Skip to main content

Plant Signaling: Response to Reactive Oxygen Species

  • Chapter
  • First Online:
Plant signaling: Understanding the molecular crosstalk

Abstract

It is noteworthy to mention how the last 20 years have modified the concept of signalling in plants, especially the molecular crosstalk associated with it. Plants have the ability to show remarkable developmental plasticity to sustain in a continually changing environment. In response to various environmental stresses such as drought, salinity, metal toxicity, temperature and pathogens, plants defend themselves by developing some special defence mechanisms. Plants recognise these environmental signals with the help of some membrane protein sensors and then transduce these signals to the nucleus which ultimately stimulates various transcription factors and genes to form the product that ultimately leads to plant adaptation and assists the plant to sustain and surpass the adverse conditions. Amongst the environmental factors which are involved in signalling is the reactive oxygen species (ROS) generated during cell metabolism. ROS are spontaneously produced in the cell enzymatically through the action of various soluble membrane-bound enzymes and nonenzymatically by autoxidation reactions. Some of these ROS (e.g. superoxide dismutase, hydrogen peroxide and nitric oxide) are physiologically useful and in fact necessary for life but can also be harmful if present in excess or in inappropriate amounts. Current research in this regard focuses more on the development of transgenic plants with enhanced tolerance to ROS by using genetic approaches and analytical techniques. In particular nitric oxide (NO), a reactive radical, may be involved in the defence mediated by the ROS such as defence gene activation, hypersensitive response cell death and phytoalexin biosynthesis. By using biotechnological approaches NO together with ROS activates a stronger response and tolerance to various stresses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebi HE (1983) Catalase. In: Bergmeyer HO (ed) Methods of enzymatic analysis, vol 111. Academic, New York, pp 273–286

    Google Scholar 

  • Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    PubMed  CAS  Google Scholar 

  • Aono M, Saji H, Sakamoto A, Tanaka K, Kondo N, Tanaka K (1995) Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol 36(8):1687–1691

    PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant A. thaliana. Nature 408:796–815

    Google Scholar 

  • Arora A, Byrem TM, Nair MG, Strasburg GM (2000) Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373(1):102–109

    PubMed  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85(2):235–241

    CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Asai S, Yoshioka H (2008) The role of radical burst via MAPK signaling in plant immunity. Plant Signal Behav 3:920–922

    PubMed  Google Scholar 

  • Asai S, Yoshioka H (2009) Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Mol Plant Microbe Interact 22:619–629

    PubMed  CAS  Google Scholar 

  • Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–1406

    PubMed  CAS  Google Scholar 

  • Bafeel SO, Ibrahim MM (2008) Antioxidants and accumulation of α-tocopherol induce chilling tolerance in Medicago sativa. Int J Agric Biol 10(6):593–598

    CAS  Google Scholar 

  • Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J (2011) Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant Cell Environ 34(6):980–993

    PubMed  CAS  Google Scholar 

  • Barnes JD, Zheng Y, Lyons TM (2002) Plant resistance to ozone: the role of ascorbate. In: Omasa K, Saji H, Youssefian S, Kondo N (eds) Air pollution and plant biotechnology. Springer, Tokyo, pp 235–254

    Google Scholar 

  • Bavita A, Shashi B, Navtej SB (2012) Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat. Indian J Exp Boil 50:372–378

    CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inze D et al (2007) Metacaspase activity of A. thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358

    PubMed  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    PubMed  CAS  Google Scholar 

  • Bethke PC, Jones RL (2001) Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J 25(1):19–29

    PubMed  CAS  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    PubMed  CAS  Google Scholar 

  • Boff J, Min DB (2002) Chemistry and reaction of singlet oxygen in foods. Comp Rev Food Sci Saf 1:58–72, Botany 55(408):2559–2569

    Google Scholar 

  • Borsani O, Dı́az P, Agius MF, Valpuesta V, Monza J (2001) Water stress generates an oxidative stress through the induction of a specific Cu/Zn superoxide dismutase in Lotus corniculatus leaves. Plant Sci 161(4):757–763

    CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    PubMed  CAS  Google Scholar 

  • Butt YK-C, Lum JH-K, Lo SC-L (2003) Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216:762–771

    PubMed  CAS  Google Scholar 

  • Chammongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H Jr, Van Montang M, Inze D, Van Camp W (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic plants. Proc Natil Acad Sci U S A 95:5818–5823

    Google Scholar 

  • Chamnongpol S, Willekens H, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1996) Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis- related expression under high light. Plant J 10:491–503

    CAS  Google Scholar 

  • Chandna R, Hakeem KR, Ahmad P (2012) Proteomic markers for oxidative stress: new tools for reactive oxygen species and photosynthesis research. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 181–196

    Google Scholar 

  • Chaves MM, Pereira JS, Maroco J et al (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating folia ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    PubMed  CAS  Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    PubMed  CAS  Google Scholar 

  • Chen Q, Zhang M, Shen S (2010) Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol Plant 33(2):273–278

    Google Scholar 

  • Chessman KH, Slater TF (1993) An introduction to free radical biochemistry. Br Med Bull 49:481–488

    Google Scholar 

  • Chico JM, Raíces M, Téllez-Iñón MT, Ulloa RM (2002) A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol 128:256–270

    PubMed  CAS  Google Scholar 

  • Chopra S, Wallace HM (1998) Induction of spermidine/spermine N-1 acetyl transferase in human cancer cells in response to increased production of reactive oxygen species. Biochem Pharmacol 55:1119–1123

    PubMed  CAS  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microbe Interact 13:1380–1384

    PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM et al (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    PubMed  CAS  Google Scholar 

  • Corpas FJ, Palma JM, Sandalio LM, Valderrama R, Barroso JB, del Rio LA (2008) Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. J Plant Physiol 165(13):1319–1330

    PubMed  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    PubMed  CAS  Google Scholar 

  • Crawford NM, Galli M, Tischner R, Heimer YM, Okamoto M, Mack A (2006) Response to Zemojtel, et al.: plant nitric oxide synthase: back to square one. Trends Plant Sci 11:526–527

    CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779–795

    PubMed  CAS  Google Scholar 

  • Davies KJA (1995) Free radicals and oxidative stress. In: Rice Evans C (ed) Environmental, drugs and food additives. Portland Press, London, pp 1–31

    Google Scholar 

  • De Pinto MC, De Gara L (2004) Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J Exp Bot 55:2559–2569

    PubMed  Google Scholar 

  • Del Rio LA, Pastori GM, Palma JM et al (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116(4):1195–1200

    PubMed  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    PubMed  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    PubMed  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459

    PubMed  CAS  Google Scholar 

  • Denness JF, McKenna JF, Segonzac C et al (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156(3):1364–1374

    PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Khimura K, Shinozaki K, Neil SJ (2001) Harpin induces activation of the Arabidopsis mitogen- activated protein kinases AtMPK4 and AtMAPK6. Plant Physiol 126:1579–1587

    PubMed  CAS  Google Scholar 

  • Devasagayam TPA, Kamat JP, Kumar SS, Chauhan PS (1999) Environmental agents, oxidative stress and antioxidants. In: Agarwal VP, Rana SVS (eds) Environment and health. Vedams eBooks, New Delhi, pp 57–58

    Google Scholar 

  • Diplock T, Machlin LJ, Packer L, Pryor WA (1989) Vitamin E: biochemistry and health implications. Ann N Y Acad Sci 570:372–378

    Google Scholar 

  • Dordas C, Hasinoff BB, Rivoal J, Hill RD (2004) Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta 219:66–72

    PubMed  CAS  Google Scholar 

  • Dorey S, Baillieul F, Saindrenan P, Fritig B, Kauffmann S (1998) Tobacco class I and II catalases are differentially expressed during elicitor-induced hypersensitive cell death and localized acquired resistance. Mol Plant Microbe Interact 11:1102–1109

    CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333

    PubMed  CAS  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180(2):278–284

    CAS  Google Scholar 

  • Elstner EF (1982) Oxygen activation and oxygen toxicity. Annu Rev Plant Biol 33:73–96

    CAS  Google Scholar 

  • Elstner EF (1987) Metabolism of activated oxygen species. In: Davies DD (ed) Biochemistry of plants. Academic, London, pp 253–315

    Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH et al (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225(5):1255–1264

    PubMed  CAS  Google Scholar 

  • Eltayeb E, Yamamoto S, Habora MEE et al (2010) Greater protection against oxidative damages imposed by various environmental stresses in transgenic potato with higher level of reduced glutathione. Breed Sci 60(2):101–109

    CAS  Google Scholar 

  • Eltayeb AE, Yamamoto S, Habora MEE, Yin L, Tsujimoto H, Tanaka K (2011) Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1showed higher tolerance to herbicide, drought and salt stresses. Breed Sci 61(1):3–10

    CAS  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567(1):1–61

    PubMed  CAS  Google Scholar 

  • Fairchild CD, Quail PH (1998) The phytohormones: photosensory perception and signal transduction. Symp Soc Exp Biol 51:85–92

    PubMed  CAS  Google Scholar 

  • Faize M, Burgos L, Faize L et al (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62(8):2599–2613

    PubMed  CAS  Google Scholar 

  • Felix G, Grosskopf DG, Regenass M, Boller T (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Natl Acad Sci U S A 88:8831–8834

    PubMed  CAS  Google Scholar 

  • Fernandez-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci U S A 108:18506–18511

    PubMed  CAS  Google Scholar 

  • Fink SP, Reddy GR, Marnett LJ (1997) Mutagenicity in Escherichia coli of the major DNA adduct derived from the endogenous mutagen malondialdehyde. Proc Natl Acad Sci U S A 94(16):8652–8657

    PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119(3):355–364

    CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Oxidative stress in plants. Physiol Plant 92:696–717

    CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S et al (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109(3):1047–1057

    PubMed  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100(2):241–254

    CAS  Google Scholar 

  • Frugoli JA, McPeek MA, Thomas TL, McClung CR (1998) Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics 149:355–365

    PubMed  CAS  Google Scholar 

  • Fu-Kang Gao, Cheng-Gang Ren, Chuan-Chao Dai (2012) Signaling effects of nitric oxide, salicylic acid, and reactive oxygen species on isoeuphpekinensin accumulation in euphorbia pekinensis suspension cells induced by an endophytic fungal elicitor. J Plant Growth Regul 31:490–497

    Google Scholar 

  • Gambhir J, Lali P, Jain A (1997) Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem 30:351–357

    PubMed  CAS  Google Scholar 

  • Gao Q, Zhang L (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165(2):138–148

    PubMed  CAS  Google Scholar 

  • Gardner PR, Fridovich I (1991) Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J Biol Chem 266(3):1478–1483

    PubMed  CAS  Google Scholar 

  • Gas E, Flores-Pérez U, Sauret-Güeto S, Rodríguez-Concepción M (2009) Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell 21:18–23

    PubMed  CAS  Google Scholar 

  • Ghisla S, Massey V (1989) Mechanisms of flavoprotein catalyzed reactions. Eur J Biochem 181(1):1–17

    PubMed  CAS  Google Scholar 

  • Giri U, Kausar H, Athar M (1999) Free radicals and oxidative stress in biological system. Environ Health: 1–16

    Google Scholar 

  • Gomathi R, Rakkiyapan P (2011) Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance. Int J Plant Physiol Biochem 3(4):67–74

    CAS  Google Scholar 

  • Grace SG, Logan BA (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans R Soc B 355(1402):1499–1510

    CAS  Google Scholar 

  • Grazioli V, Schiavo R, Casari E (1998) Antioxidant enzyme activities and lipid peroxidation in cultured human chondrocytes from vertebral plate cartilage. FEBS Lett 431:149–153

    PubMed  CAS  Google Scholar 

  • Greco TM, Hodara R, Parastatidis I, Heijnen HF, Dennehy MK et al (2006) Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc Natl Acad Sci U S A 103:7420–7425

    PubMed  CAS  Google Scholar 

  • Grune T, Reinheckel T, Davies KJA (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11(7):526–534

    PubMed  CAS  Google Scholar 

  • Guan Z, Chai T, Zhang Y, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76(5):623–630

    PubMed  CAS  Google Scholar 

  • Gullner G, Kömives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing γ- glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52(358):971–979

    PubMed  CAS  Google Scholar 

  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A 89:2389–2393

    PubMed  CAS  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    PubMed  CAS  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    PubMed  CAS  Google Scholar 

  • Guo-Tao GTH, Shi-Liang SLM, Li-Ping LPB, Li LZ, Hui HM, Ping PJ, Jun JL, Ming MZ, Zhi-Fu ZFG (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39(2):969–987

    Google Scholar 

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase overexpressing plants). Plant Physiol 103:1067–1073

    PubMed  Google Scholar 

  • Gutteridge JM, Halliwell B (2000) Free radicals and antioxidants in the year 2000: a historical look to future. Ann N Y Acad Sci 899:136–147

    PubMed  CAS  Google Scholar 

  • Hakeem KR, Chandna R, Ahmad V, Ozturk M, Iqbal M (2012) Relevance of proteomic investigations in plant stress physiology. OMICS: A J Integr Biol 16(11):621–635

    CAS  Google Scholar 

  • Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions. Acta Neurol Scand 126:23–33

    CAS  Google Scholar 

  • Halliwell B (1997) Antioxidants and human disease: a general introduction. Nutr Rev 55(6):44–49

    Google Scholar 

  • Halliwell B (1999) Antioxidant defense mechanism from the beginning to the end (of the beginning). Free Radic Res 31:261–272

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Hanafy KA, Krumenacker JS, Murad F (2001) NO, nitrotyrosine, and cyclic GMP in signal transduction. Med Sci Monit 7:801–819

    PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    CAS  Google Scholar 

  • Harman D (2000) Aging: overview. Ann N Y Acad Sci 928:1–2

    CAS  Google Scholar 

  • He Y, Tang RH, Hao Y, Stevens RD, Cook CW et al (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    PubMed  CAS  Google Scholar 

  • He H, Zhan J, He L, Gu M (2012) Nitric oxide signaling in aluminum stress in plants. Protoplasma 249:483–492, Springer

    PubMed  CAS  Google Scholar 

  • Hefny M, Abdel-Kader DZ (2009) Antioxidant-enzyme system as selection criteria for salt tolerance in forage sorghum genotypes (Sorghum bicolor L. Moench). In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress. Springer, Dordrecht, pp 25–36

    Google Scholar 

  • Hemavathi CP, Upadhyaya KE, Young KE, Akula N, Hs K, Heung JJ, Oh OM, Aswath CR, Chun SC, Kim DH, Park SW (2009) Overexpression of strawberry d-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 117:659–667

    Google Scholar 

  • Herold S, Puppo A (2005) Kinetics and mechanistic studies of the reactions of metleghemoglobin, ferrylleghemoglobin, and nitrosylleghemoglobin with reactive nitrogen species. J Biol Inorg Chem 10:946–957

    PubMed  CAS  Google Scholar 

  • Hong JK, Yun B-W, Kang J-G, Raja MU, Kwon E, Sorhagen K, Chu C, Wang Y, Loake GJ (2008) Nitric oxide function and signalling in plant disease resistance. J Exp Bot 59:147–154

    PubMed  CAS  Google Scholar 

  • Horton AA, Fairhurst S (1987) Lipid peroxidation and mechanisms of toxicity. Crit Rev in Toxicol 18:27–39

    CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monode-hydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25(3):385–395

    CAS  Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    PubMed  CAS  Google Scholar 

  • Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ, Durner J (2004) Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218:938–946

    PubMed  CAS  Google Scholar 

  • Huang D, Ou D, Prior D (2005) The chemistry behind antioxidant assays. J Agric Food Chem 53:1841–1856

    PubMed  CAS  Google Scholar 

  • Hung KT, Kao CH (2004) Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. J Plant Physiol 161:43–52

    PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Bykova NV, Hill RD (2006) Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Planta 223:1033–1040

    PubMed  CAS  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302–1309

    PubMed  CAS  Google Scholar 

  • Ivanov BN, Khorobrykh S (2003) Participation of photosynthetic electron transport in production and scavenging of reactive oxygen species. Antioxid Redox Signal 5(1):43–53

    PubMed  CAS  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    PubMed  CAS  Google Scholar 

  • Jackson C, Dench J, Moore AL, Halliwell B, Foyer CH, Hall DO (1978) Subcellular localisation and identification of superoxide dismutase in the leaves of higher plants. Eur J Biochem 91(2):339–344

    PubMed  CAS  Google Scholar 

  • Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    PubMed  CAS  Google Scholar 

  • Janas KM, Amarowicz R, Zielińska-Tomaszewska J, Kosińska A, Posmyk MM (2009) Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions. Acta Physiol Plant 31(3):587–595

    CAS  Google Scholar 

  • Jannat R, Uraji M, Morofuji M et al (2011) Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells. J Plant Physiol 168(16):1919–1926

    PubMed  CAS  Google Scholar 

  • Jian Wen Wang, Jian Yong Wu (2005) Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of taxus cells. Plant Cell Physiol 46(6):923–930

    PubMed  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114(1):275–284

    PubMed  Google Scholar 

  • Jones HD, Smith SJ, Desikan R, Plakidou-Dymock S, Love-Grove A, Hooley R (1998) Heterotrimeric G proteins are implicated in gibberellin induction of amylase gene expression in wild oat aleurone layer. Plant Cell 10:245–253

    PubMed  CAS  Google Scholar 

  • Jung Hee Joo, Yun Soo Bae, June Seung Lee (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126(3):1055–1060

    Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7):671–701

    PubMed  CAS  Google Scholar 

  • Kasai H (1997) Analysis of a form of oxidative DNA damage, 8- hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 387(3):147–163

    PubMed  CAS  Google Scholar 

  • Kato H, Asai S, Yamamoto-Katou Z, Yoshioka H, Doke N, Kawakita K (2008) Involvement of NbNOA1 in NO production and defense responses in INF1- treated Nicotiana benthamiana. J Gen Plant Pathol 74:15–23

    CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R et al (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A 97(16):8849–8855

    PubMed  CAS  Google Scholar 

  • Knox P, Dodge AD (1985) Singlet oxygen and plants. Phytochemistry 24:889–896

    CAS  Google Scholar 

  • Kobayashi K, Kumazawa Y, Miwa K, Yamanaka S (1996) ε-(γ-Glutamyl)lysine cross-links of spore coat proteins and transglutaminase activity in Bacillus subtilis. FEMS Microbiol Lett 144(2–3):157–160

    CAS  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    PubMed  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2001) Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem Ii in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiol Plant 113:323–331

    PubMed  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Allen RD, Holaday AS (2003a) Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photo inhibition. Plant Sci 165:1033–1041

    CAS  Google Scholar 

  • Kornyeyev D, Holaday S, Logan B (2003b) Predicting the extent of photosystem Ii photo-inactivation using chlorophyll a fluorescence parameters measured during illumination. Plant Cell Physiol 44:1064–1070

    PubMed  CAS  Google Scholar 

  • Kreslavski VD, Los DA, Allakhverdiev SI, Kuznetsov VIV (2012) Signaling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59(2):141–154

    CAS  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56(411):337–346

    PubMed  CAS  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98(1–3):551–564

    PubMed  CAS  Google Scholar 

  • Kumar D, Klessig DF (2000) Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol Plant Microbe Interact 13:347–351

    PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei Z-M, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    PubMed  CAS  Google Scholar 

  • Kwak SS, Lim S, Tang L, Kwon SY, Lee HS (2009) Enhanced tolerance of transgenic crops expressing both SOD and APX in chloroplasts to multiple environmental stress. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress. Springer, Dordrecht, pp 197–203

    Google Scholar 

  • Kwon SY, Jeong YJ, Lee HS et al (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25(7):873–882

    Google Scholar 

  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human DHAR gene. J Plant Physiol 160:347–353

    PubMed  CAS  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A et al (2004) Analysis of nitric oxide signalling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    PubMed  CAS  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    PubMed  Google Scholar 

  • Lea US, ten Hoopen F, Provan F, Kaiser WM, Meyer C, Lillo C (2004) Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue. Planta 219:59–65

    PubMed  CAS  Google Scholar 

  • Lecourieux D, Raneva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171:249–269

    PubMed  CAS  Google Scholar 

  • Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26(5):591–598

    PubMed  CAS  Google Scholar 

  • Lee SC, Kwon SY, Kim SR (2009) Ectopic expression of a cold-responsive CuZn superoxide dismutase gene, SodCc1, in transgenic rice (Oryza sativa L.). J Plant Biol 52(2):154–160

    CAS  Google Scholar 

  • Leshem YY, Huang JS, Tzeng DDS, Chou CC (eds) (2000) Nitric oxide in plants. Occurrence, function and use. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Li F, Vallabhaneni R, Yu J, Rocheford T, Wurtzel ET (2008) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol 147(3):1334–1346

    PubMed  CAS  Google Scholar 

  • Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010a) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139(4):421–434

    PubMed  CAS  Google Scholar 

  • Li Y, Zhou Y, Wang Z, Sun X, Tang K (2010b) Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. Plant Sci 178(3):312–320

    CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    PubMed  CAS  Google Scholar 

  • Liu T, Van Staden J, Cress WA (2000) Salinity induced nuclear and DNA degradation in meristematic cells of soybean (Glycine max (L.)) roots. Plant Growth Regul 30(1):49–54

    CAS  Google Scholar 

  • Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494

    PubMed  CAS  Google Scholar 

  • Lopez- Delgado H, Dat JF, Foyer CH, Scott IM (1998) Induction of thermotolerant in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot 49:713–730

    CAS  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JDG, Romeis T (2005) Ethylene-mediated cross-talk between calcium dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci U S A 102:10736–10741

    PubMed  CAS  Google Scholar 

  • Lukaszewicz M, Matysiak-Kata I, Skala J, Fecka I, Cisowski W, Szopa J (2004) Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J Agric Food Chem 52(6):1526–1533

    PubMed  CAS  Google Scholar 

  • Luo S, Ishida H, Makino A, Mae T (2002) Fe2 + -catalyzed site-specific cleavage of the large subunit of ribulose 1,5- bisphosphate carboxylase close to the active site. J Biol Chem 277(14):12382–12387

    PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    PubMed  CAS  Google Scholar 

  • Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59(1):37–49

    CAS  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157(2):183–193

    CAS  Google Scholar 

  • Mao-Jun X, Dong J-F, Zhu M-Y (2005) Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway. Plant Physiol 139:991–998

    Google Scholar 

  • Martin KR, Barett JC (2002) Reactive oxygen species as double edged swords in cellular processes: low dose cell signaling versus high dose toxicity. Hum Exp Toxicol 21:71–75

    PubMed  CAS  Google Scholar 

  • Mathieu C, Moreau S, Frendo P, Puppo A, Davies MJ (1998) Direct detection of radicals in intact soybean nodules: presence of nitric oxide-leghemoglobin complexes. Free Radic Biol Med 24:1242–1249

    PubMed  CAS  Google Scholar 

  • Matkovics B, Kotorman M, Varga IS, Ouy Hai DQ, Varga C (1998) Oxidative stress in experimental diabetes induced by streptozotocin. Acta Physiol Hung 85:29–38

    CAS  Google Scholar 

  • Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2002) Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Plant 116:317–327

    CAS  Google Scholar 

  • McCord JM, Crapo JD, Fridovich I (1977) Superoxide dismutase assay. a review of methodology. In: Michelson AM, McCord JM, Fridovich I (eds) Superoxide and superoxide dismutase. Academic, London, pp 11–17

    Google Scholar 

  • McKersie BD, Murnaghan J, Jones KS, Bowley SR (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122:1427–1438

    PubMed  CAS  Google Scholar 

  • Meriga B, Reddy BK, Rao KR, Reddy LA, Kishor PBK (2004) Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol 161(1):63–68

    PubMed  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133(3):481–489

    PubMed  CAS  Google Scholar 

  • Mishra P, Dubey RS (2011) Nickel and Al-excess inhibit nitrate reductase but upregulate activities of aminating glutamate dehydrogenase and aminotransferases in growing rice seedlings. Plant Growth Regul 64:251–261

    CAS  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):565–577

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1991) Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol 97(3):962–968

    PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267(30):21802–21807

    PubMed  CAS  Google Scholar 

  • Moller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 3(8):730–735

    PubMed  CAS  Google Scholar 

  • Monroy AF, Sarhan F, Dhindsa RS (1993) Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression: evidence for a role of calcium. Plant Physiol 102:1227–1253

    PubMed  CAS  Google Scholar 

  • Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF (2008) AtNOS/A1 is a functional Arabidopsis thaliana cGTPase and not a nitric oxide synthase. J Biol Chem 283:32957–32967

    PubMed  CAS  Google Scholar 

  • Moussa R, Abdel-Aziz SM (2008) Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Aust J Crop Sci 1(1):31–36

    Google Scholar 

  • Mueller MJ, Brodschelm W, Spannagl E, Zenk MH (1993) Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci U S A 90:7490–7494

    PubMed  CAS  Google Scholar 

  • Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol 52(2):195–204

    PubMed  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opi Plant Biol 5(5):388–395

    CAS  Google Scholar 

  • Nobushiro Suzuki, Shai Koussevitzky, Ron Mittler, Gad Miller (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    CAS  Google Scholar 

  • O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–779

    PubMed  Google Scholar 

  • Orozco-Cárdenas M, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130:487–493

    PubMed  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13(1):179–191

    PubMed  Google Scholar 

  • Ouyang SQ, He SJ, Liu P, Zhang WK, Zhang JS, Chen SY (2011) The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci China Life Sci 54(2):181–188

    PubMed  CAS  Google Scholar 

  • Pallavi Sharma, Ambuj Bhushan Jha, Rama Shanker Dubey, Mohammad Pessarakli (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26. doi:10.1155/217037

    Google Scholar 

  • Papas AM (1999) Determinants of antioxidant status in humans. In: Papas AM (ed) Antioxidant status. Diet, nutrition and health. CRC Press, Boca Raton, pp 17–30

    Google Scholar 

  • Patterson WR, Poulos TL (1995) Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34(13):4331–4341

    PubMed  CAS  Google Scholar 

  • Payton P, Webb R, Kornyeyev D, Allen R, Holaday AS (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J Exp Bot 52:2345–2354

    PubMed  CAS  Google Scholar 

  • Pel ZM, Murata Y, Benning G et al (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406(6797):731–734

    Google Scholar 

  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J et al (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:2785–2794

    PubMed  CAS  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39(6):1008–1018

    CAS  Google Scholar 

  • Planchet E, Jagadis Gupta K, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    PubMed  CAS  Google Scholar 

  • Poovaiah BW, Xia M, Liu Z, Wang W, Yang T, Sathyanarayanan PV, Franceschi VR (1999) Developmental regulation of the gene for chimeric calcium/calmodulin dependent protein kinase in anthers. Planta 209:161–171

    PubMed  CAS  Google Scholar 

  • Porter NA, Caldwell SE, Mills KA (1995) Mechanisms of free radical oxidative of unsaturated lipids. Lipids 30:277–290

    PubMed  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Stewart CR (1994) Acclimation, hydrogen peroxide and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol 105:619–627

    PubMed  CAS  Google Scholar 

  • Racchi ML, Bagnoli F, Balla I, Danti S (2001) Differential activity of catalase and superoxide dismutase in seedlings and in vitro micropropagated oak (Quercus robur L.). Plant Cell Rep 20(2):169–174

    CAS  Google Scholar 

  • Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44(2):105–113

    PubMed  CAS  Google Scholar 

  • Radyuk MS, Domanskaya IN, Shcherbakov RA, Shalygo NV (2009) Effect of low above-zero temperature on the content of low-molecular antioxidants and activities of antioxidant enzymes in green barley leaves. Russ J Plant Physiol 56(2):175–180

    CAS  Google Scholar 

  • Raz V, Fluhr R (1993) Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell 5:523–530

    PubMed  CAS  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    PubMed  CAS  Google Scholar 

  • Richter C (1992) Reactive oxygen and DNA damage in mitochondria. Mutat Res DNAging Genet Instab Aging 275(3–6):249–255

    CAS  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, Del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25(5):677–686

    CAS  Google Scholar 

  • Rusterucci C, Espunya MC, Díaz M, Chabannes M, Martınez MC (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292

    PubMed  CAS  Google Scholar 

  • Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16:616–628

    PubMed  CAS  Google Scholar 

  • Saito S, Yamamoto-Katou A, Yoshioka H, Doke N, Kawakita K (2006) Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiol 47:689–697

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Ueda M, Morikawa H (2002) Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Lett 515:20–24

    PubMed  CAS  Google Scholar 

  • Salim ML (1987) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    PubMed  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101(1):7–12

    PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Walter U (1994) NO at work. Cell 78:919–925

    PubMed  CAS  Google Scholar 

  • Schopfer FJ, Baker PR, Freeman BA (2003) NO-dependent protein nitration: a cell signalling event or an oxidative inflammatory response? Trends Biochem Sci 28:646–654

    PubMed  CAS  Google Scholar 

  • Semchuk NM, Lushchak OV, Falk J, Krupinska K, Lushchak VI (2009) Inactivation of genes, encoding tocopherols biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant Physiol Biochem 47(5):384–390

    PubMed  CAS  Google Scholar 

  • Seregelyes C, Igamberdiev AU, Maassen A, Hennig J, Dudits D, Hill RD (2004) NO degradation by alfalfa class 1 hemoglobin (Mhb1): a possible link to PR-1a gene expression in Mhb1-overproducing tobacco plants. FEBS Lett 571:61–66

    PubMed  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221

    CAS  Google Scholar 

  • Shu D-F, Wang L-Y, Duan M, Deng Y-S, Meng Q-W (2011) Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiol Biochem 49(10):1228–1237

    PubMed  CAS  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi Schaffer F (2000) Role of reactive oxygen species in apoptosis induction. Apoptosis 5:415–418

    PubMed  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opi Plant Biol 3(3):229–235

    CAS  Google Scholar 

  • Smirnoff N, Running JA, Gatzek S (2004) Ascorbate biosynthesis: a diversity of pathways. In: Asard H, May JM, Smirnoff N (eds) Vitamin C: its functions and biochemistry in animals and plants. BIOS Scientific, New York, pp 7–29

    Google Scholar 

  • Spiteller G (2001) Lipid oxidation in aging and age-dependent diseases. Exp Gerontol 36:1425–1457

    PubMed  CAS  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16

    CAS  Google Scholar 

  • Stamler JS, Lamas S, Fang FC (2001) Nitrosylation: the prototypic redox-based signalling mechanism. Cell 106:675–683

    PubMed  CAS  Google Scholar 

  • Steif TW (2003) The physiology and pharmacology of singlet oxygen. Med Hypotheses 60:567–572

    Google Scholar 

  • Stohr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    PubMed  Google Scholar 

  • Stohr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    PubMed  CAS  Google Scholar 

  • Strohm M, Eiblmeier M, Langebartels C et al (1999) Responses of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase or glutathione reductase to acute ozone stress: visible injury and leaf gas exchange. J Exp Bot 50(332):365–374

    CAS  Google Scholar 

  • Sun WH, Duan M, Shu DF, Yang S, Meng QW (2010) Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Rep 29:917–926

    PubMed  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65(2–3):270–281

    CAS  Google Scholar 

  • Tayefi-Nasrabadi H, Dehghan G, Daeihassani B, Movafegi A, Samadi A (2011) Some biochemical properties of guaiacol peroxidases as modified by salt stress in leaves of salt-tolerant and salt-sensitive safflower (Carthamus tinctorius L.cv.) cultivars. Afr J Biotechnol 10(5):751–763

    CAS  Google Scholar 

  • Tian QY, Sun DH, Zhao MG, Zhang WH (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminium-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331

    PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    PubMed  CAS  Google Scholar 

  • Trewavas AJ (2002) Concepts: mindless mastery. Nature 415:841

    PubMed  CAS  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei 19:325–346

    Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2008) Tolerance to sulphur dioxide in transgenic Chinese cabbage transformed with both the superoxide dismutase containing manganese and catalase genes of Escherichia coli. Sci Hortic 115(2):101–111

    CAS  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Fernandez-Ocana A, Chaki M et al (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    PubMed  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    PubMed  CAS  Google Scholar 

  • Vandelle E, Poinssot B, Wendehenne D, Bentejac M, Pugin A (2006) Integrated signalling network involving calcium, nitric oxide and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol Plant Microbe Interact 19:429–440

    PubMed  CAS  Google Scholar 

  • Vangronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago ME (ed) Plants and the chemical elements. Biochemistry, uptake, tolerance and toxicity. VCH Publishers, Weinheim, pp 150–177

    Google Scholar 

  • Vanin AF, Svistunenko DA, Mikoyan VD, Serezhenkov VA, Fryer MJ et al (2004) Endogenous superoxide production and the nitrite/nitrate ratio control the concentration of bioavailable free nitric oxide in leaves. J Biol Chem 2(79):24100–24107

    Google Scholar 

  • Wagner D, Przybyla D, Op Den Camp R et al (2004) The genetic basis of singlet oxygen-induced stress response of Arabidopsis thaliana. Science 306(5699):1183–1185

    PubMed  CAS  Google Scholar 

  • Waldeck AR, Stocker R (1996) Free radical initiated lipid peroxidation in low density lipoproteins: insights from kinetic modelling. Chem Res Toxicol 9:954–964

    PubMed  CAS  Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40(7):725–732

    PubMed  CAS  Google Scholar 

  • Wang X, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channel and abscisic acid signaling in Arabidopsis guard cells. Science 15:2070–2072

    Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Webb R, Fuchigami L (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130(2):167–173

    CAS  Google Scholar 

  • Wang P, Du Y, Li Y, Ren D, Song C-P (2010) Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22:2981–2998

    PubMed  CAS  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opi Struct Biol 2(3):388–393

    CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393(6683):365–369

    PubMed  CAS  Google Scholar 

  • White PJ (2000) Calcium channels in higher plants. Biochim Biophys Acta 1465:171–189

    PubMed  CAS  Google Scholar 

  • Willekens H, Langebartels C, Tire C, Van Montagu M, Inzé D, Van Camp W (1994) Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). Proc Natl Acad Sci U S A 91:10450–10454

    PubMed  CAS  Google Scholar 

  • Willekens H, Inze D, Van Montagu M, Van Camp W (1995) Catalases in plants. Mol Breed 1(3):207–228

    CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M et al (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J 16(16):4806–4816

    PubMed  CAS  Google Scholar 

  • Xing T, Wang XJ, Malik K, Miki BL (2001) Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. Mol Plant Microbe Interact 14:1261–1264

    PubMed  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signalling during cold, drought and salt stress. Plant Cell 14:S165–S183

    PubMed  CAS  Google Scholar 

  • Xu MJ, Dong JF, Zhu MY (2005) Effect of nitric oxide on Catharanthine production and growth of Catharanthus roseus suspension cells. Biotechnol Bioeng 89:367–371

    PubMed  CAS  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid-membrane bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–926

    PubMed  CAS  Google Scholar 

  • Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones JDG, Doke N, Yoshioka H (2006) Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol 140:681–692

    PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBs Lett 468:89–92

    PubMed  CAS  Google Scholar 

  • Yamauchi Y, Furutera A, Seki K, Toyoda Y, Tanaka K, Sugimoto Y (2008) Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol Biochem 46(8–9):786–793

    PubMed  CAS  Google Scholar 

  • Yan J, Tsuichihara N, Etoh T, Iwai S (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ 30(10):1320–1325

    PubMed  CAS  Google Scholar 

  • Yeh CM, Chien PS, Huang HJ (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58(3):659–671

    PubMed  CAS  Google Scholar 

  • Yinong Yang, Jyoti Shah, Klessig DF (2012) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    Google Scholar 

  • Yoshie Y, Goto K, Takai R, Iwano M, Takayama S, Isogai A, Che F-C (2005) Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotechnol 22:127–135

    CAS  Google Scholar 

  • Yoshioka H, Sugie K, Park H-J, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol Plant Microbe Interact 14:725–736

    PubMed  CAS  Google Scholar 

  • Yoshioka H, Asai S, Oshioka MY, Kobayashi M (2009) Molecular mechanisms of generation for nitric oxide and reactive oxygen species, and role of the radical burst in plant immunity. Mol Cells 28:321–329

    PubMed  CAS  Google Scholar 

  • Yoshioka H, Mase K, Yoshioka M, Kobayashi M, Asai S (2011) Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity. Review. Nitric Oxide 25:216–221

    PubMed  CAS  Google Scholar 

  • Young J (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83(4):702–708

    CAS  Google Scholar 

  • Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001) Oxidative stress activates ATMPK6, an Arabidopsis homologue of map kinase. Plant Cell Physiol 42(9):1012–1016

    PubMed  CAS  Google Scholar 

  • Yushi Ishibashi, Yuka Koda, Shao-Hui Zheng, Takashi Yuasa, Mari Iwaya-Inoue (2013) Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Ann Bot 111:95–112. doi:10.1093/aob/mcs240

    PubMed  Google Scholar 

  • Zaefyzadeh M, Quliyev RA, Babayeva SM, Abbasov MA (2009) The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turk J Biol 33(1):1–7

    CAS  Google Scholar 

  • Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T et al (2004) Innate immunity in A. thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci U S A 101:15811–15816

    PubMed  CAS  Google Scholar 

  • Zemojtel T, Frohlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525

    PubMed  CAS  Google Scholar 

  • Zhang J, Liu ZY et al (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30(3):389–398

    PubMed  CAS  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    PubMed  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ- glutamylcysteine synthetase. Plant Physiol 121(4):1169–1177

    PubMed  CAS  Google Scholar 

  • Zottini M, Costa A, De Michele R, Ruzzene M, Carimi F, Lo Schiavo F (2007) Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot 58:1397–1405

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reiaz Ul Rehman or M. Z. Abdin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Malik, B., Pirzadah, T.B., Tahir, I., Rehman, R.U., Hakeem, K.R., Abdin, M.Z. (2014). Plant Signaling: Response to Reactive Oxygen Species. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_1

Download citation

Publish with us

Policies and ethics