Skip to main content

Soil Rhizobacteria Regulating the Uptake of Nutrients and Undesirable Elements by Plants

  • Chapter
  • First Online:
Plant Microbe Symbiosis: Fundamentals and Advances

Abstract

Numerous rhizosphere bacteria are known to be beneficial for plant growth. Such bacterial species are generally recognized as plant growth-promoting rhizobacteria. In this chapter, different mechanisms are discussed by which, depending on the specific conditions, plants benefit from growth and development of rhizobacterial population. Such mechanisms directly or indirectly influence plant growth and development. Direct mechanisms are related to phosphorus solubilization, nitrogen fixation, iron chelation, production of phytohormones, and degradation of ethylene production, while the indirect are fitted to suppression of plant phytopathogens and induced systematic resistance in plants. The combination of mechanisms is possible to exist in a habitat where a microbial community composed of plant-growth-promoting rhizobacteria finds suitable niches for development. This chapter also reviews different combinations of mechanisms presented in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abel S, Nguyen MD, Chow W, Theologis A (1995) ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana: structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. J Biol Chem 270:19093–19099

    CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2010) Phosphate-solubilizing and plant growth-promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 58:361–372

    CAS  PubMed  Google Scholar 

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic, London

    Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    CAS  PubMed  Google Scholar 

  • Antoun H, Prevost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 1–38

    Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Google Scholar 

  • Arshad M, Frankenberger WT (1998) Plant growth regulating substances in the rhizosphere. Microbial production and functions. Adv Agron 62:46–151

    Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    CAS  Google Scholar 

  • Barlow PW, Brain P, Parker JS (1991) Cellular growth in roots of a gibberellin-deficient mutant of tomato (Lycopersicon esculentum Mill.) and its wild-type. J Exp Bot 42:339–351

    CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classification: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    CAS  Google Scholar 

  • Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 1–56

    Google Scholar 

  • Bishop PE, Joerger RD (1990) Genetics and molecular biology of an alternative nitrogen fixation system. Plant Mol Biol 41:109–125

    CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) A gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    CAS  PubMed  Google Scholar 

  • Borie F, Zunino H, Martínez L (1989) Macromolecule P-associations and inositol phosphates in sole Chilean volcanic soils of temperate regions. Commun Soil Sci Plant Anal 20:1881–1894

    CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    CAS  PubMed  Google Scholar 

  • Broekaert WF, Delauré SL, De Bolle MFC, Cammue BPA (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416

    CAS  PubMed  Google Scholar 

  • Cacciari I, Lippi D, Pietrosanti T, Pietrosanti W (1989) Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant Soil 115:151–153

    CAS  Google Scholar 

  • Carrillo-Castañeda G, Juárez Muños J, Peralta-Videa JR, Gomez E, Tiemann KJ, Duarte-Gardea M, Gardea-Torresdey JL (2002) Alfalfa growth promotion by bacteria grown under iron limiting conditions. Adv Environ Res 6:391–399

    Google Scholar 

  • Carson KC, Glenn AR, Dilworth MJ (1994) Specificity of siderophore-mediated transport of iron in rhizobia. Arch Microbiol 161:333–339

    CAS  Google Scholar 

  • Chen Z, Ma S, Kiu LL (2008) Study on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresour Technol 99:6702–6707

    CAS  PubMed  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    CAS  PubMed  Google Scholar 

  • Chincholkar SB, Chaudhari BL, Rane MR (2007) Microbial siderophores: state of art. In: Chincholkar SB, Varma A (eds) Microbial siderophores. Springer, Berlin, Heidelberg, pp 233–242

    Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    CAS  Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175

    CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    CAS  PubMed  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadía J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198

    Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition: quantitative approach. Plant Soil 156:1–20

    Google Scholar 

  • de Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Google Scholar 

  • Dean DR, Jacobson MR (1992) Biochemical genetics and nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    CAS  Google Scholar 

  • Farwell AJ, Veselya S, Neroa V, Rodriguez H, McCormack K, Shah S, Dixona DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545

    CAS  PubMed  Google Scholar 

  • Fernandez LA, Zalba P, Gomez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under green house conditions. Biol Fertil Soils 43:803–805

    Google Scholar 

  • Fernando WGD, Nakkeeran S, Yilan Z (2006) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    CAS  Google Scholar 

  • Frankenberger WT, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker, New York

    Google Scholar 

  • Freitas ADS, Vieira CL, Santos CERS, Stamford NP, Lyra MCCP (2007) Caracterização de rizóbios isolados de Jacatupé cultivado em solo salino no Estado de Pernanbuco, Brasil. Bragantia 66:497–504

    Google Scholar 

  • Fuentes-Ramírez LE, Caballero-Mellado J (2006) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 143–172

    Google Scholar 

  • Fukaki H, Okushima Y, Tasaka M (2007) Auxin-mediated lateral root formation in higher plants. Int Rev Cytol 256:111–137

    CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378

    CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  • Goldstein AH, Krishnaraj PU (2007) Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: what separates a phenotype from a trait? In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Netherlands, pp 203–213

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  • Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Google Scholar 

  • Gyaneshwar P, Parekh LJ, Archana G, Poole PS, Collins MD, Hutson RA, Kumar GN (1999) Involvement of a phosphate-starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol Lett 171:223–229

    CAS  Google Scholar 

  • Haas D, Blumer C, Keel C (2000) Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr Opin Biotechnol 11:290–297

    CAS  PubMed  Google Scholar 

  • Hallman J, Quadt-Hallman A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Google Scholar 

  • Hariprasad P, Niranjana SR (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316:13–24

    CAS  Google Scholar 

  • Hasky-Günter K, Hoffman-Hergarten S, Sikora RA (1998) Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43), Furuiam. Fundam Appl Nematol 5:1164–5571

    Google Scholar 

  • Hassanein WA, Awny NM, El-Mougith AA, Salah El-Dien SH (2009) The antagonistic activities of some metabolites produced by Pseudomonas aeruginosa Sha8. J Appl Sci Res 5:404–414

    CAS  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. Arb Dtsch Landwirtsch Ges 98:59–78

    Google Scholar 

  • Höflich G, Wiehe W, Kühn G (1994) Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experientia 50:897–905

    Google Scholar 

  • Holguin G, Glick BR (2001) Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microb Ecol 41:281–288

    CAS  PubMed  Google Scholar 

  • Holguin G, Glick BR (2003) Transformation of Azospirillum brasilense Cd with an ACC deaminase gene from Enterobacter cloacae UW4 fused to the Tetr gene promoter improves its fitness and plant growth promoting ability. Microb Ecol 46:122–133

    CAS  PubMed  Google Scholar 

  • Howie WJ, Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol Plant Microbe Interact 4:393–399

    CAS  Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahr G, Defag G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic condition. Phytopathology 79:584–589

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:28–43

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009) Functional diversity among plant growth-promoting rhizobacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin/Heidelberg, pp 105–132

    Google Scholar 

  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monteroso C (2009) Trace element behavior at the root-soil interface: implications in phytoremediation. J Environ Exp Bot 67:243–259

    CAS  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397

    CAS  PubMed  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans a phosphate solubilizing bacteria and microbial activity in soil: effect of carbon source. Soil Biol Biochem 30:995–1003

    CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, Angers, 27 Aug–2 Sept 1978, pp 879–882

    Google Scholar 

  • Kuhad RC, Kothamasi DM, Tripathi KK, Singh A (2004) Diversity and functions of soils microflora in development of plants. In: Varma A, Abbot L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, New York, pp 71–98

    Google Scholar 

  • Kumar T, Wahla V, Pandey P, Dubey RC, Maheshwari DK (2009) Rhizosphere competent Pseudomonas aeruginosa in the management of Heterodera cajani on sesame. World J Microbiol Biotechnol 25:277–285

    Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Google Scholar 

  • Maheshwari DK (2011) Plant growth and health promoting bacteria, Microbiology monographs. Springer, Heidelberg

    Google Scholar 

  • Masalha J, Kosegarten H, Elmaci Ö, Mengal K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    CAS  PubMed  Google Scholar 

  • McKenzie RH, Roberts TL (1990) Soil and fertilizers phosphorus update. In: Proceedings of the Alberta soil science workshop, Edmonton, 20–22 Feb 1990, pp 84–104

    Google Scholar 

  • Meyer JM, Stintzi A (1998) Iron metabolism and siderophores in Pseudomonas and related species. In: Montie TC (ed) Biotechnology handbooks, vol 10, Pseudomonas. Plenum Publishing Co., New York, pp 201–243

    Google Scholar 

  • Mirza MS, Mehnaz S, Normand P, Prigent-Combaret C, Moënne-Loccoz Y, Bally R, Malik KA (2006) Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43:163–170

    CAS  Google Scholar 

  • Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40:718–727

    CAS  Google Scholar 

  • Mukerji KG, Manoharachary C, Singh J (2006) Microbial activity in the rhizosphere, vol 7, Soil biology. Springer, Heidelberg

    Google Scholar 

  • Mullen MD (2005) Phosphorus in soils: biological interactions. In: Hillel D, Rosenzweig C, Powlson D, Scow K, Singer M, Sparks D (eds) Encyclopedia of soils in the environment, vol 3, Academic Press. Elsevier, Oxford, pp 210–215

    Google Scholar 

  • Neilands JB (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208

    CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    CAS  PubMed  Google Scholar 

  • Nowak J, Shulaev V (2003) Priming for transplant stress resistance in vitro propagation. In Vitro Cell Dev Biol Plant 39:107–124

    Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    CAS  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimarães CT, Schaffert RE, Sá NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    CAS  Google Scholar 

  • Ona O, Van Impe J, Prinsen E, Vanderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246:125–132

    CAS  PubMed  Google Scholar 

  • Oostendorp M, Sikora RA (1989) Seed treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Rev Nématol 12:77–83

    Google Scholar 

  • Oostendorp M, Sikora RA (1990) In-vitro interrelationships between rhizosphere bacteria and Heterodera schachtii. Rev Nématol 13:269–274

    Google Scholar 

  • Pate JS, Verboom WH, Galloway PD (2001) Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Aust J Bot 49:529–560

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    CAS  PubMed  Google Scholar 

  • Peoples M, Giller D, Herridge DF, Vessey K (2002) Limitations to biological nitrogen fixation as a renewable source of nitrogen for agriculture. In: Finan T, O’Brian M, Layzell D, Vessey K, Newton W (eds) Nitrogen fixation: global perspectives. CAB International, Wallingford, pp 356–360

    Google Scholar 

  • Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70:127–131

    PubMed  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    CAS  PubMed  Google Scholar 

  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, De Greef J, Schell J, Van Onckelen H (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett 282:53–55

    CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    CAS  PubMed  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    CAS  PubMed  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Soil biota: management in sustainable farming systems. CSIRO, Victoria, pp 50–62

    Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R, González T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Google Scholar 

  • Schalk IJ, Hennard C, Durgave L, Poole K, Abdallah MH, Pattus F (2001) Iron-free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: a new mechanism for membrane iron transport. Mol Microbiol 39:351–360

    CAS  PubMed  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM, Van Peer R (1990) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil 129:75–83

    CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:46–56

    Google Scholar 

  • Sharma A, Johri BN (2003) Combat of iron-deprivation through a plant growth promoting fluorescent Pseudomonas strain GRP3A in mung bean. Microbiol Res 158:77–81

    CAS  PubMed  Google Scholar 

  • Shilev S, Sancho ED, Benlloch M (2010) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manag 95:S37–S41

    Google Scholar 

  • Shilev S, Naydenov M, Sancho Prieto M, Sancho ED, Vassilev N (2012) PGPR as inoculants in management of lands contaminated with trace elements. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 259–277

    Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biocontrol. Springer, Dordrecht, pp 112–142

    Google Scholar 

  • Silverman FP, Assiamah AA, Bush DS (1998) Membrane transport and cytokinin action in root hairs of Medicago sativa. Planta 205:23–31

    CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    CAS  PubMed  Google Scholar 

  • Swain MR, Naskar SK, Ray RC (2007) Indole-3-acetic acid production and effect on sprouting of Yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Pol J Microbiol 56:103–110

    CAS  PubMed  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci India 89:136–150

    CAS  Google Scholar 

  • Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc B 357:449–469

    CAS  Google Scholar 

  • Unkovich M, Baldock J (2008) Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biol Biochem 40:2915–2921

    CAS  Google Scholar 

  • Van de Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181:1338–1342

    Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  PubMed  Google Scholar 

  • Winkelmann G (2002) Microbial siderophores-mediated transport. Biochem Soc Trans 30:691–695

    CAS  PubMed  Google Scholar 

  • Yaxley JR, Ross JJ, Sherriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiol 125:627–633

    CAS  PubMed  Google Scholar 

  • Zahir AA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    CAS  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram- Bradyrhizobium symbiosis. Turk J Agric 30:223–230

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of Fund “Science investigation” of the Bulgarian Ministry of Education, Youth and Science for Bulgarian part of project COST Action FA0905 “Mineral improved crop production for health food and feed.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Shilev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Shilev, S. (2013). Soil Rhizobacteria Regulating the Uptake of Nutrients and Undesirable Elements by Plants. In: Arora, N. (eds) Plant Microbe Symbiosis: Fundamentals and Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1287-4_5

Download citation

Publish with us

Policies and ethics