Bashar A, Filip K (2010) Aspects of phytoremediation for chromium contaminated sites using common plants Urtica dioica, Brassica napus and Zea mays. Plant Soil 328:175–189

    Article  CAS  Google Scholar 

  • Sheng X-F, Xia J-J (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  Google Scholar 

  • Southichak B, Nakano K, Nomura M, Chiba N, Nishimura O (2006) Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution. Water Res 40:2295–2302

    Article  CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation – a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  CAS  Google Scholar 

  • Turgut C (2003) The contamination with organochlorine pesticides and heavy metals in surface water in Küçük Menderes River in Turkey. Environ Int 29:29–32

    Article  CAS  Google Scholar 

  • Vajpayee P, Rai UN, Ali MB, Tripathi RD, Yadav V, Sinha S, Singh SN (2001) Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bull Environ Contam Toxicol 67:246–256

    CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Joseph Pollard A, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Vestal JR, White DC (1989) Lipid analysis and microbial ecology. Bioscience 39:535–541

    Article  CAS  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration: review. Environ Int 30:685–700

    Article  CAS  Google Scholar 

  • Williams JB, Coleman HV, Pearson J (1999) Implications of pH effects and succession for phytoremediation in wetlands. In: Uzochukwu GA, Reddy GB (eds) Proceedings of the national conference on environmental remediation science and technology. Battelle, Columbia, pp 243–248

    Google Scholar 

  • Zaier H, Ghnaya T, Rejeb KB, Lakhdar A, Rejeb S, Jemal F (2010) Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresour Technol 101:3978–3983

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeshkannan Velu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Balakrishnan, H., Velu, R. (2015). Eco-Friendly Technologies for Heavy Metal Remediation: Pragmatic Approaches. In: Thangavel, P., Sridevi, G. (eds) Environmental Sustainability. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2056-5_12

Download citation

Publish with us

Policies and ethics