Skip to main content

Nitrite Biosensors: Analytical Tools for Determination of Toxicity Due to Presence of Nitrite Ions

  • Chapter
  • First Online:
Biotechnology: Prospects and Applications

Abstract

The chapter reviews the current state of art in the field of nitrite sensors based on electrochemical transducers with their salient features and wide application in healthcare, food industry, environmental monitoring, etc. Increased anthropogenic activities, rased the concentration of nitrite to alarming situation, directly putting an adverse effect on environment and natural habitat, and is of serious health concern. The issue of nitrites toxicity led to the implementation of rules to restrict their level in drinking waters and foodstuffs. From the last 20 years, the growing need of portable tool for onsite nitrite analysis leads to outburst of numerous approaches for development of efficient nitrate biosensors. The present review provides the global perspective in regard to nitrate biosensors with diverse fabrication strategies and materials adopted. Use of different fabrication strategies, leading to improved performance of biosensors, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida MG, Silveira CM, Moura JJG (2007) Biosensing nitrite using the system nitrite reductase/Nafion/methyl viologen-a voltammetric study. Biosens Bioelectron 22:2485–2492

    Article  CAS  PubMed  Google Scholar 

  • Badea M, Amine A, Palleschi G, Moscone D, Volpe G, Curulli A (2001) New electrochemical sensors for detection of nitrites and nitrates. J Electroanal Chem 509:66–72

    Article  CAS  Google Scholar 

  • Biagiotti V, Valentini F, Tamburri E, Terranova ML, Moscone D, Palleschi G (2007) Synthesis and characterization of polymeric films and nanotubule nets used to assemble selective sensors for nitrite detection in drinking water. Sens Actuators B Chem 122:236–242

    Article  CAS  Google Scholar 

  • Chen H, Mousty C, Cosnier S, Silveira C, Moura JJG, Almeida MG (2007) Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. Electrochem Commun 9:2240–2245

    Article  CAS  Google Scholar 

  • Chen H, Mousty C, Chen L, Cosnier S (2008) A new approach for nitrite determination based on a HRP/catalase biosensor. Mater Sci Eng 28:726–730

    Article  CAS  Google Scholar 

  • Chen Q, Ai S, Zhu X, Yin H, Ma Q, Qiu Y (2009) A nitrite biosensor based on the immobilization of Cytochrome c on multi-walled carbon nanotubes-PAMAM-chitosan nanocomposite modified glass carbon electrode. Biosens Bioelectron 24:2991–2996

    Article  CAS  PubMed  Google Scholar 

  • Dutt J, Davis J (2002) Current strategies in nitrite detection and their application to field analysis. J Environ Monit 4:465–471

    Article  CAS  PubMed  Google Scholar 

  • Dutton R (2004) Problems with volatile corrosion inhibitors in the metal finishing industry. Met Finish 102:12–15

    Article  CAS  Google Scholar 

  • Eguílaz M, Agüí L, Sedeño PY, Pingarrón JM (2010) A biosensor based on cytochrome c immobilization on a poly-3-methylthiophene/multi-walled carbon nanotubes hybrid-modified electrode. Application to the electrochemical determination of nitrite. J Electroanal Chem 644:30–35

    Article  Google Scholar 

  • Ensafi AA, Amini M (2010) A highly selective optical sensor for catalytic determination of ultra-trace amounts of nitrite in water and foods based on brilliant cresyl blue as a sensing reagent. Sens Actuators B Chem 147:61–66

    Article  CAS  Google Scholar 

  • Ensafi AA, Amini M (2012) Highly selective optical nitrite sensor for food analysis based on Lauth’s violet–triacetyl cellulose membrane film. J Food Chem 132:1600–1606

    Article  CAS  Google Scholar 

  • Galloway JN (2003) The global nitrogen cycle of the chapter. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry. Pergamon, Oxford, pp 557–583

    Chapter  Google Scholar 

  • Gapper LW, Fong BY, Otter DE, Indyk HE, Woollard DC (2004) Determination of nitrite and nitrate in dairy products by ion exchange LC with spectrophotometric detection. Int Dairy J 14:881–887

    Article  CAS  Google Scholar 

  • Geng R, Zhao G, Liu M, Li M (2008) A sandwich structured SiO2/cytochrome c/SiO2 on a boron-doped diamond film electrode as an electrochemical nitrite biosensor. Biomaterials 29:2794–2801

    Article  CAS  PubMed  Google Scholar 

  • Gopalan AI, Lee KP, Komathi S (2010) Bioelectrocatalytic determination of nitrite ions based on polyaniline grafted nanodiamond. Biosens Bioelectron 26:1638–1643

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    Article  CAS  PubMed  Google Scholar 

  • Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 90:1–10

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Li Y, Chen Y, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens Actuators B Chem 134:780–786

    Article  CAS  Google Scholar 

  • Isoda N, Yokoyama H, Nojiri M, Suzuki S, Yamaguchi K (2010) Electroreduction of nitrite to nitrogen oxide by a copper-containing nitrite reductase model complex incorporated into collagen film. Bioelectrochemistry 77:82–88

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Smith RM, Verma KK (1997) Gas chromatographic determination of nitrite in water by precolumn formation of 2-phenylphenol with flame ionization detection. J Chromatogr A 760:319–325

    Article  CAS  Google Scholar 

  • Kachoosangi RT, Musameh MM, Yousef IA, Yousef JM, Kanan SM, Xiao L, Davies SG, Russell A, Compton RG (2009) Carbon nanotube-ionic liquid composite sensors and biosensors. Anal Chem 81:435–442

    Article  CAS  PubMed  Google Scholar 

  • Kiang CH, Kuan SS, Guilbault GG (1975) A novel enzyme electrode method for the determination of nitrite based on nitrite reductase. Anal Chim Acta 80:209–214

    Article  CAS  PubMed  Google Scholar 

  • Kodamatani H, Yamazaki S, Saito K, Tomiyasu T, Komatsu Y (2009) Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J Chromatogr A 1216:3163–3167

    Article  CAS  PubMed  Google Scholar 

  • Larsen LH, Damgaard LR, Kjær T, Stenstrom T, Jensen AL (2000) Fast responding biosensor for on-line determination of nitrate/nitrite in activated sludge. Water Res 34:2463–2468

    Article  CAS  Google Scholar 

  • Larsson SC, Orsini N, Wolk A (2006) Processed meat consumption and stomach cancer risk: a meta-analysis. J Natl Cancer Inst 98:1078–1087

    Article  PubMed  Google Scholar 

  • Li J, Lin X (2007) Electrocatalytic reduction of nitrite at polypyrrole nanowire–platinum nanocluster modified glassy carbon electrode. Microchem J 87:41–46

    Article  CAS  Google Scholar 

  • Liang F, Jia M, Hu J (2012) Pt-implanted indium tin oxide electrodes and their amperometric sensor applications for nitrite and hydrogen peroxide. Electrochim Acta 75:414–419

    Article  CAS  Google Scholar 

  • Lijinsky WN (1999) Nitroso compounds in the diet. Mutat Res 443:129–138

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Vasantha VS, Ho KC (2009) Detection of nitrite using poly (3, 4 ethylenedioxythiophene) modified SPCEs. Sens Actuator B Chem 140:51–57

    Article  CAS  Google Scholar 

  • Pasquali CEL, Gallego PA, Hernando PF, Velasco M, Alegria JSD (2010) Two rapid and sensitive automated methods for the determination of nitrite and nitrate in soil samples. Microchem J 94:79–82

    Article  CAS  Google Scholar 

  • Pumera M, Sanchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sens Actuat B 123:1195–1205

    Article  CAS  Google Scholar 

  • Quan D, Min DG, Cha GS, Nam H (2006) Electrochemical characterization of biosensor based on nitrite reductase and methyl viologen co-immobilized glassy carbon electrode. Bioelectrochemistry 69:267–275

    Article  CAS  PubMed  Google Scholar 

  • Rajesh S, Kanugula AK, Bhargava K, Ilavazhagan G, Kotamraju S, Karunakaran C (2010) Simultaneous electrochemical determination of superoxide anion radical and nitrite using Cu, ZnSOD immobilized on carbon nanotube in polypyrrole matrix. J Bios 26:689–695

    CAS  Google Scholar 

  • Santos WJR, Lima PR, Tanaka AA, Tanaka SM, Kubota LT (2009) Determination of nitrite in food samples by anodic voltammetry using a modified electrode. J Food Chem 113:1206–1211

    Article  CAS  Google Scholar 

  • Sasaki S, Karube I, Hirota N, Arikawa Y, Nishiyama M, Kukimoto M, Horinouchi S, Beppu T (1998) Application of nitrite reductase from Alcaligenes faecalis S-6 for nitrite measurement. Biosens Bioelectron 13:1–5

    Article  CAS  PubMed  Google Scholar 

  • Scharf M, Moreno C, Costa C, Vandijk C, Payne WJ, Legall J, Moura I, Moura JJG (1995) Electrochemical studies on nitrite reductase toward a biosensor. Biochem Biophys Res Commun 209:1018–1025

    Article  CAS  PubMed  Google Scholar 

  • Serra AS, Jorge SR, Silveira CM, Moura JJG, Jubete E, Ochoteco E, Cabañero G, Grande H, Almeida MG (2011) Cooperative use of cytochrome cd 1 nitrite reductase and its redox partner cytochrome c 552 to improve the selectivity of nitrite biosensing. J Anal Chim Acta 693:41–46

    Article  CAS  Google Scholar 

  • Silva SD, Cosnier S, Almeida MG, Moura JJG (2004) An efficient poly (pyrrole–viologen)- nitrite reductase biosensor for the mediated detection of nitrite. Electrochem Commun 6:404–408

    Article  Google Scholar 

  • Silveira CM, Gomes SP, Araújo AN, Conceição M, Montenegro BSM, Todorovic S, Viana AS, Silva RJC, Moura JJG, Almeida MG (2010) An efficient non-mediated amperometric biosensor for nitrite determination. Biosens Bioelectron 25:2026–2032

    Article  CAS  PubMed  Google Scholar 

  • Strehlitz B, Grundig B, Schumacher W, Kroneck PMH, Vorlop K, Kotte H (1996) A nitrite sensor based on a highly sensitive nitrite reductase mediator-coupled amperometric detection. Anal Chem 68:807–816

    Article  CAS  PubMed  Google Scholar 

  • Thévenot DR, Tóth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71:2333–2348

    Article  Google Scholar 

  • Titov VY, Petrenko YM (2003) Nitrite catalase interaction as an important element of nitrite toxicity. Biochemistry 68:627

    CAS  PubMed  Google Scholar 

  • Tu X, Xiao B, Xiong J, Chen X (2010) A simple miniaturised photometrical method for rapid determination of nitrate and nitrite in freshwater. Talanta 82:976–983

    Article  CAS  PubMed  Google Scholar 

  • Vairavapandian D, Vichchulada P, Lay MD (2008) Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Anal Chim Acta 62:6119–6129

    Google Scholar 

  • Valentini F, Cristofanelli L, Carbone M, Palleschi G (2012) Glassy carbon electrodes modified with hemin-carbon nanomaterial films for amperometric H2O2 and NO2 − detection. J Electrochim Acta 63:37–46

    Article  CAS  Google Scholar 

  • Victorin K (1994) Review of the genotoxicity of nitrogen oxides. Mutat Res 55:31743–31755

    Google Scholar 

  • Wang P, Mai Z, Dai Z, Li Y, Zou X (2009) Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens Bioelectron 24:3242–3247

    Article  CAS  PubMed  Google Scholar 

  • Washko PW, Hartzell WO, Levine M (1989) Ascorbic acid analysis using high performance liquid chromatography with coulometric electrochemical detection. Anal Biochem 181:276–282

    Article  CAS  PubMed  Google Scholar 

  • Xia C, Ning W, Lin G (2009) Facile synthesis of novel MnO2 hierarchical nanostructures and their application to nitrite sensing. Sens Actuator B Chem 137:710–714

    Article  CAS  Google Scholar 

  • Xia C, Yanjun X, Ning W (2012) Hollow Fe2O3 polyhedrons: one-pot synthesis and their use as electrochemical material for nitrite sensing. Electrochim Acta 59:81–85

    Article  Google Scholar 

  • Yang S, Liu X, Zeng X, Xia B, Gu J, Luo S, Mai N, Wei W (2010) Fabrication of nano copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sens Actuator B Chem 145:762–768

    Article  CAS  Google Scholar 

  • Zazoua A, Hnaien M, Cosnier S, Renault NJ, Kherrat R (2009) A new HRP/catalase biosensor based on microconductometric transduction for nitrite determination. Mater Sci Eng 29:1919–1922

    Article  CAS  Google Scholar 

  • Zhang Z, Xia S, Leonard D, Renault NJ, Zhang J, Bessueille F, Goepfert Y, Wang X, Chen L, Zhu Z, Zhao J, Almeida MG, Silveira CM (2009) A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane. Biosens Bioelectron 24:1574–1579

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yuan R, Chai Y, Li W, Zhong X, Zhong H (2011) Simultaneous voltammetric determination for DA, AA and NO2 −based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform. Biosens Bioelectron 26:3977–3980

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Department of Science and Technology (DST), New Delhi, for providing JRF fellowship (INSPIRE) to first author. The authors are also thankful to UGC and DST New Delhi for providing financial assistance to Centre for Biotechnology, M D University, Rohtak (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Hooda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Dhull, V., Gahlaut, A., Gothwal, A., Duhan, J.S., Hooda, V. (2013). Nitrite Biosensors: Analytical Tools for Determination of Toxicity Due to Presence of Nitrite Ions. In: Salar, R., Gahlawat, S., Siwach, P., Duhan, J. (eds) Biotechnology: Prospects and Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1683-4_16

Download citation

Publish with us

Policies and ethics