Skip to main content

Biological Control of Insect-Pest and Diseases by Endophytes

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

The natural and biological control of insect-pests and diseases affecting cultivated plants has gained much attention in the past decades as a way of reducing the use of pesticides in agriculture. Biocontrol has been frequently used in tropical countries, such as Brazil, and it is supported by the development of local basic and applied research. In this context, tropical endophytes have attracted special attention to develop their roles to control of pest insect and plant diseases. Endophytic symbiotic microorganisms are defined in different ways and a recent definition includes all of the culturable microorganisms that inhabit inner parts of plant tissues causing no harm to their hosts. They can be divided in two groups: those that do not generate external structures from the host and those able to develop external structures such as nodules of N2 fixing bacteria and mycorrhizal fungi. Endophytes have important roles in the plant host protection, acting against predators and pathogens. They protect host plants against herbivores such as cattle and pest insect. They also may increase plant resistance to pathogens that produce antimicrobial agents and plant-growth hormones and have other effects countering biotic and abiotic stresses. Endophytic microorganisms were first studied in plants in temperate regions but more recently have been also studied in plants from tropical regions. In this chapter, we focus on examples of endophytic bacteria and fungi, especially those that may control pest insects and plant diseases by antagonistic effects, production of enzymes, or introduction of heterologous genes by recombinant DNA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams PD, Kloepper JW (1996) Seed borne bacterial endophytes in different cotton cultivars. In: Abstract, 1996 annual meeting of American Phytopathological Society, p 97

    Google Scholar 

  • Agnostakis SL, Day PR (1979) Hypovirulence conversion of Endothia parasitica. Phytopathology 69:1226–1229

    Google Scholar 

  • Ahmed FE (2003) Genetically modified probiotics in foods. Trends Biotechnol 21:491–497

    PubMed  CAS  Google Scholar 

  • Alves SB (1998) Controle Microbiano de Insetos. Editora Fundação de Estudos Agrários Luiz de Queiroz, Piracicaba, p 1163

    Google Scholar 

  • Andreote FD, Lacava PT, Gai CS, Araújo WL, Maccheroni W Jr, van Overbeek LS, van Elsas JD, Azevedo JL (2006) Model plants for studying the interaction between Methylobacterium mesophilicum and Xylella fastidiosa. Can J Microbiol 52:419–426

    PubMed  CAS  Google Scholar 

  • Ângelo PCS, Nunes-Silva CG, Brigido MM, Azevedo JSN, Assunção EM, Sousa ARB, Patricio FJB, Rego MM, Peixoto JCC, Oliveira WP Jr, Freitas DV, Almeida ERP, Viana AMHA, Souza AFPN, Andrade EV, Acosta POA, Batista JS, Walter MEMT, Leomil L, Anjos DAS, Coimbra RCM, Barbosa MHN, Honda E, Pereira SS, Silva A, Pereira JO, Silva ML, Marins M, Holanda FJ, Abreu RMM, Pando SC, Goncalves JFC, Carvalho ML, Leal-Mesquita ERRBP, da Silveira MA, Batista WC, Atroch AL, Franca SC, Porto JIR, Schneider MPC, Astolfi-Filho S (2008) Guarana (Paullinia cupana var. sorbilis), an anciently consumed stimulant from the Amazon rain forest: the seeded-fruit transcriptome. Plant Cell 27:117–124

    Google Scholar 

  • Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE (1989) Effect of the tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90

    Google Scholar 

  • Araújo WL, Saridakis HO, Barroso PAV, Aguilar-Vildoso CI, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    PubMed  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W Jr, Elsas JDV, Vuurde JLV, Azevedo JL (2002) Diversity of endophytic bacterial populations and interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    PubMed  Google Scholar 

  • Araújo WL, Lacava PT, Andreote FD, Azevedo JL (2008) Interaction between endophytes and plant host: biotechnological aspects. In: Ait Barka E, Clément C (eds) Plant-microbe interactions, vol 1. Research Signpost, Kerala, pp 1–21

    Google Scholar 

  • Araújo WL, Lacava PT, Marcon J, Lima AOS, Kuklinsky-Sobral J, Pizzirani-Kleiner AA, Azevedo JL (2010) Guia prático: Isolamento e caracterização de microrganismos endofíticos. Cop. Luiz de Queiroz, Piracicaba, 167p

    Google Scholar 

  • Assis SMP, Silveira EB, Mariano RLR, Menezes D (1998) Bactérias endofíticas – método de isolamento e potencial antagônico no controle da podridão negra do repolho. Summa Phytopathol 24:216–220

    Google Scholar 

  • Azevedo JL, Araújo WL (2003) Genetically modified crops: environmental and human health concerns. Mutat Res 544:223–233

    PubMed  CAS  Google Scholar 

  • Azevedo JL, Araújo WL (2007) Diversity and applications of endophytic fungi isolated from tropical plants. In: Ganguli BN, Deshmukh SK (eds) Fungi: multifaceted microbes. CRC Press, Boca Raton, pp 189–207

    Google Scholar 

  • Azevedo JL, Maccheroni W, Pereira JO, Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65

    Google Scholar 

  • Baayen RP, Bonants PMJ, Verkley G, Carroll GC, Van Der Aa HA, Der Weerdt M, Van Brouwershaven JR, Scutte GC, Maccheroni W Jr, Glienke-Blanco C, Azevedo JL (2002) Nonpathogenic isolates of the Citrus Black Spot fungus Guignardia citricarpa, identified as a cosmopolitan endophytic of woody plants G. mangiferae (Phyllosticta capitalensis). Phytopathology 92:464–477

    PubMed  CAS  Google Scholar 

  • Bacon C, Hinton D (2006) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam S (ed) Plant-associated bacteria. Springer, Dordrecht, pp 155–194

    Google Scholar 

  • Bacon CW, White JF Jr (2000) Microbial endophytes. Marcel Dekker, New York, p 487

    Google Scholar 

  • Bacon CW, Porter JK, Robins JD, Luttrell ES (1977) Epichloe typhi from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581

    PubMed  CAS  Google Scholar 

  • Baldani VLD, Döbereiner J (1980) Host-plant specificity in infection of cereal with Azospirillum spp. Soil Biol Biochem 12:433–440

    Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–489

    Google Scholar 

  • Baldani JI, Baldani VLD, Döbereiner J (2003) Genus Herbaspirillum. In: Brenner DJ, Krieg NR, Staley JTGM (eds) Bergey’s manual of determinate bacteriology, 2nd edn. Springer, New York

    Google Scholar 

  • Barboza-Corona JE, Nieto-Mazzocco E, Velázquez-Robledo R, Salcedo-Hernandez R, Bautista M, Jiménez B, Ibarra JE (2003) Cloning, sequencing, and expression of the chitinases gene chiA74 from Bacillus thuringiensis. Appl Environ Microbiol 69:1023–1029

    PubMed  CAS  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    PubMed  CAS  Google Scholar 

  • Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4:581–591

    PubMed  CAS  Google Scholar 

  • Beard CB, Dotson EM, Pennington PM, Eichler S, Cordon-Rosales C, Durvasula RV (2001) Bacterial symbiosis and paratransgenic control of vector-borne Chagas disease. Int J Parasitol 31:621–627

    PubMed  CAS  Google Scholar 

  • Beard C, Cordon-Rosales C, Durvasula R (2002) Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol 47:123–141

    PubMed  CAS  Google Scholar 

  • Beattie GA, Lindow SE (1995) The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol 33:145–172

    PubMed  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    CAS  Google Scholar 

  • Bernardi-Wenzel J, Garcia A, Rubin-Filho CJ, Prioli AJ, Pamphile J (2010) Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martins et Zuccarini). Biol Res 43:375–385

    PubMed  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    PubMed  CAS  Google Scholar 

  • Bing LA, Lewis LC (1991) Suppression of Ostrinia nubilalis (Hubner) (Lepidoptera, Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ Entomol 2:1207–1211

    Google Scholar 

  • Bing LA, Lewis LC (1993) Occurrence of the entomopathogen Beauveria bassiana (Balsamo) Vuillemin in different tillage regimes and in Zea mays L. and virulence towards Ostrinia nubilalis (Hubner). Agric Ecosyst Environ 45:147–156

    Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    CAS  Google Scholar 

  • Boursnell JG (1950) The symbiotic seed-borne fungus in the Cistaceae. I. Distribution and function of the fungus in the seedling and in the tissues of the mature plant. Ann Bot 14:217–243

    Google Scholar 

  • Brum MCP, Araújo WL, Maki CS, Azevedo JL (2012) Endophytic fungi from Vitis labrusca L. (Niagara Rosada) and its potential for the biological control of Fusarium oxysporum. Genet Mol Res 11:4187–4197

    PubMed  CAS  Google Scholar 

  • Burton A (2006) Dispatches – pesticides may promote Parkinson’s disease. Front Ecol Environ 4:284–289

    Google Scholar 

  • Campos RA, Arruda W, Boldo JT, Silva MV, Barros NM, Azevedo JL, Schrank A, Vainstein MH (2005) Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr Microbiol 50:257–261

    PubMed  CAS  Google Scholar 

  • Campos RA, Boldo JT, Pimentel IC, Dalfovo V, Araújo WL, Azevedo JL, Vainstein MH, Barros NM (2010) Endophytic and entomopathogenic strains of Beauveria sp. to control the bovine tick Rhipicephalus (Boophilus) microplus. Genet Mol Res 9:1421–1430

    PubMed  CAS  Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic Streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147–152

    PubMed  CAS  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Nat Acad Sci USA 100:14555–14561

    PubMed  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microbiol Ecol 41:252–263

    CAS  Google Scholar 

  • Chen J, Jarret RL, Qin X, Hartung JS, Chang CJ, Hopkins DL (2000) 16SrDNA analysis of Xylella fastidiosa. Syst Appl Microbiol 23:349–354

    PubMed  CAS  Google Scholar 

  • Cheplick GP, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111:89–97

    Google Scholar 

  • Cherry AJ, Banito A, Djegui D, Lomer C (2004) Suppression of the stem-borer Sesamia calamistis (Lepidoptera, Noctuidae) in maize following seed dressing, topical application and stem injection with African isolates of Beauveria bassiana. Int J Pest Manag 50:67–73

    Google Scholar 

  • Christodoulou E, Duffner F, Vorgias CE (2001) Overexpression, purification, and characterization of a thermostable chitinase (Chi40) from Streptomyces thermoviolaceus OPC-520. Protein Expr Purif 23:97–105

    PubMed  CAS  Google Scholar 

  • Ciampi-Panno L, Fernandez C, Bustamante P, Andrade N, Ojeda S, Conteras A (1989) Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am Potato J 66:315–332

    Google Scholar 

  • Ciraulo MB (2011) Interações entre endófitos de Coffea arabica isolados de cultura assintomática e sintomática para a atrofia dos ramos de cafeeiro casusada por Xylellla fastidiosa. PhD thesis, University of Mogi das Cruzes, São Paulo, 149p

    Google Scholar 

  • Cocolin L, Rantsiou K, Iacumin L, Cantoni C, Comi G (2002) Direct identification in food samples of Listeria spp. and Listeria monocytogenes by molecular methods. Appl Environ Microbiol 68:6273–6282

    PubMed  CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    PubMed  CAS  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366

    Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122

    PubMed  CAS  Google Scholar 

  • da Silva FR, Vettore AL, Kemper EL, Leite A, Arruda P (2001) Fastidian gum: the Xylella fastidiosa exopolysaccharide possibly involved in bacterial pathogenicity. FEMS Microbiol Lett 203:165–171

    PubMed  Google Scholar 

  • Dawe AL, Segers GC, Allen TD, McMains CG, Nuss DL (2004) Microarray analysis of Cryphonectria parasitica Ga and Gpi signaling pathways reveals extensive modulation by hypovirus infection. Microbiology 150:4033–4043

    PubMed  CAS  Google Scholar 

  • de Bary A (1866) Morphologie, Phisiologie der pilze, flechten und myxomyceten, vol I: Holmeister’s handbook of physiological Botany, Leipzig

    Google Scholar 

  • Della-Coletta FH, Takita MA, de Souza AA, Aguilar-Vildoso CI, Machado MA (2001) Differentiation of strains of Xylella fastidiosa by a variable number of tandem repeat analysis. Appl Environ Microbiol 67:4091–4095

    Google Scholar 

  • Deng F, Allen TA, Nuss DL (2007) Transcription factor homologue CpdT12 is down-regulated by hypovirus infection and required for virulence and female fertility in the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell 6:235–244

    PubMed  CAS  Google Scholar 

  • Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R (1994) A nitrogen fixing endophyte of sugarcane stems. Plant Physiol 105:1139–1147

    PubMed  CAS  Google Scholar 

  • Dong YM, Iniguez AL, Ahmer BMM, Triplett EW (2003) Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl Environ Microbiol 69:1783–1790

    PubMed  CAS  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669

    PubMed  CAS  Google Scholar 

  • Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A 94:3274–3278

    PubMed  CAS  Google Scholar 

  • El-Tarabily KA (2003) An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupine caused by Plectosporium tabacinum. Aust J Bot 51:257–266

    Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GE St. J, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    Google Scholar 

  • Etchegaray A, Silva-Stenico ME, Moon DH, Tsai SM (2004) In silico analysis of nonribosomal peptide synthetases of Xanthomonas axonopodis pv. citri: identification of putative siderophore and lipopeptide biosynthetic genes. Microbiol Res 159:425–437

    PubMed  CAS  Google Scholar 

  • Fahey JW (1988) Endophytic bacteria for the delivery of agrochemicals to plants. In: Cutle HG (ed) Biologically active natural products. American Chemical Society, Washington, DC, pp 120–128

    Google Scholar 

  • Fahey JW, Dimock MB, Tomasino SF, Taylor JM, Carlson PS (1991) Genetically engineered endophytes as biocontrol agents: a case study in industry. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 401–411

    Google Scholar 

  • Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araújo WL (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14

    PubMed  CAS  Google Scholar 

  • Ferreira Filho AS, Quecine MC, Bogas AC, Rossetto PB, Lima AOS, Lacava PT, Azevedo JL, Araújo WL (2012) Endophytic Methylobacterium extorquens expresses a heterologous β-1,4-endoglucanase A (EglA) in Catharanthus roseus seedlings, a model host plant for Xylella fastidiosa. World J Microbiol Biotechnol 28:1475–1481

    PubMed  CAS  Google Scholar 

  • Figueiredo LC, Figueiredo GS, Giancoli ACH, Tanaka FAO, Silva LAO, Kitajima EW, Azevedo JL (2012a) Detection of isometric dsRNA-containing viral particles in Colletotrichum gloeosporioides isolated from cashew trees. Trop Plant Pathol 37:142–145

    Google Scholar 

  • Figueiredo LC, Figueiredo GS, Quecine MC, Cavalcanti FCN, Santos AC, Costa NT, Oliveira NT, Azevedo JL (2012b) Genetic and pathogenic diversity of Colletotrichum gloeosporioides the causal agent of cashew anthracnose. Indian J Fundam Appl Life Sci 2:250–259

    Google Scholar 

  • Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49

    PubMed  Google Scholar 

  • Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) Actinobacterial endophytes for improved crop performance. Aust Plant Pathol 36:524–531

    Google Scholar 

  • Freitag JH (1951) Host range of the Pierce’s disease virus of grapes as determined by insect transmission. Phytopathology 41:920–934

    Google Scholar 

  • Frommel MI, Novak J, Lazarovits G (1991) Growth enhancement and developmental modification of in-vitro potato (Solanum tuberosum ssp. tuberosum) as affected by nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    Google Scholar 

  • Gai CS, Lacava PT, Araújo WL, Azevedo JL (2007) Manipulation of endophytic bacteria for symbiotic control of Xylella fastidiosa, causal agent of citrus variegated chlorosis. In: Pierce’s disease research symposium, San Diego, CA, Proceedings, 12–14 Dec 2007, pp 194–197

    Google Scholar 

  • Gai CS, Lacava PT, Quecine MC, Auriac MC, Lopes JRS, Araújo WL, Miller TA, Azevedo JL (2009) Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of citrus variegated chlorosis. J Microbiol 47:448–454

    PubMed  Google Scholar 

  • Gai CS, Dini-Andreote F, Andreote FD, Lopes JRS, Araújo WL, Miller TA, Azevedo JL, Lacava PT (2011) Endophytic bacteria associated to sharpshooters (Hemiptera: Cicadellidae), insect vectors of Xylella fastidiosa subsp. pauca. J Plant Pathol Microbiol 2:109. doi:10.4172/2157-7471.1000109

    Google Scholar 

  • Garbeva P, Van Overbeek LS, Van Vuurde JWL, Van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by planting and denaturing gradient gel electrophoresis (DGGE) of 16s rDNA based PCR fragments. Microb Ecol 41:369–383

    PubMed  CAS  Google Scholar 

  • Garcia A, Rhoden SA, Bernardi-Wenzel J, Orlandelli RC, Azevedo JL, Pamphile JA (2012) Antimicrobial activity of crude extracts of endophytic fungi isolated from medicinal plant Sapindus saponaria, L. J Appl Pharm Sci 2:35–40

    Google Scholar 

  • Gazis R, Chavern P (2010) Diversity of fungal endophytes on leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, Van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbell TCD, Dowling DN (2004) Colonization of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118

    PubMed  CAS  Google Scholar 

  • Glick B, Penrose D, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  • Glienke-Blanco C, Aguilar-Vildoso CL, Vieira MLC, Barroso PAV, Azevedo JL (2002) Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants. Genet Mol Biol 25:251–255

    CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    CAS  Google Scholar 

  • Hartung JS, Beretta J, Brlansky RH, Spisso J, Lee RF (1994) Citrus variegated chlorosis bacterium: axenic culture, pathogenicity, and serological relationships with other strains of Xylella fastidiosa. Phytopathology 84:591–597

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Huang JS (1986) Ultrastructure of bacterial penetration in plants. Annu Rev Phytopathol 24:141–157

    Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Microbiol Biotechnol 70:2667–2677

    CAS  Google Scholar 

  • Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defense. Mol Plant Microbe Interact 18:169–178

    PubMed  CAS  Google Scholar 

  • James EK, Olivares FL (1998) Infection and colonization of sugarcane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Google Scholar 

  • Kaaya GP, Mwangi EN, Ouna EA (1996) Prospects for biological control of livestock ticks, Rhipicephalus appendiculatus and Amblyomma variegatum using entomogenous fungi Beauveria bassiana and Metarhizium anisopliae. J Invertebr Pathol 67:15–20

    PubMed  CAS  Google Scholar 

  • Kafur A, Khan AB (2011) Isolation of endophytic actinomycetes from Catharanthus roseus (L.) G. Don leaves and their antimicrobial activity. Iran J Biotechnol 9:302–306

    CAS  Google Scholar 

  • Kibe R, Sakamoto M, Yokota H, Ishikawa H, Aiba Y, Koga Y, Benno Y (2005) Movement and fixation of intestinal microbiota after administration of human feces to germfree mice. Appl Environ Microbiol 71:3171–3178

    PubMed  CAS  Google Scholar 

  • Kim KJ, Yang YJ, Kim JG (2003) Purification and characterization of chitinase from Streptomyces sp. M-20. J Biochem Mol Biol 36:185–189

    PubMed  CAS  Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:887–900

    PubMed  CAS  Google Scholar 

  • Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato associated bacteria and their antagonistic potential towards plant pathogenic fungi and the plant parasitic nematode Meloidogyne incognita (kofoid and white) chitwood. Can J Microbiol 48:772–786

    PubMed  CAS  Google Scholar 

  • Kumar BSD, Dube HC (1992) Seed bacterization with a fluorescent Pseudomonas for enhanced plant growth and yield and disease control. Soil Biol Biochem 26:539–542

    Google Scholar 

  • Kwon SJ, Cho SY, Lee KM, Yu J, Son M, Kim KH (2009) Proteomic analysis of fungal host factors differentially expressed by Fusarium graminearum infected with Fusarium graminearum virus-DK21. Virus Res 144:96–106

    PubMed  CAS  Google Scholar 

  • Lacava PT, Araujo WL, Marcon J, Maccheroni W Jr, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett Appl Microbiol 39:55–59

    PubMed  CAS  Google Scholar 

  • Lacava PT, Li WB, Araújo WL, Azevedo JL, Hartung JS (2006) Rapid, specific and quantitative assays for the detection of endophytic bacterium Methylobacterium mesophilicum in inoculated plants. J Microbiol Method 65:535–541

    CAS  Google Scholar 

  • Lacava PT, Araújo WL, Azevedo JL (2007a) Evaluation of endophytic colonization of Citrus sinensis and Catharanthus roseus seedlings by endophytic bacteria. J Microbiol 45:11–14

    PubMed  CAS  Google Scholar 

  • Lacava PT, Li WB, Araújo WL, Azevedo JL, Hartung JS (2007b) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45:388–393

    PubMed  CAS  Google Scholar 

  • Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120

    CAS  Google Scholar 

  • Lambais MR, Goldman MHS, Camargo LEA, Goldman GH (2000) A genomic approach to the understanding of Xylella fastidiosa pathogenicity. Curr Opin Microbiol 3:459–462

    PubMed  CAS  Google Scholar 

  • Lambert B, Joos H (1989) Fundamental aspects of rhizobacterial plant growth promotion research. Trends Biotechnol 7:215–219

    Google Scholar 

  • Lampe D, Lauzon C, Miller TA (2006) Use of the E. coli α-hemolysin secretion system in bacteria designed for symbiotic control of pierce’s disease in grapevines and sharpshooters. In: Pierce’s disease research symposium, San Diego, CA, Proceedings, 27–29 Nov 2006, pp 240–241

    Google Scholar 

  • Lampe D, Kang A, Miller TA (2007) Native secretion systems for the grapevine endophyte Pantoea agglomerans useful for the delivery of anti-Xylella effector proteins. In: Pierce’s disease research symposium, San Diego, CA, Proceedings, 12–14 Dec 2007, pp 218–220

    Google Scholar 

  • Lampel JS, Canter GL, Dimock MB, Kelly JL, Anderson JJ, Uratani BB, Foulke JS Jr, Turner JT (1994) Integrative cloning, expression, and stability of the cryIA(c) gene from Bacillus thuringiensis subsp. kurstati in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 60:501–508

    PubMed  CAS  Google Scholar 

  • Lana TG, Azevedo JL, Pomella AWV, Monteiro RTR, Silva CB, Araújo WL (2011) Endophytic and pathogenic isolates of the cacao fungal pathogen Moniliophthora perniciosa (Tricholomataceae) are indistinguishable based on genetic and physiological analysis. Genet Mol Res 10:326–334

    PubMed  CAS  Google Scholar 

  • Lecuona RE (1996) Microorganismos patógenos empleados en el control microbiano de insectos plaga. Editora Lecuona, Castelar, p 338

    Google Scholar 

  • Lee RF, Kerrick KS, Beretta MJG, Chagas CM, Rossetti V (1991) Citrus variegated chlorosis: a new destructive disease of citrus in Brazil. Citrus Ind 72:12–13

    Google Scholar 

  • Lewis LC, Cossentine JE (1986) Season long intraplant epizootics of entomopathogens Beauveria bassiana and Nosema pyrausta in a corn agroecosystem. Entomophaga 31:36–69

    Google Scholar 

  • Li WB, Donadio LC, Sempionato OR, Stuchi ES, Rossetti V, Beretta MJG (1997) Effect of rootstocks on the severity of citrus variegated chlorosis (CVC) of sweet orange ‘Pera’ (C sinensis L. Osbeck). Proc Int Soc Citric 1:286–289

    Google Scholar 

  • Li C-H, Zhao M-W, Tang C-M, Li S-P (2009) Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root. Microb Ecol 59:344–356

    PubMed  Google Scholar 

  • Loaces I, Ferrando L, Fernandez Scavino A (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618

    PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteus F, Moore ERB, Taghavi S, Mezgeay M, Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:586–606

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Senthilkumar M, Seshadri S, Chung H (2004) Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot Bull Acad Sin 45:315–324

    Google Scholar 

  • Mahaffe WF, Kloepper JW, Van Vuurde JWL, Van Der Wolf JM, Van Den Brink M (1997) Endophytic colonization of Phaseolus vulgaris by Pseudomonas fluorescens strain 89B-27 and Enterobactr asburiae strain JM22. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity in rhizosphere bacteria. CSIRO, Melbourne, p 180

    Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere and endorhiza. Microb Ecol 34:210–223

    PubMed  Google Scholar 

  • Malinowski DP, Belesky DP (1999) Endophyte infection enhances the ability of tall fescue to utilize sparingly available phosphorus. J Plant Nutr 22:835–853

    CAS  Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117

    PubMed  Google Scholar 

  • Martins ES, Praça LB, Dumas VF, Silva-Werneck JO, Sone EH, Waga IC, Berry C, Monnerat RG (2007) Characterization of Bacillus thuringiensis isolates toxic to cotton boll weevil (Anthonomus grandis). Biol Control 40:65–68

    CAS  Google Scholar 

  • Martins ES, Aguiar RWS, Martins NF, Melatti VM, Falcão R, Gomes ACMM, Ribeiro BM, Monnerat RG (2008) Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda). J Appl Microbiol 104:1363–1371

    PubMed  CAS  Google Scholar 

  • Masclaux C, Expert D (1995) Signalling potential of iron in plant–microbe interactions: the pathogenic switch of iron transport in Erwinia chrysanthemi. Plant J 7:121–128

    CAS  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediat 11:251–267

    CAS  Google Scholar 

  • Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4:81–95

    PubMed  CAS  Google Scholar 

  • Melo IS, Azevedo JL (1998) Controle biológico I. Embrapa, Jaguariuna, p 262

    Google Scholar 

  • Mendes R, Azevedo JL (2007) Valor biotecnológico de fungos endofíticos isolados de plantas de interesse econômico. In: Abstract, 5o Congresso Brasileiro de Micologia, pp 129–140

    Google Scholar 

  • Miller TA (2007) Symbiotic control in agriculture and medicine. Symbiosis 42:67–74

    Google Scholar 

  • Monteiro PB, Renaudin J, Jagoueix-Eveillard S, Ayres AJ, Garnier M, Bové JM (2001) Catharanthus roseus, an experimental host plant for the citrus strain of Xylella fastidiosa. Plant Dis 85:246–251

    Google Scholar 

  • Musson G (1994) Ecology and effects of endophytic bacteria in plant. Masters thesis, Auburn University, Auburn, AL

    Google Scholar 

  • Mwangi eN, Kaaia GP, Essuman S (1995) Experimental infections of the tick Rhipicephalus appendiculatus with pathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, and natural infection of some ticks with bacteria and fungi. J Afr Zool 109:151–160

    Google Scholar 

  • Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F (2001) SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 39:960–972

    PubMed  CAS  Google Scholar 

  • Neilands JB, Nakamura K (1991) Detection, determination, isolation, characterization and regulation of microbial iron chelates. In: Winkelmann G (ed) CRC handbook of microbial iron chelates. CRC Press, Boca Raton, pp 1–14

    Google Scholar 

  • Nudel C, Gonzalez R, Castaneda N, Mahler G, Actis LA (2001) Influence of iron on growth, production of siderophore compounds, membrane proteins, and lipase activity in Acinetobacter calcoaceticus BD 413. Microbiol Res 155:263–269

    PubMed  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Orlandelli RC, Alberto RN, Rubin Filho CJ, Pamphile JA (2012) Diversity of endophytic fungal community associated with Piper hispidum Sw. (Piperaceae) leaves. Genet Mol Res 11:1575–1585

    PubMed  CAS  Google Scholar 

  • Owen NL, Hundley N (2004) Endophytes the chemical synthesizer inside plants. Sci Prog 87:79–99

    PubMed  CAS  Google Scholar 

  • Pamphile JA, Azevedo JL (2002) Molecular characterization of endophytic strains of Fusarium verticillioides (Fusarium moniliforme) from maize (Zea mays L.). World J Microbiol Biotechnol 18:391–396

    CAS  Google Scholar 

  • Panaccione DG, Johnson RD, Wang J, Young CA, Damron K, Scott B, Schardl CL (2001) Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Proc Natl Acad Sci U S A 98:12820–12825

    PubMed  CAS  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199

    CAS  Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi in aerial plant tissues. In: Fokkema NJ, Van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187

    Google Scholar 

  • Petrini O, Hake U, Dreifuss MM (1990) An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444–451

    Google Scholar 

  • Pimenta PFP, Modi GB, Pereira ST, Shahabuddin M, Sacks DL (1997) A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology 115:359–369

    PubMed  Google Scholar 

  • Pimentel IC (2001) Fungos endofíticos de milho (Zea mays L.) e soja (Glycine max (L.) Merril) e seu potencial valor biotecnológico no controle de pragas agrícolas. PhD thesis, University of Paraná, Curitiba, 154p

    Google Scholar 

  • Pleban S, Ingel F, Chet I (1995) Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. Eur J Plant Pathol 101:665–672

    Google Scholar 

  • Pocasangre L, Sikora RA, Vilich V, Schuster RP (2000) Survey of banana endophytic fungi from Central America and screening for biological control of the burrowing nematode (Rhadopholus similis). Informusa 9:3–5

    Google Scholar 

  • Purcell AH, Saunders SR (1999) Fate of Pierce’s disease strains of Xylella fastidiosa in common riparian plants in California. Plant Dis 83:825–830

    Google Scholar 

  • Quecine MC, Araújo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47:486–491

    PubMed  CAS  Google Scholar 

  • Quecine MC, Lacava PT, Magro SR, Parra JRP, Araújo WL, Azevedo JL, Pizzirani-Kleiner AA (2011) Partial characterization of chitinolytic extract from endophytic Streptomyces sp. and its effects on the boll weevil. J Agric Sci Technol 5:420–427

    Google Scholar 

  • Radji M, Sumiati A, Rachmayan R, Elya B (2011) Isolation of fungal endophytes from Garcinia mangostana and their antibacterial activity. Afr J Biotechnol 10:103–107

    Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    PubMed  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasan V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    CAS  Google Scholar 

  • Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonas: major endophytic bacteria to suppress bacterial wilt pathogen Ralstonia solanacearum in the egg plant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55

    Google Scholar 

  • Rampelotti-Ferreira FT, Ferreira A, Vendramim JD, Lacava PT, Azevedo JL, Araújo WL (2010) Colonization of rice and Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae) larvae by genetically modified endophytic Methylobacterium mesophilicum. Neotrop Entomol 39:308–310

    PubMed  Google Scholar 

  • Redman RS, Freeman S, Clifton DR, Morrel J, Brown G, Rodriguez RJ (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795–804

    PubMed  CAS  Google Scholar 

  • Reinhold B, Hurek T (1988) Location of diazotrophs in the interior with special attention to the kallar grass association. Plant Soil 110:259–268

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    PubMed  CAS  Google Scholar 

  • Reis VM, Baldani JI, Baldani VLD, Döbereiner J (2000) Biological dinitrogen fixation in gramineae and palm trees. Crit Rev Plant Sci 10:227–247

    Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    PubMed  CAS  Google Scholar 

  • Rhoden SA, Garcia A, Bongiorno VA, Azevedo JL, Pamphile JA (2012) Antimicrobial activity of crude extracts of endophytic fungi Isolated from medicinal; plant Trichilia elegans A. Juss. J Appl Pharm Sci 2:57–59

    Google Scholar 

  • Rio RVM, Hu Y, Aksoy S (2004) Strategies of the home-team: symbioses exploited for vector-borne disease control. Trends Microbiol 12:325–336

    PubMed  CAS  Google Scholar 

  • Robbins PW, Allbright C, Benfield B (1998) Cloning and expression of a Streptomyces plicatus chitinase (chitinase 63) in Escherichia coli. J Biol Chem 263:443–447

    Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    PubMed  CAS  Google Scholar 

  • Rossetti V, Garnier M, Bove JM, Beretta MJG, Teixeira ARR, Quaggio JA, deNegri JD (1990) Presence de bacteries dans le xyleme d’orangers atteints de chlorose variegee, unenovelle maladie des agrumes au Brasil. Les Comptes Rendus de L’Académie des Sciences (Paris) 310:345–349

    Google Scholar 

  • Rubini MR, Silva-Ribeiro R, Pomella AWV, Maki C, Araújo WL, Santos DR, Azevedo JL (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao, L.) and biological control of Crinipellis perniciosa causal agent of Witches’ Broom disease. Int J Biol Sci 1:24–33

    PubMed  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    PubMed  CAS  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280

    PubMed  CAS  Google Scholar 

  • Sardi P, Saracchi M, Quaroni B, Borgonovi GE, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Environ Microbiol 58:2691–2693

    PubMed  CAS  Google Scholar 

  • Schaad NW, Pastnikova E, Lacey G, Fatmi M, Chang CJ (2004) Xylella fastidiosa subspecies: X. fastidiosa subsp. piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Syst Appl Microbiol 27:290–300

    PubMed  CAS  Google Scholar 

  • Scherwinski K, Wolf A, Berg G (2007) Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. BioControl 52:87–112

    CAS  Google Scholar 

  • Schroth MN, Hancook GH (1995) Disease suppressive soil and root colonizing bacteria science. Soil Biol Biochem 24:539–542

    Google Scholar 

  • Sebastianes FLS, Cabedo N, El-Aouad N, Valente AMMP, Lacava PT, Azevedo JL, Pizzirani-Kleiner AA (2012a) 3-Hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 65:622–632

    PubMed  CAS  Google Scholar 

  • Sebastianes LS, Lacava PT, Favaro LCL, Rodrigues MBC, Araújo WL, Azevedo JL, Pizzirani-Kleiner AA (2012b) Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests mediated by Agrobacterium tumefaciens. Curr Genet 58:21–33

    PubMed  CAS  Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Micobiol 70:1475–1482

    CAS  Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876

    PubMed  CAS  Google Scholar 

  • Senthilkumar M, Madhaiyan M, Sundaram SP, Kannaiyan S (2009) Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). Microbiol Res 164:92–104

    PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    PubMed  CAS  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    PubMed  CAS  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif- mutant strains. Mol Plant Microbe Interact 14:358–366

    PubMed  CAS  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    PubMed  CAS  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    PubMed  CAS  Google Scholar 

  • Sia EF (2006) Isolados endofíticos e entomopatogênicos de Beauveria: caracterização e importância biotecnológica. MS thesis, University of Mogi das Cruzes, São Paulo, Brazil, 55p

    Google Scholar 

  • Siddiqui ZA (2005) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142

    Google Scholar 

  • Silva KS, Rebouças TNH, Lemos OL, Bomfim MP, Bomfim AA, Esquivel GL, Barreto APP, José ARS, Dias NO, Tavares GM (2004) Patogenicidade causada pelo fungo Colletotrichum gloesporioides (Penz) em diferentes espécies frutíferas. Rev Bras Frutic 28:131–133

    Google Scholar 

  • Simpson AJG, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, Alves LMC, Araya JE, Baia GS, Baptista CS et al (2000) The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406:151–159

    PubMed  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    PubMed  CAS  Google Scholar 

  • Stuart RM, Romão AS, Pizzirani-Kleiner AA, Azevedo JL, Araújo WL (2010) Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Arch Microbiol 192:307–313

    PubMed  CAS  Google Scholar 

  • Sturz AV (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263

    CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequences analysis. Microb Ecol 55:415–424

    PubMed  CAS  Google Scholar 

  • Suryanarayanan TS (2011) Diversity of fungal endophytes in tropical trees. In: Prittila AM, Carolin FA (eds) Endophytes of tropical trees. Forestry sciences series 80. Springer, Netherlands, pp 67–80

    Google Scholar 

  • Suryanarayanan TS, Murali TS, Thirumavukkarasu N, Govinda-Rajulu MB, Venkatesan G, Sukumar R (2011) Endophytic fungal communities in wood perennials of three tropical forest types of the Western Ghats, Southern India. Biodivers Conserv 20:913–928

    Google Scholar 

  • Suryanarayanan TS, Tirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes; an untapped source of biocatalysts. Fungal Divers 54:19–30

    Google Scholar 

  • Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385

    CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    PubMed  CAS  Google Scholar 

  • Toyota K, Kimura M (2000) Suppression of Ralstonia solanacearum in soil following colonization by other strains of R. solanacearum. Soil Sci Plant Nutr 46:449–459

    Google Scholar 

  • Tsujibo H, Minoura K, Miyamoto K, Endo H, Moriwaki M, Inamori Y (1993) Purification and properties of a thermostable chitinase from Streptomyces thermoviolaceus OPC-520. Appl Environ Microbiol 59:620–622

    PubMed  CAS  Google Scholar 

  • Tunali B, Marshall D, Royo C, Nachit MM, Fonzo NDI, Araus JL (2000) Antagonistic effect of endophytes against several non-root pathogens of wheat. In: Durum wheat improvement in the Mediterranean region: new challenges. Proceedings of the Semina, vol 40, Zaragoza, Spain, pp 381–386

    Google Scholar 

  • Turner JT, Lampell JS, Stearmen RS, Sundin GW, Gunyuzlu UP, Anderson JJ (1991) Stability of the d-endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 57:3522–3528

    PubMed  CAS  Google Scholar 

  • Van Der Peer R, Puente HLM, LA Weger DE, Shipper B (1990) Characterization of root surface and endorhizosphere pseudomonas in relation to their colonization of roots. Appl Environ Microbiol 56:2462–2470

    PubMed  Google Scholar 

  • Van-Heeswijck R, McDonald G (1992) Acremonium endophyte in perennial ryegrass and other pasture grasses in Australia and New Zealand. Aust J Agric Res 43:1683–1709

    Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoli M, Infante F, Rhener SA (2008) Entomopathogenic fungal endophytes. Biol Control 346:72–82

    Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Onley BH, Pell JK, Rangel DEN, Roy HE (2009) Fungal entomopathogens: new-insights on their ecology. Fungal Ecol 2:149–159

    Google Scholar 

  • Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48:559–565

    PubMed  CAS  Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 5:550–556

    Google Scholar 

  • Wagner BL, Lewis LC (2000) Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 66:3468–3473

    PubMed  CAS  Google Scholar 

  • Webber J (1981) A natural control of Dutch elm disease. Nature 292:449–451

    Google Scholar 

  • Weyens N, Vander Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    PubMed  CAS  Google Scholar 

  • Wiehe W, Hecht-Bucholz C, Hoflich G (1994) Electron microscopic investigations on root colonization of Lupinus albus and Pisum sativum with two associative plant growth promoting rhizobacteria, Pseudomonas fluorescens and Rhizobium leguminosarum bv. trifolii. Symbiosis 86:221–224

    Google Scholar 

  • Wilson D (1995) Endophyte – the evolution of a term and clarification of its use and definition. Oikos 72:274–276

    Google Scholar 

  • Wolkers H, van Bavel B, Ericson I, Skoglund E, Kovacs KM, Lydersen C (2006) Congener-specific accumulation and patterns of chlorinated and brominated contaminants in adult male walruses from Svalbard, Norway: Indications for individual-specific prey selection. Sci Total Environ 370:70–79

    PubMed  CAS  Google Scholar 

  • Yang J-H, Liu H-X, Zhu G-M, Pan Y-L, Guo J-H (2008) Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J Appl Microbiol 104:91–104

    PubMed  CAS  Google Scholar 

  • Yunus A, Kawamata S, Shimanuki T, Murakami Y, Ichinose Y, Shiraishi T, Yamada T (1999) Transformation of the endophyte Neotyphodium with the indole acetic acid (iaa M) gene. Ann Phytopathol Soc Jpn 55:192–196

    Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Teixeira Lacava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Lacava, P.T., Azevedo, J.L. (2014). Biological Control of Insect-Pest and Diseases by Endophytes. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_13

Download citation

Publish with us

Policies and ethics