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7 Abstract

8AU1 Plants are exposed to different types of environmental factors including

9 heat stress that affect negatively various regular activities of the plant.

10 Plants, as sessile organisms, must have developed efficient strategies of
11 response to cope with and adapt to different types of abiotic stresses

12 imposed by the adverse environment. Plant responses to environmental

13 stress are complex and appear to be a difficult task to study in the classical
14 plant-breeding program due to several technical limitations. The current

15 knowledge of the regulatory network governing environmental stress

16 responses is fragmentary, and an understanding of the damage caused
17 by these environmental stresses or the plant’s tolerance mechanisms to

18 deal with stress-induced damages is far from complete. The emergence of

19 the novel “omics” technologies from the last few years, such as genomics,
20 proteomics, and metabolomics, is now allowing researchers to enable

21 active analyses of regulatory networks that control abiotic stress
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22 responses. Recent advances in different omics approaches have been

23 found greatly useful in understanding plant responses to abiotic stress
24 conditions. Such analyses increase our knowledge on plant responses and

25 adaptation to stress conditions and allow improving crop improvement

26 programs including plant breeding. In this chapter, recent progresses on
27 systematic analyses of plant responses to heat stress including genomics,

28 proteomics, metabolomics, and phenomics and transgenic-based
29 approaches to overcome heat stress are summarized.
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145 Introduction

46 Since plants are sessile in nature, they develop

47 many physiological and molecular mechanisms

48 to cope with different abiotic stresses. Plants
49 started to emerge 1.5 billion years ago

50 (LehningerAU2 et al. 1993), and the evolutionary

51 pressure has shaped plant responses to environ-
52 mental fluctuations that minimize damage and

53 ensure protection of cellular homeostasis. Heat

54 stress is one of the main abiotic stresses that can
55 limit the crop productivity drastically in the com-

56 ing years due to global warming. High

57 temperatures can be detrimental to all phases of
58 plant development. Heat stress causes irrevers-

59 ible damage to plant function and development

60 (Hall 2001). Heat stress affects a broad spectrum

61of cellular components and metabolism. The

62timing, duration, and severity of heat stress influ-

63ence pollen-pistil interactions in crop plants
64(Snider and Oosterhuis 2011). To counter the

65effects of heat stress on cellular metabolism,

66plants and other organisms respond to changes
67in their ambient temperature by reprogramming

68the composition of certain transcripts, proteins,

69and metabolites. Heat stress leads to a series of
70phenotypical and genetical changes, creates

71osmotic imbalances, and produces ubiquitous

72and evolutionarily conserved proteins known as
73heat-shock proteins (Hsps) (Gupta et al. 2010).

74Stress responses involving extreme temperature

75result in excess production of reactive oxygen
76species (ROS), leading to oxidative damage and

77thus limiting the growth and productivity of agri-

78cultural crops. Genome-wide transcriptional
79profiles during temperature and oxidative stress

80revealed coordinated expression patterns and

81overlapping regulons in crop plants (Mittal
82et al. 2012). Therefore, understanding plant

83responses to heat stress is now thought to be

84one of the hottest topics in agricultural science.
85Major progress in this research field has come

86from the application of different bioinformatics/

87systems biology approaches. These high-
88throughput techniques have made it possible to

89analyze thousands of genes in one shot (Smita

90et al. 2013). With the introduction of bioinfor-
91matics tools, many heat-stress-inducible genes

92were identified from the huge genome databases,
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93 their promoter sequences were identified, and the
94 putative functions of the genes were functionally

95 characterized through transgenic approaches.
96 This provides the information to understand the

97 molecular mechanisms for improving heat toler-

98 ance in crops. Availability of these data sets
99 publicly has broadened and deepened the view

100 of heat-stress responses and tolerance not only in

101 model plants but also in agricultural crops.

2102 Bioinformatics Approaches

103 Recent advances in functional genomics have

104 allowed us the use of different bioinformatics
105 approaches such as transcriptomics (global gene

106 expression), proteomics (protein profiling/modi-
107 fication), metabolomics (metabolite profiling),

108 and phenomics to understand the complex

109 molecular regulatory networks associated with
110 stress adaptation and tolerance (Cramer et al.

111 2011). These technologies generate enormous

112 amounts of information which has boosted up
113 the field of bioinformatics, with thousands of

114 new algorithms and software published every

115 year. System-based approaches with a combina-
116 tion of multiple omics analyses have been an

117 efficient tool to determine the global picture of

118 cellular events which would increase our under-
119 standing of the complex molecular regulatory

120 networks and find out the interacting partners

121 associated with heat-stress adaptation and toler-
122 ance. The data collected from transcriptomics,

123 proteomics, and metabolomics needs to be com-

124 bined to achieve a better understanding of the
125 plant as a system. In this context, different

126 omics data should contribute greatly to the iden-

127 tification of key regulatory steps to characterize
128 the pathway interactions. The integration of a

129 wide spectrum of omics data sets from various

130 plant species facilitates to promote translational
131 research for future biotechnological applications

132 in crop plants and also in fruit trees. These

133 approaches demonstrate the power of systems
134 biology for understanding the key cellular

135 components underlying plant functions during

136temperature stress. Thus, cooperation between
137and beyond disciplines has a role to play in

138unraveling the intricacies associated with heat-
139stress adaptation in plants.

2.1 140Transcriptomics

141Transcriptomics is a powerful approach for
142studying the responses of plants in relation to

143their environment. The transcriptome consists of

144the entire set of transcripts that are expressed
145within a cell or organism at a particular develop-

146mental stage or under various environmental
147conditions. Recent transcriptomic studies have

148helped to provide a better understanding of plant

149response to different abiotic stresses like cold, high
150salinity, drought, high light intensity, hypero-

151smolarity, and oxidative stresses (Deyholos 2010;

152Wang et al. 2012). The overlap of large number of
153genes induced by various stress conditions reveals

154the molecular cross talk of gene regulatory net-

155work responses to various abiotic stress conditions
156(Weston et al. 2011; Friedel et al. 2012). This

157contribution has enabled the discovery of novel

158stress-responsive genes on the basis of expression
159profiles in different developmental stages of the

160plant under stress conditions (Sreenivasulu et al.

1612008; Smita et al. 2013). The availability of com-
162plete genome sequences of Arabidopsis andOryza
163sativa model plants and other important crops has

164provided sufficient genomic information to per-
165form high-throughput genome-wide functional

166analysis. Compared to other stresses, heat-stress

167responses in plants have received increasing atten-
168tion in recent years, and accordingly global trans-

169criptome expression in response to heat stress has

170been reported in different plant species (Mang-
171elsen et al. 2011; Liu et al. 2012). Lim et al.

172(2006) found that Arabidopsis suspension cells at

173a moderate heat enhanced the expression profiling
174of 165 genes, with high quantity of heat-shock

175proteins (Hsps). AU3Frank et al. (2009) found from

176the cDNA microarrays and qPCR analysis that
177Hsp70, Hsp90, and heat-shock transcription

178factors (HSF) were important to tomato
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179 microspore resistance to heat stress. Transcr-
180 iptomic data from Triticum aestivum and other

181 plants show that 5 % of the genes are significantly
182 affected in response to heat stress (Finka et al.

183 2011). But Arabidopsis transcriptomic data show

184 that 11 % of the genes expressed in response to
185 heat stress are encoded for heat-induced

186 chaperones (Qin et al. 2008). The rest of the

187 transcripts encode products involved in calcium
188 signaling, phytohormone signaling, sugar and

189 lipid signaling, and metabolism. Additionally,

190 some studies have identified various transcripts
191 increased during heat treatment, including

192 members of the DREB2 family of transcription

193 factors, AsEXP1 encoding an expandAU4 in protein,
194 genes encoding for galactinol synthase and

195 enzymes in the raffinose oligosaccharide pathway,

196 and antioxidant enzymes (Xu et al. 2007). Reports
197 exist which show decrease in transcript levels

198 related to programmed cell death, basic metabo-

199 lism, and biotic stress responses under heat-stress
200 conditions (Larkindale and Vierling 2008).

201AU5 Affymetrix Grape Genome Array and qRT-

202 PCR techniques were used to identify the heat-
203 stress- and recovery-regulated genes in the grape

204 and found that about 8 % of total probe sets were

205 responsive to heat stress and subsequent recovery
206 in grape leaves. The responsive genes identified

207 in this study belong to a large number of impor-

208 tant factors and biological pathways, including
209 those for cell rescue (i.e., antioxidant enzymes),

210 protein fate (i.e., Hsps), primary and secondary

211 metabolism, transcription factors, and signal
212 transduction and development (Liu et al. 2012).

213 Wheat Genome Array was applied to measure

214 the transcriptome changes in response to heat
215 stress in the contrasting genotypes and identified

216 a total of 6,560 probe sets that responded to heat

217 stress (Qin et al. 2008). A combination of heat
218 and drought stresses had a significantly higher

219 detrimental effect on growth and productivity of

220 maize, barley, sorghum, and different grasses
221 than each of the stresses applied individually

222 (Abraham 2008). Nonetheless, apart from a nota-

223 ble study on the effects of simultaneous drought
224 and heat stress (Rizhsky et al. 2004), the effects

225 of stress combinations have been little studied

226 (Atkinson and Urwin 2012). Transcriptome

227analysis has been used to investigate the expres-
228sion in response to heat stress as well as com-

229bined stresses in several plant species (Oshino
230et al. 2007; Rasmussen et al. 2013).

231Transcriptome profiling of Arabidopsis plants

232during a combination of drought and heat stress
233influences the changes in the expression pattern

234of more than 400 transcripts (Rizhsky et al.

2352004). Distinct responses were also observed in
236plants exposed to a combination of heat and high

237light intensity (Hewezi et al. 2008), heat, and

238salinity (Keles and Oncel 2002). Their work
239suggests that some pathways/mechanisms are

240dependent on genotype, duration, intensity, and

241type of abiotic stress.
242Until now, most of the transcriptome

243responses have focused on an improved stress

244tolerance during the vegetative phase of plant
245growth. Heat stress decreases the duration of

246developmental phases leading to fewer organs,

247smaller organs, reduced light perception over the
248shortened life cycle, and perturbation of the pro-

249cesses related to carbon assimilation. These

250parameters ultimately contribute to losses in the
251final yield of plants (Hussain and Mudasser

2522007). But the most sensitive developmental

253stages to heat stress are flowering and grain
254filling (Wei et al. 2010). High temperature

255drastically reduced both yield and quality of

256wheat (Sharma et al. 2012). In this context,
257recently few attempts were made to reveal the

258transcriptome alterations in developing seeds to

259understand the yield stability under heat stress
260in rice (Yamakawa and Hakata 2010) and

261barley (Mangelsen et al. 2011). Altogether,

262transcriptome analyses provide novel insight
263into the plant response to heat stress and have

264great implications for further studies on gene

265function annotation and molecular breeding. In
266the era of post-genomics, large-scale gene

267expression data are generated by whole-genome

268transcriptome platforms. There are a few soft-
269ware applications that have been developed to

270query high-throughput microarray gene expres-

271sion databases at the genome-wide gene content
272level for various stress responses. The available

273expression data are mostly deposited in online

274repositories such as GEO (Barrett et al. 2007),
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275 NASC Arrays (Craigon et al. 2004), PLEXdb
276 (Dash et al. 2012), and ArrayExpress

277 (Kapushesky et al. 2012). In parallel, various
278 online query-oriented tools have been developed

279 such as Genevestigator (Zimmermann et al.

280 2004), Arabidopsis eFP browser (Winter et al.
281 2007), RiceArrayNet (Lee et al. 2009), or

282 Arabidopsis and rice co-expression data mining

283 tools (Ficklin et al. 2010; Movahedi et al. 2011)
284 Gramene (Youens-Clark et al. 2011), TAIR

285 (Swarbreck et al. 2008), and MaizeGDB

286 (Schaeffer et al. 2011) to extract development-
287 and stress-specific regulons by implementing

288 global normalization and clustering algorithms

289 (Sreenivasulu et al. 2010).

2.1.1290 NGS-Based Transcriptome
291 Analysis
292 Next-generation sequencing (NGS)-based
293 transcriptome analysis is superior to other avail-

294 able techniques since sequencing-based method

295 is digital, high throughput, highly accurate, and
296 easy to perform and is capable of identifying

297 allele-specific expression. The principal advan-

298 tage of NGS is that their throughputs are much
299 higher than that of classical sequencing. In recent

300 years, researchers have developed various

301 platforms such as the Illumina Genome Ana-
302 lyzer, the Roche/454 Genome Sequencer FLX

303 Instrument, and the ABI SOLiD System that

304 have proven to be powerful and cost-effective
305 tools for advanced research in many areas,

306 including genome sequencing, resequencing of

307 the genome, miRNA expression profiling, DNA
308 methylation analysis, and especially the de novo

309 transcriptome sequencing of non-model

310 organisms (Morozova and Marra 2008). NGS
311 transcriptome analysis is fast and simple because

312 it does not require any cloning of cDNAs and

313 generates an extraordinary depth of short reads. It
314 isAU6 a more comprehensive and efficient way to

315 measure transcriptome composition, obtain

316 transcriptome sequencing using NGS techno-
317 logies provides better alternative for the gene

318 expression studies. Application of NGS technol-
319 ogy in the plant transcriptome analysis has been

320 very limited, and only a few proof-of-concept

321 studies have been performed to reveal the

322transcriptional complexity in plants. Here, we
323provide some examples of the RNA-seq-based

324gene expression studies performed in plants,
325which provide novel insights into the various

326biological aspects. The Illumina sequencing

327analysis in maize revealed the differential
328expression of a very high fraction of genes

329(64.4 %) and provided the evidence for dynamic

330reprogramming of transcriptome with transcripts
331for basic cellular metabolism like photosynthesis

332(Li et al. 2010). An integrated transcriptome atlas

333of the soybean has been generated, which
334resulted in the identification of tissue-specific

335genes (Libault et al. 2010). Further, this expres-

336sion data has been utilized for comparative
337analyses of gene expression from other legumes,

338Medicago truncatula and Lotus japonicus. In

339another independent study, Severin et al. (2010)
340identified more than 177 genes involved in the

341agronomically important trait, like seed filling

342process using RNA-seq in soybean. Garg et al.
343(2011) identified the differentially expressed

344genes in a tissue-by-tissue comparison and

345tissue-specific transcripts in the chickpea, using
346massively parallel pyrosequencing. The tran-

347scriptional complexity in rice has also been

348unraveled via sequencing of mRNA from various
349tissues in two subspecies and identified more

350than 15,000 novel transcriptionally active

351regions and 3,464 differentially expressed genes
352(Lu et al. 2010). A novel sequence-based

353approach using Roche 454 technology focused

354on sequencing unique 30-UTRs of genes to dis-
355tinguish highly conserved, related transcripts

356such as members of same gene family and quan-

357tify their expression (Eveland et al. 2008).
358RNA-seq is a popular approach in NGS

359technologies to collect and quantify the large-

360scale sequences of coding and noncoding RNAs
361rapidly (Garber et al. 2011). NGS-based RNA-

362seq has been used for the rapid development of

363genomic resources in many plants (Gowik et al.
3642011). NGS was employed to create transcr-

365iptome databases of species without a sequenced

366genome such as mangroves (Dassanayake et al.
3672009), eucalyptus (Novaes et al. 2008), olive

368(Alagna et al. 2009), and chestnut (Barakat

369et al. 2009). For this RNA-seq approach, either
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370 fragmented mRNA or fragmented cDNA (WangAU7

371 et al. 2009a, b) can be used as input, and read

372 lengths ranging from 100 to 250 nts and 500 nts
373 model length can be received depending on the

374 sequencer and sequencing kit employed. A major

375 challenge in the near future for those who like to
376 begin the work with NGS data is retooling for

377 methods to store data. This is due to the short

378 history of the technology and its continuous
379 development, and there are as yet no standard

380 methods available to detect and analyze differen-

381 tially expressed genes based on NGS data. Such
382 deep sequencing data from crop plants can help

383 to identify the candidate genes associated with

384 final yield, grain quality, disease resistance, and
385 abiotic including heat-stress tolerance. These

386 data are also useful to identify and isolate new

387 genes and promoters involved in agronomical
388 traits of economically important crops. Genera-

389 tion of such bioinformatics data would be useful

390 in crop improvement programs. NGS-based
391 sequencing applications have rapidly expanded

392 in plant genomics by browsing the Sequence

393 Read Archive (SRA) in NCBI (http://www.ncbi.
394 nlm.nih.gov/sra), European Nucleotide Archive

395 (http://www.ebi.ac.uk/ena/home), and DDBJ

396 Sequence Read Archive (http://trace.ddbj.nig.
397 ac.jp/dra/index_e.shtml), all of which store raw

398 sequencing data from NGS platforms; users can

399 determine how thoroughly a given species has
400 been sequenced and retrieve the publicly avail-

401 able sequencing data for further use.

2.2402 Proteomics

403 Proteomics is not only a powerful molecular tool
404 used in describing complete proteomes at the

405 organelle, cell, organ, or tissue levels, but it can

406 also compare the status of protein profiling under
407 different physiological conditions, such as those

408 resulting from the exposure to stressful condi-

409 tions (Cushman and Bohnert 2000). The prote-
410 ome reflects the actual state of the cell or the

411 organism and is an essential bridge between the
412 transcriptome and the metabolome (Zhu et al.

413 2003) and also acts directly on biochemical pro-

414 cesses and thus must be closer to the phenotype.

415In the last decade, proteomics has been shown to
416be a powerful tool in exploring many biological

417mechanisms which brought much deeper insight
418in the abiotic stress-responsive mechanisms in

419the crop plants (Rinalducci et al. 2011; Yin

420et al. 2012). However, the proteomic studies of
421crop plants under heat stress are not well under-

422stood (Neilson et al. 2010; Rinalducci et al.

4232011). To understand the modulation mecha-
424nisms of heat tolerance in plants, a detailed

425study of the response to high temperature at the

426proteomics level is essential. Thus far, there have
427been only a few proteomic studies regarding heat

428stress in plants (Koussevitzky et al. 2008;

429Neilson et al. 2010). Recent developments in
430protein analysis methods have made possible

431the evaluation and identification of many

432proteins and to exploit proteomic data in the
433context of stress response particularly heat stress

434(Nanjo et al. 2010). Proteome approach has been

435successfully used to study the effect of heat
436shock on wheat grain quality and to identify

437protein markers that enable breeders to produce

438cultivars with desired characters especially
439cultivars that tolerate heat-stress conditions

440(Skylas et al. 2002). The effect of heat stress in

441the wheat endosperm by MALDI-TOF coupled
442with 2-DE analysis identified a total of 48 differ-

443entially expressed proteins (Majoul et al. 2003).

444Of these, more than 37 % of the proteins have
445been identified as Hsps that are involved in pro-

446tein stability and folding, which suggests that

447high temperature has severe effects on protein
448denaturation and regulation. Rice leaf proteomic

449analysis by 2-DE-MS method in response to heat

450stress identified 1,000 protein spots, wherein 73
451protein spots were differentially expressed at

452least at one time point. These proteins were fur-

453ther categorized into different classes related to
454heat-shock proteins, energy and metabolism,

455redox homeostasis, and regulatory proteins.

456Proteomic analysis in barley cultivars under
457heat stress identified several isoforms of sHsps

458and S-adenosylmethionine synthetase (SAM-S)

459and found to be upregulated (Sule et al. 2004).
460Several studies that analyzed the proteomic

461response to heat stress have been carried out in

462Arabidopsis and identified 45 spots which were

P.S. Reddy et al.



463 unique to the combined heat and drought
464 stresses. Proteins uniquely regulated by heat in

465 A. scabra included sucrose synthase, superoxide
466 dismutase, glutathione S-transferase, and stress-

467 inducible Hsps. This suggests that these proteins

468 may contribute to increased survival of A. scabra
469 under high-temperature conditions. Using differ-

470 ential metabolic labeling, Palmblad et al. (2008)

471 identified a number of known Hsps as well as
472 other proteins previously not associated with heat

473 shock in Arabidopsis. Polenta et al. (2007)

474 identified the Hsps from tomato pericarp by ther-
475 mal treatment. They highlighted the importance

476 of class I sHsps that are involved in the process

477 and further characterized them by using mono-
478 specific polyclonal antiserum and MS/MS analy-

479 sis. Thus, the results of this study suggest that

480 plants cope with heat stress in a complex manner,
481 where Hsps play a pivotal role in a complex

482 cellular network. The identification of some

483 novel proteins in the heat-stress response
484 provides new insights that can lead to a better

485 understanding of the molecular basis of heat sen-

486 sitivity in plants (Lee et al. 2007).
487 Protein profiling of two ecotypes (low and high

488 elevations) of Norway spruce was investigated in

489 response to high-temperature stress using 2-DE
490 and LC-MS/MS. This analysis showed an accu-

491 mulation of sHsps during the recovery from heat

492 stress, specifically in the low-elevation ecotype
493 (higher level of thermotolerance) (Valcu et al.

494 2008). Root protein profiling under heat stress

495 identified 70 protein spots which showed differen-
496 tial accumulation in at least one species. More

497 proteins were downregulated as a result of heat

498 stress, but A. scabra exhibited many upregulated
499 protein spots under heat-stress regimes. The two

500 grasses displayed different proteomic profiles.

501 Some of the uniquely regulated genes by heat
502 stress in A. scabra included sucrose synthase,

503 superoxide dismutase, glutathione S-transferase,

504 and stress-inducible heat-shock proteins. This
505 suggests that these proteins may contribute to

506 increased survival of A. scabra under high-

507 temperature conditions (Xu et al. 2008). Heat-
508 stress treatment in combination with drought

509 resulted in the expression of approximately 650

510 protein spots in C. spinarum. Forty-nine spots

511changed their expression levels upon heat and
512drought treatment, and 30 proteins were identified

513byMS and 2-DWestern blot. These proteins were
514classified into Hsps, photosynthesis-related

515proteins, RNA-processing proteins, and proteins

516involved in metabolism and energy production
517(Zhang et al. 2010). Proteomic profiling of radish

518leaves in response to high-temperature stress

519resulted in the identification of 11 differentially
520expressed protein spots, and they were divided

521into four categories: Hsps, redox homeostasis-

522related proteins, energy- and metabolism-related
523proteins, and signal transduction-associated

524proteins (Zhang et al. 2012). Such studies provide

525a good starting point in understanding the overall
526thermal responses of plants; however, further heat

527treatments and comparative analyses should be

528conducted in order to gain a better understanding
529of the overall thermal responses of plants.

530Availability of proteomics data is important to

531support published results and conclusions. Several
532proteomics resources and repositories available

533for plant species were updated (Schneider et al.

5342012), e.g., Plant Proteome Database (http://ppdb.
535tc.cornell.edu/) which provides information on

536maize and Arabidopsis proteomes, RIKEN Plant

537Phosphoproteome Database (RIPP-DB, http://
538phosphoproteome.psc. database.riken.jp) updated

539with a data set of large-scale identification of rice

540phosphorylated proteins (Nakagami et al. 2012),
541and OryzaPG-DB launched as a rice proteome

542database based on shotgun proteomics (Helmy

543et al. 2011). Besides those repositories, numerous
544very valuable resources, each focused on a spe-

545cific aspect like tandem mass spectra evidences,

546quantitative information, and localization of phos-
547phorylation sites, are available for plant proteo-

548mics such as ProMEX (Wienkoop et al. 2012);

549PhosPhAt, a plant phosphorylation site database
550(Arsova and Schulze 2012); PaxDb (Wang et al.

5512012), a meta-resource integrating information on

552absolute protein abundance levels across different
553organisms, including A. thaliana; MASCP Gator

554(Joshi et al. 2011), an aggregation portal for the

555visualization of Arabidopsis proteomics data; or
556PPDB, the Plant Proteome Database (Sun et al.

5572009) to cite only a few. UniProtKB is cross-

558linked to several of those proteomics resources,
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559 including PRIDE, IntAct, ProMEX, PeptideAtlas,
560 and PhosphoSite. A complete list of the cross-

561 references, with bibliographic references, is avail-
562 able at http://www.uniprot.org/docs/dbxref. These

563 databases help us in identifying and understanding

564 the complex protein networks associated with the
565 heat-stress tolerance and the functions of these

566 proteins during heat stress.

2.3567 Metabolomics

568 Metabolomics is the qualitative and quantitative
569 collection of all low-molecular-weight meta-

570 bolites present in a cell that participate in general

571 metabolic reactions and are required for the main-
572 tenance, growth, and normal function of a cell

573 (Arbona et al. 2009; Jordan et al. 2009).

574 Metabolome directly influences the phenotype
575 when compared to transcriptome or proteome

576 and bridges the gap between genotype and pheno-

577 type. The study of the metabolome represents the
578 integration of the genetic background and the

579 influence of the environmental conditions, thus

580 describing more accurately the phenotype of a
581 given plant species. Metabolic regulation during

582 stressful events has been facilitated much in the

583 last decade, and the identification of metabolites
584 has been improved through mass spectrometric

585 studies (Sawada et al. 2009). More comprehensive

586 coverage can only be achieved by using several
587 extraction and detection technologies in parallel

588 and subjecting them to chemical analysis using

589 different analytical methods like gas chromatog-
590 raphy coupled to mass spectrometry (GC-MS) and

591 liquid chromatography coupled to mass spectrom-

592 etry (LC-MS) (De Vos et al. 2007). Other analyti-
593 cal techniques include liquid chromatography

594 (photodiode array detection) coupled to mass

595 spectrometry (LC-PDA/MS) (Huhman and
596 Sumner 2002), capillary electrophoresis coupled

597 to mass spectrometry (CE-MS) (Harada et al.

598 2009, Takahashi et al. 2009), Fourier transform
599 ion cyclotronAU8 resonance mass spectrometry

600 (FTICR/MS) (Oikawa et al. 2006), and NMR
601 spectroscopy (Krishnan et al. 2005). Among all

602 analyzers that can be used with the separation

603 techniques mentioned above, the most popular in

604metabolomics are MS and, particularly, those
605providing accurate mass measures (Arbona et al.

6062013). Therefore, the future objective is the
607standardization and annotation of data from mul-

608tiple metabolomics technologies in public

609databases (Castellana and Bafna 2010). The data
610obtained can then be investigated by multivariate

611and correlation analyses for functional genomics

612in order to study the systems biology of plant
613metabolism and make use of the data for crop

614improvement (Arbona et al. 2013). From the

615genome sequence information of the A. thaliana
616and other model plants, it is evident that plants

617reorganize their metabolic network in order to

618adapt to such adverse conditions (Kaplan et al.
6192004). Many plants respond to different stresses

620by a progressive adjustment of their metabolism

621with early and late responsive gene networks.
622Some metabolic changes are common to salt,

623drought, and temperature stresses, whereas others

624are specific (Urano et al. 2009; Lugan et al. 2010).
625Using metabolic AU9changes as a “map” or “marker,”

626factors regulating metabolic movements were

627investigated by Saito et al. (2008) in combination
628with other “omics” approaches. It appears, there-

629fore, metabolomics plays a key role in understand-

630ing cellular functions and decoding the functions
631of genes (Hagel and Facchini 2008).

632In plant systems, metabolomics approach has

633already been used to study metabolomic changes
634during a variety of stresses, for example, water and

635salinity (Cramer et al. 2007), sulfur (Nikiforova

636et al. 2005), phosphorus (Hernandez et al. 2007),
637oxidative (Baxter et al. 2007), and heavy metals

638(Le Lay et al. 2006). But, less work has been done

639in the case of heat stress. A recent metabolome
640analysis showed common metabolites in response

641to cold and other stresses and demonstrated a

642prominent role for the DREB1/CBF transcrip-
643tional network in the cold-response pathway

644(Maruyama et al. 2009). Comparative metabolite

645analysis has been carried out using GC-MS
646(Kaplan et al. 2004) and GCTOF-MS (Weinkoop

647et al. 2008) between Arabidopsis plants resp-

648onding to heat and cold shocks. Many metabolites
649produced in response to heat shock overlapped

650with those produced in response to cold shock

651also. Many metabolite levels changed specifically
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652 in response to cold than to heat. This response
653 points out a strong impact of cold stress on plant

654 metabolism. Wang et al. (2004) reported that a
655 combination of drought and heat stress results in

656 decrease of the growth and productivity of the

657 crops when compared with each of the different
658 stresses applied individually. Integrated

659 metabolome and transcriptome results were

660 applied by Yamakawa and Hakata (2010) to ana-
661 lyze rice developing caryopses under high-

662 temperature conditions.Molecular events underly-

663 ing pollination-induced and pollination-
664 independent fruit sets were carried out by Wang

665 et al. (2009a, b) and also the effects of DE-

666 ETIOLATED1 downregulation in tomato fruits
667 (Enfissi et al. 2010). Heat stress induced the accu-

668 mulation of keymetabolites like alanine, allantoin,

669 arachidic acid, 2-ketoisocaproic acid, myo-
670 inositol, putrescine, and rhamnose, while it

671 decreased fructose-6-phosphate (Luengwilai et al.

672 2012). Moreover, these results suggested that a
673 metabolic network of compatible solutes including

674 proline, monosaccharides, galactinol, and raffi-

675 nose has an important role to play in temperature
676 stress tolerance (Alcazar et al. 2010).

677 Information resources related to metabolic

678 profiling are available and updated and provide
679 data archives for metabolome data sets and analyt-

680 ical platforms such as LC-MS-based metabolome

681 database (http://appliedbioinformatics.wur.nl/
682 moto/) (Moco et al. 2006), KOMICS (Iijima et al.

683 2008), Plant MetGenMAP (Joung et al. 2009),

684 Metabolome Express (https://www.metabolome-
685 express.org/) (Carroll et al. 2010; Ferry-Dumazet

686 et al. 2011), MeRy-B (http://www.cbib.u-bor

687 deaux2.fr/MERYB/) (Ferry-Dumazet et al.
688 2011), KaPPA-View4 SOL (Sakurai et al. 2011),

689 MetaCrop 2.0 (http://metacrop.ipk-gatersleben.

690 de) (Schreiber et al. 2012), and PRIMe (http://
691 prime.psc.riken.jp/) (Sakurai et al. 2013). Apart

692 from this, several individual species-wise

693 databases are available at Gramene database like
694 RiceCyc, MaizeCyc, BrachyCyc, SorghumCyc,

695 and Sol Genomics Network (SGN). These

696 databases play crucial roles as information
697 resources and repositories of large-scale data sets

698 and also serve as tools for further integration of

699 metabolic profiles containing comprehensive data

700acquired from other omics research (Akiyama
701et al. 2008). Following these successes, several

702multi-omics-based systems analyses have been
703used for understanding plant cellular systems.

2.4 704Phenomics

705Phenomics is the systematic study of the physical

706and morphological properties of organism as they
707change in response to genetic mutation and envi-

708ronmental influences. Traditional methods of

709measuring growth and other morphological
710features are time consuming and costly and

711involve many genotypes and the destructive har-

712vest of plants. Phenomics has been considered as
713one of the important techniques to screen the

714germplasm and to utilize the available morpho-

715logical variation in breeding programs aimed at
716heat-stress tolerance. Therefore, phenomics as a

717technique remains critical in the post-genomics

718era. Phenomics approach also enables us to under-
719stand the precise molecular mechanism involved

720in conferring tolerance against different kinds of

721abiotic stresses. This has stimulated the research
722in several institutions to invest in developing

723technologies and platforms able to speed up the

724phenotyping process. The investments started ear-
725lier in the private sectors, and more recently this

726has been embraced by public research institutions

727that are developing an international collaboration
728network (www.plantphenomics.com). There are a

729large number of initiatives launched (International

730Plant Phenomics Network, Deutsche Plant
731Phenomics Network, and European Plant

732Phenomics Network) to create phenotyping

733facilities to screen populations using high-
734throughput methods located in Australia,

735Germany, France, Canada, Italy, and many more

736(Furbank 2009; Finkel 2009). Large phenotyping
737platforms represent technologies that are mainly

738based on nondestructive image analyses of plant

739tissues or structural and functional features
740obtained by advanced technologies (Nagel et al.

7412009; Yazdanbakhsh and Fisahn 2009). In other
742labs, glass houses and greenhouses can be fitted

743with cameras, and plants may be carried on the

744conveyor belts to the imaging stations. Such
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745 facilities exist in several laboratories around the
746 world (CropDesign, Belgium; The Plant Acceler-

747 ator, Australia; PhenoPhab, Holland; Metapontum
748 Agrobios, Italy; IPK, Germany) and have the

749 advantage of acquiring 3-D images. Using high-

750 throughput phenomics platforms, various
751 parameters like water-deficit responses can be

752 studied (Sadok et al. 2007; Berger et al. 2010).

753 So far, only a handful of studies have been carried
754 out in the phenomics area in response to heat

755 stress in the crop plants (Sharma et al. 2012; Yeh

756 et al. 2012). However, the application of
757 phenomics will really become useful and impor-

758 tant if specific questions are asked to these

759 platforms.
760 Plants show numerous responses to heat stress

761 regarding carbon metabolism and water balance,

762 but unfortunately no single key physiological trait
763 that relates to a genetic base for heat-stress toler-

764 ance has been identified (Allakhverdiev et al.

765 2008; Wolkovich et al. 2012). It is known that
766 the reproductive processes are the most sensitive

767 to heat stress in many species. Heat stress signifi-

768 cantly affects cellular homeostasis including both
769 protein and membrane stability. These responses

770 include basal thermotolerance, short- and long-

771 term acquired thermotolerance, and thermo-
772 tolerance to moderately high temperatures. High

773 temperatures adversely affect the seed germina-

774 tion, growth, photosynthetic efficiency, core
775 metabolic processes, pollen viability, respiration,

776 water relations, and protein and membrane stabil-

777 ity. Different species and cultivars may vary their
778 tolerance to high temperatures with the stage of

779 development, but all vegetative and reproductive

780 stages are highly affected by heat stress (Hall
781 1992). Different phenological stages of plants dif-

782 fer in their sensitivity to high temperature. During

783 vegetative stage, high day temperature can dam-
784 age leaf gas-exchange properties. High night

785 temperatures make the pollen sterile. But this

786 depends on species and the genotype under
787 study. Sharma et al. (2012) identified 41

788 contrasting lines in terms of heat tolerance by

789 mass screening of 1,274 wheat cultivars of diverse
790 origin. This contrasting set of cultivars was then

791 used to compare the ability of chlorophyll fluores-

792 cence parameters to detect genetic difference in

793heat tolerance. This identification may aid future
794studies to understand the genetic and physiologi-

795cal nature of heat-stress tolerance (Sharma et al.
7962012). The temperature and duration of heat-stress

797treatments resulting in changes in growth and

798development of seeds, seedlings, mature leaves,
799panicles or spikes, and fruits have been used in

800crop thermotolerance studies (Rahman et al. 2007;

801Seepaul et al. 2011). But, high-throughput pheno-
802typing analyses are necessary for deepening our

803understanding of the molecular genetics of

804thermotolerance.

3 805Heat-Shock Proteins

806Heat-shock response (HSR) is a highly

807conserved reaction caused by exposure of an

808organism or tissue or cells to sudden high-
809temperature stress. High-temperature stress is

810characterized by rapid induction and transient

811expression of conserved heat-shock transcripts
812and other regulators. Among five conserved

813families of Hsps (Hsp100, Hsp90, Hsp70,

814Hsp60, and sHsp), the small heat-shock proteins
815(sHsps) are found to be most prevalent in plants,

816the expression of which can increase up to 200-

817fold under heat stress. Different classes of molec-
818ular chaperones appear to bind to specific nonna-

819tive substrates and states. Molecular Hsps/

820chaperones are located in the cytoplasm and
821cell organelles such as the nucleus, mitochondria,

822chloroplasts, and ER (Wang et al. 2004). The

823mechanism by which Hsps contribute to heat
824tolerance is still enigmatic though several roles

825have been ascribed to them. Many studies assert

826that Hsps are molecular chaperones ensuring the
827native configuration and functionality of cell

828proteins under heat stress. During stress, many

829enzymes and structural proteins undergo delete-
830rious structural and functional changes. There-

831fore, it is vital to maintain proteins in their

832functional conformations, preventing aggrega-
833tion of nonnative proteins and refolding of dena-

834tured proteins. It is also important to remove
835nonfunctional and harmful polypeptides arising

836from misfolding, denaturation, or aggregation for

837cell survival under stress. Thus, the different
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838 classes of Hsps/chaperones cooperate and play
839 complementary and sometimes overlapping roles

840 in the protection of proteins from stress (Bowen
841 et al. 2002). When denatured or misfolded

842 proteins form aggregates, they can be resolu-

843 bilized by Hsp100/Clp followed by refolding or
844 degraded by proteases (Schöffl et al. 1998).

845 Some Hsps/chaperones (Hsp70, Hsp90) accom-

846 pany the signal transduction and transcription
847 activation that lead to the synthesis of other

848 members of Hsps/chaperones. Similar observa-

849 tions have been reported with plant chaperones.
850 It has been shown that Hsp18.1 from Pisum
851 sativum could stably bind to heat-denatured pro-

852 tein and maintained it in a folding-competent
853 state for further refolding by Hsp70/Hsp100

854 complexes (Mogk et al. 2003). A recent study

855 has shown that Hsp70 and Hsp90 have roles to
856 play in protecting the enzymes at higher

857 temperatures (Reddy et al. 2010, 2011). HSR in

858 plants was investigated in depth, and the pres-
859 ence of multiple signaling pathways was pro-

860 posed (Kotak et al. 2007; von Koskull-Doring

861 et al. 2007). Many studies noted upregulation of
862 transcripts including high-molecular-weight

863 Hsps like Hsp101, Hsp70s, and small Hsps

864 (Sarkar et al. 2009; Mittal et al. 2009; Chauhan
865 et al. 2011) and also identified additional

866 transcripts such as DREBs, galactinol synthases

867 and other enzymes in the raffinose oligosaccha-
868 ride pathway, and oxidative stress enzymes

869 (Frank et al. 2009; Suzuki et al. 2011).

870 Genome-wide survey for Hsps and Hsfs using
871 the tools of bioinformatics helps us to find out

872 not only the number of genes present in a genome

873 but also their chromosomal location. Software
874 tools also help us to find their subcellular

875 locations and the upstream promoter sequences

876 along with their predicted functions.
877 The regulation of heat-shock gene expression

878 in eukaryotes is mediated by the heat-shock tran-

879 scription factors (Hsfs), which are highly
880 conserved throughout the eukaryotic kingdom

881 (Scharf et al. 2012). Plant Hsfs have unique

882 characteristics and the existence of heat-stress-
883 induced Hsf genes might have a major role to

884 play in the modulation of transcription during

885 long-term heat-shock response (Chauhan et al.

8862011). Temperature stress-response signal
887transduction pathways and defense mechanisms

888involving Hsfs and Hsps are thought to be inti-
889mately associated with reactive oxygen species

890(ROS) production (Frank et al. 2009). Heat-

891shock transcription factor-dependent expression
892of antioxidant enzymes such as ascorbate

893peroxidases in Arabidopsis (Frank et al. 2009)

894suggested that Hsfs might be involved not only in
895Hsp regulation but also in the regulation of oxi-

896dative stress (Reddy et al. 2009). Recent research

897revealed the involvement of noncanonical tran-
898scription factors in HSR; for instance, bZip28, a

899gene-encoding membrane, tethered TF, which

900was induced by HS, and the bzip28 null mutant
901became hypersensitive to HS (Gao et al. 2008).

902Besides Hsps, there are other plant proteins

903including ubiquitin, LEA proteins, and cytosolic
904Cu/Zn-SOD and Mn-SOD whose expressions are

905stimulated upon heat stress. A number of

906osmotin-like proteins induced by heat and nitro-
907gen stresses, collectively called Pir proteins, have

908also been found to be overexpressed in many

909plant cells under heat stress conferring them
910resistance. Microarray expression data in

911Hordeum vulgare revealed that most of the

912sHsp and Hsf genes are differentially regulated
913during drought and temperature stresses at differ-

914ent plant developmental stages suggesting con-

915siderable cross talk between stress and non-stress
916regulatory networks. In silico cis-regulatory
917motif analysis of Hsf promoters showed an

918enrichment with abscisic acid-responsive cis-
919elements (ABREs), implying regulatory role of

920ABA in mediating transcriptional response of

921HvsHsf genes.

4 922Heat-Shock Promoters

923The need for inducible or specific promoters can

924be a key tool in plant biotechnology, and their need

925will increase as we attempt to transfer and validate
926genes associated with abiotic stress tolerance. In

927the last decade, several candidate genes, pathways,
928and strategies have been identified by various

929groups across the globe and provided insights in

930plant heat-stress adaptation. Strong constitutive
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931 promoters are routinely used in plant transforma-
932 tion with a regulated expression of heat-stress-

933 responsive genes. But such use of constitutive
934 promoters is resulting in serious penalties on

935 plant growth and development with overall nega-

936 tive performance of transgenics (Sakuma et al.
937 2006a, b). Since constitutive promoters are ham-

938 pering the final productivity, it is important for us

939 to identify and isolate heat-stress-inducible
940 promoters and use them while developing trans-

941 genic crops. However, the regulated expression of

942 transgenes in plants in a tissue-specificmanner and
943 at a specific developmental stage remains a chal-

944 lenging task. The isolation and characterization of

945 heat-stress-responsive promoters and their regu-
946 latory regions will have more biotechnological

947 applications as these promoters could be used to

948 engineer the target genes to express only at the site
949 of stress. A powerful approach for measuring the

950 activity of any heat-shock promoter is by fusing

951 the promoter of heat-shock gene to reporter genes
952 such as GFP or GUS. This allows measuring the

953 developmental and tissue-specific expression of

954 genes with or without heat stress (Khurana et al.
955 2013). It has been found that while some

956 transcripts exhibit translational repression, others

957 escape such repression and remain actively trans-
958 lated. But the underlyingmechanisms thatmediate

959 this control especially the identities of the regu-

960 latory RNA elements involved were poorly under-
961 stood. Using a computational and experimental

962 approach, Matsuura et al. (2013) identified a

963 novel cis-regulatory element in the 50-UTR that
964 affects differential translation and has a cis-regu-
965 latory signature responsible for heat-stress-

966 regulated mRNA translation in Arabidopsis. A
967 comprehensive transcriptome analysis by using

968 microarrays revealed the relationships among

969 stress-regulated transcripts and enabled the predic-
970 tion of their cis-regulatory elements in temperature

971 stress-inducible genes (Weston et al. 2008). In

972 addition, characterization of the transcriptional
973 dynamics during seed development under different

974 stress conditions enabled the prediction of their

975 cis-regulatory elements (Weston et al. 2008). Ma
976 and Bohnert (2007) showed a clear correlation

977 between expression profiles and the 50cis-regu-
978 latory motifs of stress-regulated genes. These
979 analyses indicated that stress-regulated genes are

980controlled by a complicated regulatory network
981and cross talk between pathways. This type of

982network has been proposed based on
983transcriptome data using different bioinformatics

984approaches (Long et al. 2008). The basic structure

985and promoter recognition of Hsfs are highly
986conserved throughout the eukaryotic kingdom

987(Scharf et al. 2012). Expression of cis-motifs

988containing these Hsf genes might be regulated
989by Hsfs themselves, via formation of a regulatory

990network as proposed by Nover et al. (2001). The

991expression of Hsps during stress treatments and
992different developmental stages will depend on the

993cis-motifs present in the respective Hsp and Hsf
994promoters which will subsequently bind to differ-
995ent transcription factors particularly Hsfs as

996demonstrated by transient reporter assays in

997sunflower embryos (Almoguera et al. 2002).
998Hsp18.2 promoter fused to the GUS gene trans-

999genic Arabidopsis plants showed that heat stress

1000induced the GUS gene activity in almost all the
1001organs of the plant (Takahashi et al. 1992). Simi-

1002larly, heat-shock-induced GUS activity was

1003observed in transgenic Arabidopsiswhen the pro-
1004moter ofHsp81 gene was used (Yabe et al. 1994).
1005Crone et al. (2001) did a detailed analysis of the

1006expression of the GmHsp17.5E promoter in all
1007the organs and tissues of the flower and found that

1008promoter is differentially expressed after heat

1009shock in different floral tissues. Hsfs bind to
1010heat-stress elements (HSEs) with the core

1011sequence nGAAnnTTCn or nTTCnnGAAn and

1012form trimers, thereby regulate downstream gene
1013expression (Wu 1995). Despite the occurrence of

1014heat-shock elements in the promoters of heat-

1015stress-inducible genes, a set of Hsp genes are
1016expressed during seed development (Kotak et al.

10172007). Atsp90-1 promoter region contributes in a

1018combinatorial manner to regulate the expression
1019in development and stress conditions (Harala-

1020mpidis et al. 2002). The heat-stress induction of

1021Arabidopsis HsfA3 is regulated directly by
1022DREB2A, a transcription factor functioning in

1023drought stress responses (Sakuma et al. 2006a,

1024b). Accordingly, the DRE has been identified in
1025the promoters of a cluster of heat-inducible genes

1026(Larkindale and Vierling 2008).

1027Promoters of heat-shock protein (Hsp) genes
1028are good candidates for inducible expression,
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1029 since they are rapidly and highly induced under
1030 heat-stress conditions. Besides, their induction can

1031 be accurately controlled by varying the tempera-
1032 ture and duration of induction. Several detailed

1033 studies have been performed using the reporter

1034 gene expression driven by plant small Hsp
1035 promoters in different hosts. The AtHsp18.2 pro-

1036 moter has been successfully used in Arabidopsis
1037 (Takahashi et al. 1992) and in other species, such
1038 as N. plumbaginifolia (Moriwaki et al. 1999) and

1039 N. tabacum hairy roots (Lee et al. 2007). Besides,

1040 the inducibility of soybean GmHsp17.3B pro-
1041 moter was studied in the moss Physcomitrella
1042 patens (Saidi et al. 2007). Arabidopsis Hsp18.2

1043 promoter was used to drive the expression of
1044 GUS gene in N. tabacum BY-2 cells, and maxi-

1045 mum activity of protein was obtained under the

1046 heat stress (Shinmyo et al. 1998). Khurana et al.
1047 (2013) studied the wheat sHsp26 promoter activity

1048 in transgenic Arabidopsis and observed consis-

1049 tently high levels of GUS gene expression under
1050 different abiotic stress conditions especially in

1051 heat stress. However, themechanisms that regulate

1052 Hsp expression during seed maturation remain
1053 largely unknown. In addition to their direct

1054 functions in acquired stress tolerance and develop-

1055 ment, Hsps/chaperones function synergistically
1056 with other components, thus help in decreasing

1057 cellular damage. If the range of promoters is

1058 wide, then it is possible to introduce multiple
1059 transgenes into plants that are expressed differen-

1060 tially in response to various environmental

1061 stresses. Identification of heat-stress-inducible
1062 promoters from crop plants would be of immense

1063 help in generating transgenic plants with improved

1064 agronomic performance.

51065 Heat-Stress-Tolerant
1066 Transgenic Crops Generated
1067 Through Expression of Hsps

1068 Most crops are affected by daily/seasonal
1069 fluctuations in day and/or night temperatures.

1070 Conventional breeding for high-temperature
1071 stress tolerance has not been successful so far.

1072 This could be due to lack of our understanding on

1073 the genetic mechanisms associated with heat

1074stress, suitable source of genes, and complex
1075nature of the HS trait. This complexity is now

1076being dissected out including features like heat-
1077shock elements (HSEs), heat-shock factors

1078(HSFs), possible receptors of the heat-shock

1079response, signaling components, and chromatin
1080remodeling aspects (Proveniers and van Zanten

10812013). Several groups have altered the levels of

1082sHsps in bacterial systems and shown that when
1083overexpressed in bacterial cells, Hsps have a role

1084in conferring thermotolerance. The overexp-

1085ression of OsHsp16.9 in E. coli conferred
1086thermotolerance. Yeh et al. (2012) constructed

1087deletion mutants of this sHsp to find out the

1088regions associated with heat-stress tolerance.
1089They overexpressed the constructs in E. coli
1090(Yeh et al. 2012) and found out that the deletion

1091of amino acid residues 30–36 (PATSDND) in the
1092N-terminal domain or 73–78 (EEGNVL) in the

1093consensus-II domain of OsHsp16.9 caused the

1094loss of chaperone activities and also rendered
1095the E. coli incapable of surviving at 47.5 "C.

1096When three sHsps were introduced into E. coli,
1097they acquired thermotolerance and were able to
1098protect malate dehydrogenase (MDH) from

1099in vitro thermal aggregation (Pike et al. 2001).

1100The survivability of E. coli Bl21 (DE3) cells
1101transformed with a recombinant plasmid

1102containing different Hsps was compared with

1103the control E. coli cells (transformed with the
1104PET28a vector) under heat and different abiotic

1105stresses. The PgHsp transformed cells showed

1106thermotolerance at 47.5 "C, a treatment that
1107was lethal to the untransformed bacterial cells.

1108When the cell lysates from transformed and

1109untransformed were heated at 55 "C, the amount
1110of protein denatured in the PgHsps-Bl21 DE3

1111cells was 50 % less than that of the PET28a

1112vector (control) cells (Reddy et al. 2010, 2011).
1113Furthermore, genetically modified E. coli
1114expressing DcHsp17.7 exhibited a higher salt

1115stress tolerance than control E. coli (Song and
1116Ahn 2011). These results suggest that expression

1117of Hsps confers abiotic stress tolerance to E. coli
1118cells and may play a role in the plant’s adaptation
1119to harsh environments.

1120The involvement of Hsps in regulating thermo-

1121tolerance has been further carried out in higher
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1122 plants by downregulating their expression levels
1123 using either antisense or RNAi approach. Mutants

1124 of Zea mays and A. thaliana plants under-
1125 expressing their respective Hsp100 proteins were

1126 observed to lack both basal and induced

1127 thermotolerance (Hong and Vierling 2000, Nieto-
1128 Sotelo et al. 2002). Yang et al. (2006) showed that

1129 the tomato plants silenced forHsp100/ClpB protein

1130 were impaired in thermotolerance. Acquisition of
1131 thermotolerance has been found to be negatively

1132 affected in Hsp70 antisense A. thaliana plants (Lee
1133 and Schoffl 1996). Mutants of Zea mays and
1134 Arabidopsis with low levels of their respective

1135 Hsp100 proteins were observed to lack both basal

1136 and induced thermotolerance. Plants lackingHsa32
1137 do not survive HS treatment even after a

1138 pretreatment at a sublethal temperature (Charng

1139 et al. 2006). Heat-inducible transactivator HsfA2
1140 with low levels of expression results in an increased

1141 sensitivity of the mutant plants to heat stress

1142 (Charng et al. 2007). Genome-wide transcriptome
1143 analysis ofHsfA1a,A1b, andA2 knockoutmutants

1144 in Arabidopsis suggests that HsfA1a and A1b play
1145 important roles in the initial phase of heat-stress
1146 response, but HsfA2 functions under prolonged

1147 heat-stress conditions and during the recovery

1148 phase (Schramm et al. 2006; Nishizawa et al.
1149 2006). The heat-stress-induced expression of

1150 HsfA2 in Arabidopsis is not influenced by

1151 HsfA1a or HsfA1b (Busch et al. 2005). The
1152 HsfA2 gene is also induced by high light intensity

1153 and H2O2 (Nishizawa et al. 2007). It is also closely

1154 related to the regulation of ASCORBATE PEROX-
1155 IDASE 2 (APX2) encoding a key enzyme in oxida-

1156 tive stress response, indicating that HSFA2 plays

1157 diverse roles under various environmental stresses.
1158 Conversely, upregulation of Hsps has been

1159 achieved in a large number of plant species. Trans-

1160 genic carrot cell lines and plants in which carrot
1161 sHsp17.7 was overexpressed resulted in enhanced

1162 survival of transgenic tissues at high temperature

1163 (Malik et al. 1999). Transgenic tobacco plants
1164 overexpressing tobacco sHsps result in higher cot-

1165 yledon opening rate (Park and Hong 2002). Simi-

1166 larly, transgenic tomato plants overexpressing
1167 tomato HsfA1 gene showed increased thermo-

1168 tolerance. Tomato mitochondrial Hsp gene

1169 overexpressed in tobacco showed that transgenics

1170were more thermotolerant at 48 ºC than the
1171transgenics produced with the antisense construct

1172of the same gene (Sanmiya et al. 2004). Transgenic
1173rice overexpressing OsHsp17.7 gene showed

1174increased thermotolerance and greater resistance

1175to UV-B stress than untransformed control plants
1176(Murakami et al. 2004). Constitutive expression of

1177RcHsp17.8 in transgenic Arabidopsis conferred

1178higher thermotolerance and resistance to salt,
1179drought, and osmotic stresses (Jiang et al. 2009).

1180Overexpression ofCaHsp26 in transgenic tobacco
1181protected PSII and PSI during chilling stress under
1182low irradiance (Guo et al. 2007). When transgenic

1183A. thaliana plants were generated with overexp-

1184ression of high-molecular-weight Hsps, trans-
1185genics survived at temperatures as high as 45 ºC

1186(1 h) and they showed vigorous growth after

1187relieving the plants from stress, while vector-
1188transformed control plants could not regain growth

1189during the post-stress recovery period (Queitsch

1190et al. 2000). Similarly, transgenic rice lines
1191overexpressing AtHsp100 exhibited regrowth in

1192the post-high-temperature-stress recovery phase,

1193while the untransformed plants could not recover
1194to the similar extents (Katiyar-Agarwal et al.

11952003). Recent study in maize demonstrated that

1196smallHsp gene, ZmsHsp, might have a function in
1197cytokinin response (Cao et al. 2010). Also,

1198MsHsp23 gene in the tall fescue (Festuca
1199arundinacea) transgenics protected the leaves
1200fromoxidative damage through chaperon and anti-

1201oxidant activities. These results suggest that

1202MsHsp23 confers abiotic stress tolerance in trans-
1203genic tall fescue and may be useful in developing

1204stress tolerance in other crops also (Lee et al.

12052012). Overexpression of ZmHSP16.9 in trans-
1206genic tobacco conferred tolerance to both heat

1207and oxidative stresses and increased the seed ger-

1208mination rate, root length, and antioxidant enzyme
1209activities when compared with wild-type plants

1210(Sun et al. 2012). Transgenic Arabidopsis plants
1211overexpressed with WsHsp26 were tolerant under
1212continuous high temperature and produced bold

1213seeds under high temperature, having higher ger-

1214mination rate thanwild type (Chauhan et al. 2012).
1215The list of transgenic plants raised for high-

1216temperature tolerance using Hsps is shown in the

1217Table 1.
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t:1 Table 1 Comprehensive details on plant transgenics raised by using Hsp genes for high-temperature tolerance

Gene Protein Source Target plant Function Referencet:2

Hsf1 Hsf A. thaliana A. thaliana Thermotolerance and also constitutive
expression of the Hsp genes

Lee et al.
(1995)t:3

Hsf3 Hsf A. thaliana A. thaliana Increase in basal thermotolerance and
thermoprotective processes

Prandl et al.
(1998)t:4

HsfA1 Hsf S. lycopersicon S. lycopersicon Advantage for growth and fruit ripening
processes under high temperature

Mishra et al.
(2002)t:5

Hsf3 Hsf A. thaliana A. thaliana Lower threshold temperature Panchuk
et al. (2002)t:6

HsfA2 Hsf A. thaliana A. thaliana Mutants displayed reduced basal and acquired
thermotolerance, while the overexpression lines
displayed increased tolerance

Li et al.
(2005)t:7

HsfA2e Hsf O. sativa A. thaliana Enhanced thermotolerance Yokotani
et al. (2005)t:8

HsfA2 Hsf A. thaliana A. thaliana Increased thermotolerance but also salt/osmotic
stress tolerance and enhanced callus growth

Ogawa et al.
(2007)t:9

HsfA2e Hsf O. sativa A. thaliana Enhances tolerance to environmental stresses Yokotani
et al. (2008)t:10

Hsf7 Hsf O. sativa A. thaliana Response to high temperature Liu et al.
(2009)t:11

HsfC1b Hsf O. sativa O. Sativa Osmotic stress and is required for plant growth
under non-stress conditions

Schmidt
et al. (2012)t:12

DnaK Hsp70 Aphanothece
halophytica

O. sativa and
N. tabacum

Increased seed yield and total plant biomass in
high temperature and salt stress

Uchida et al.
(2008)t:13

Hsp70 Hsp70 Trichoderma
harzianum

A. thaliana Enhanced tolerance to heat stress Montero-
Barrientos
et al. (2010)t:14

mtHsp70 Hsp70 O. sativa O. Sativa Suppresses programmed cell death Qi et al.
(2011)t:15

Hsc70-1 Hsp70 A. thaliana A. thaliana More tolerant to heat shock Sung and
Guy (2003)t:16

Hsp101 HSP100 A. thaliana A. thaliana Sudden shifts to extreme temperature better
than the controls

Quietsch
et al. (2000)t:17

Hsp101 Hsp100 A. thaliana O. sativa Enhanced tolerance to high temperature Katiyar-
Agarwal
et al. (2003)t:18

Hsp17.7 Hsp17.7 D. carota D. carota Increased thermotolerance Malik et al.
(1999)t:19

mtsHsp sHsp S. lycopersicon N. tabacum Thermotolerance Sanmiya
et al. (2004)t:20

Hsp21 sHsp S. lycopersicon S. lycopersicon Temperature-dependent oxidative stress Neta-Sharir
et al. (2005)t:21

sHsp17.7 sHsp O. sativa O. Sativa

Drought tolerance in
transgenic rice
seedlings

Sato and
Yokoya (2008)t:22

Hsp16.9 sHsp Zea mays L. N. tabacum Enhanced tolerance to heat and oxidative stress Sun et al.
(2012)t:23

Hsp17.5 sHsp Nelumbo
nucifera

A. thaliana Improved basal thermotolerance Zhou et al.
(2012)t:24

Hsp26 sHsp Capsicum
annuum

N. tabacum Protection of PSII and PSI during chilling stress
under low irradiance

Guo et al.
2007t:25

(continued)
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61218 Conclusions

1219 It appears that a wide range of “omics” studies are
1220 currently in progress using numerous methodo-

1221 logies, plant species, and stress conditions. As

1222 more results are published, it is becoming increas-
1223 ingly clear that high-temperature stress causes dis-

1224 tinct molecular responses in plant tissues. As more

1225 data are generated in such studies, it provides
1226 suitable candidates for selective breeding prog-

1227 rams aimed at enhancing stress tolerance in

1228 ecologically and economically important plant
1229 species. Plant cells are fundamentally different to

1230 those of mammalian species, and these biological

1231 differences cause inherent difficulties in plant
1232 functional genomicAU10 studies. Advances in techni-

1233 ques and approaches will change the way plant

1234 heat-stress omics studies are conducted in future.
1235 Genomics, transcriptomics, proteomics, and

1236 metabolomics investigate different facets of a

1237 given scientific issue, such as heat-stress tolerance,
1238 but complement each other. Integration of pheno-

1239 typic, genetic, transcriptomic, proteomic, and

1240 metabolomic data will enable accurate and
1241 detailed gene network reconstruction. This will

1242 ultimately result in the elucidation of the molecu-

1243 lar pathways involved in complex phenotypic
1244 traits. A better understanding of genetic and cellu-

1245 larmechanisms behind heat-stress tolerancewould

1246 facilitate generation of transgenic plants with
1247 desired traits with little or no undesired/unforeseen

1248 effects. Bioinformatics tools are also helping us to

1249 obtain genome-wide data on the number of Hsps
1250 and Hsfs and their regulations. Taken together, the

1251 omics data and the information generated using

1252the tools of bioinformatics would help us to
1253understand better about heat-stress tolerance in

1254crop plants. Future knowledge of tolerance compo-

1255nents and the identification of QTLs and cloning
1256of responsible genes may allow transformation of

1257plantswithmultiple genes and production of highly

1258stress-tolerant transgenic crop plants.
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