Skip to main content

Transactions Among Microorganisms and Plant in the Composite Rhizosphere Habitat

  • Chapter
  • First Online:
Plant Microbe Symbiosis: Fundamentals and Advances

Abstract

Root exudates selectively influence the growth of microorganisms that colonize the rhizosphere by altering the chemistry of soil in the vicinity of the plant roots and by serving as signal molecules and selective growth substrates for soil microorganisms. Microbial signals to plants influence the cell metabolism and plant nutrition and growth. It is increasingly apparent that, in nature, microbes function less as individuals and more as coherent groups that are able to inhabit multiple ecological niches. Because of current public concerns about the side effects of agrochemicals, there is an increasing interest in improving the understanding of cooperative activities among plants and rhizosphere microbial populations. This review provides a better understanding of processes such as stimulation of microbial activity by root exudates, competition between microorganisms and roots for nutrients, and molecular talk between roots and microorganisms and among microorganisms in the rhizosphere. Various positive plant–microbe–microbe interactions along with their multifaceted communications are highlighted that should be studied in an integrated manner for the development of sustainable agriculture with global applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier-Academic, San Diego, p 922

    Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    CAS  PubMed  Google Scholar 

  • Anitha A, Rabeeth M (2010) Degradation of fungal cell walls of phytopathogenic fungi by lytic enzyme of Streptomyces griseus. Afr J Plant Sci 4:61–66

    CAS  Google Scholar 

  • Ansaldi M, Marolt D, Stebe T, Mandic-Mulec I, Dubnau D (2002) Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Mol Microbiol 44:1561–1573

    CAS  PubMed  Google Scholar 

  • Appanna VD, Whitmore L (1995) Biotransformation of zinc by Pseudomonas fluorescens. Microbios 82:149–155

    CAS  Google Scholar 

  • Arnold W, Rump A, Klipp W, Priefer UB, Pühler A (1988) Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol 203:715–738

    CAS  PubMed  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strain of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 25:674–677

    Google Scholar 

  • Arora NK, Khare E, Verma A, Sahu RK (2008) In vivo control of Macrophomina phaseolina by a chitinase and β 1,3-glucanase-producing Pseudomonads NDNI. Symbiosis 46:129–135

    CAS  Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin Heidelberg, pp 239–258

    Google Scholar 

  • Askeland RA, Morrison SM (1983) Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Appl Environ Microbiol 45:1802–1807

    CAS  PubMed  Google Scholar 

  • Auger S, Evelyne K, Stéphane Aymerich S, Gohar M (2006) Autoinducer 2 affects biofilm formation by Bacillus cereus. Appl Environ Microbiol 72:937–941

    CAS  PubMed  Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher F (1997) Plasticity of polyamine metabolism associated with high osmotic stress in rape leaf discs and with ethylene treatment. Plant Growth Regul 21:153–163

    CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650

    CAS  PubMed  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    PubMed  Google Scholar 

  • Baldwin IT, Kessler A, Halitschke R (2002) Volatile signaling in plant-plant-herbivore interactions: what is real? Curr Opin Plant Biol 5:351–354

    CAS  PubMed  Google Scholar 

  • Ballot F (2009) Bacterial production of antimicrobial biosurfactant. Dissertation, University of Stellenbosch, Stellenbosch

    Google Scholar 

  • Banks RM, Donald AC, Hannan PC, O’Hanlon PJ, Ragers NH (1998) Antimycroplasmal activities of pseudomonic acid and structure-activity relationship of monic acid A derivatives. J Antibiot 41:609–613

    Google Scholar 

  • Baruah TC, Barthakur HP (1999) A text book of soil analysis. Vikas publishing house Pvt Ltd, New Delhi

    Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    CAS  PubMed  Google Scholar 

  • Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    CAS  PubMed  Google Scholar 

  • Bent E (2005) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 225–258

    Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities. FEMS Microbiol Ecol 68:1–13

    CAS  PubMed  Google Scholar 

  • Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R (2006) Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol 185:373–382

    CAS  PubMed  Google Scholar 

  • Black M, Paula M, Brett C, Roberto B, John H, Mariangela H, Matthew B (2012) The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes 3(1):138–166

    Google Scholar 

  • Boon C, Deng Y, Wang LH, He Y, Xu JL, Fan Y, Pan SQ, Zhang LH (2008) A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2:27–36

    CAS  PubMed  Google Scholar 

  • Bottini R, Cassan F, Picolli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    CAS  PubMed  Google Scholar 

  • Breuninger M, Requena N (2004) Recognition events in AM symbiosis: analysis of fungal gene expression at early appressorium stage. Fungal Genet Biol 41:794–804

    CAS  PubMed  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Google Scholar 

  • Brurberg MB, Nes IF, Eijsink VGH (1996) Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 142:1581–1589

    CAS  PubMed  Google Scholar 

  • Campbell R, Greaves MP (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley, New York, pp 11–34

    Google Scholar 

  • Castric P (1994) Influence of oxygen on the Pseudomonas aeruginosa hydrogen cyanide synthase. Curr Microbiol 29:19–21

    CAS  Google Scholar 

  • Castro RO, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Google Scholar 

  • Chater KF, Horinouchi S (2003) Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48:9–15

    CAS  PubMed  Google Scholar 

  • Cheng HH (1995) Characterization of the mechanism of allelopathy: modeling and experimental approaches. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. American Chemical Society, Washington, DC, pp 132–141

    Google Scholar 

  • Chernin LS, Winson MK, Jacquelyn MT, Haran S, Bycroft BW, Chet I, Williams P, Gordon SABS (1998) Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 180(17):4435–4441

    CAS  PubMed  Google Scholar 

  • Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci 81:768–775

    CAS  Google Scholar 

  • Ciardi JA, Tieman DM, Lund ST, Jones JB, Stall RE, Klee HJ (2000) Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol 123:81–92

    CAS  PubMed  Google Scholar 

  • Claudine F, Kristina L, Claudine E (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Google Scholar 

  • Collins CH, Lyne PM, Granze JM (1992) Microbiological methods. Read Educational and Professional, Gauteng, p 117

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    CAS  PubMed  Google Scholar 

  • Contreras MS, Bauer WD, Gao MS, Robinson JB, Downie JA (2007) Quorum-sensing regulation in Rhizobium and its role in symbiotic interactions with legumes. Philos Trans R Soc B 362:1149–1163

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez LI, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    CAS  PubMed  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul, p 539

    Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ (1991) Mechanism of iron acquisition from siderophores by microorganisms and plants. In: Chen Y, Hadar Y (eds) Iron nutrition and interaction in plants. Kluwer Academic, Dordrecht, pp 213–232

    Google Scholar 

  • Cuppels DA, Howell CR, Stipanovic RD, Stossel A, Stothers JB (1986) Biosynthesis of pyoluteorin: a mixed polyketide-tricarboxylic acid cycle origin demonstrated by [1,2-13C2] acetate incorporation. Z Naturfor Sect C Naturfor 41:532–536

    CAS  Google Scholar 

  • D’Angelo-Picard C, Faure D, Penot I, Dessaux Y (2005) Diversity of N-acyl homoserine lactone-producing and degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol 7:1796–1808

    PubMed  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289

    CAS  PubMed  Google Scholar 

  • Das K, Mukherjee AK (2005) Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples. Appl Microbiol Biotechnol 69:192–199

    CAS  PubMed  Google Scholar 

  • Davies WJ, Zhang JH (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol 42:55–76

    CAS  Google Scholar 

  • de Boer M (2000) Combining Pseudomonas strains to improve biological control of Fusarium wilt in radish. Ph.D. thesis, Utrecht University, Utrecht

    Google Scholar 

  • de Kievit TR (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11:279–288

    PubMed  Google Scholar 

  • Degrassi G, Aguilar C, Bosco M, Zahariev S, Pongor S, Venturi V (2002) Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacterial sensors. Curr Microbiol 45:250–254

    CAS  PubMed  Google Scholar 

  • Deshwal V, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as biological control agent against soil borne plant pathogenic fungi. Indian J Exp Biol 41:1160–1164

    CAS  PubMed  Google Scholar 

  • Diggle SP, Cornelis P, Williams P, Cámara M (2006) 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296:83–91

    CAS  PubMed  Google Scholar 

  • Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Cámara M, Williams P (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14(1):87–96

    CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    CAS  Google Scholar 

  • Doornbos RF, van Loon LC, Peter AHM, Bakker A (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Rev Sustain Dev 32:227–243

    Google Scholar 

  • Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in Rhizobia from southern Saskatchewan. Microb Ecol 57:423–436

    CAS  PubMed  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    CAS  PubMed  Google Scholar 

  • Duffy B, Keel C, Défago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70(3):1836–1842

    CAS  PubMed  Google Scholar 

  • Dufour P, Jarraud S, Vandenesch F, Greenland T, Novick RP, Bes M, Etienne J, Lina G (2002) High genetic variability of the agr locus in Staphylococcus species. J Bacteriol 184:1180–1186

    CAS  PubMed  Google Scholar 

  • Dunne C, Moënne-Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, O’Gara F (1998) Combining proteolytic and phloroglucinol-producing bacteria for improved biocontrol of Pythium-mediated damping-off of sugar beet. Plant Pathol 47:299–307

    Google Scholar 

  • Duponnois R, Kisa M, Plenchette C (2006) Phosphate-solubilizing potential of the nematophagous fungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282

    CAS  Google Scholar 

  • Elizabeth AS, Milner JL, Handelsman J (1999) Zwittermicin A biosynthetic cluster. Gene 237:403–411

    Google Scholar 

  • Elkahoui S, Rahim HA, Tabbene O, Shaaban M, Limam F, Laatsc H (2013) Cyclo-(His,Leu): a new microbial diketopiperazine from a terrestrial Bacillus subtilis strain B38. Nat Prod Res 27(2):108–16

    CAS  PubMed  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GESJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    CAS  PubMed  Google Scholar 

  • Emmert BAE, Klimowicz KA, Thomas GM, Handelsman J (2004) Genetics of zwittermicin A production by Bacillus cereus. Appl Environ Microbiol 70:104–113

    CAS  PubMed  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6

    CAS  PubMed  Google Scholar 

  • Faure D, Vereecke D, Leveau JHH (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    CAS  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocation of host photosynthesis. J Appl Microbiol 100:938–945

    CAS  PubMed  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Google Scholar 

  • Fisherman A, Tao Y, Rui L, Wood TK (2005) Controlling the regiospecific oxidation of aromatics via active site engineering of toluene para-monooxygenase of Ralstonia pickettii PKO1. J Biol Chem 280:506–514

    Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    CAS  PubMed  Google Scholar 

  • Frankenberger WTJ, Arshad M (1995) Phytohormones in soils: microbial production and function. Dekker, New York, p 503

    Google Scholar 

  • Fuller AT, Mellows G, Woolford MB, Barrow KD, Chain EB (1971) Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescence. Nature 234:416–417

    CAS  PubMed  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria, the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    CAS  PubMed  Google Scholar 

  • Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480

    CAS  PubMed  Google Scholar 

  • Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin/Heidelberg, pp 17–46

    Google Scholar 

  • Gaur AC, Ostwal KP (1972) Influence of phosphate dissolving Bacilli on yield and phosphate uptake of wheat crop. Indian J Exp Biol 10:393–394

    CAS  Google Scholar 

  • Gilberto OM, Carla SD, Ivo RS, José IRJ, Olinto LP, Maurício DC (2013) Fungal rock phosphate solubilization using sugarcane bagasse. World J Microbiol Biotechnol 29(1):43–50

    Google Scholar 

  • Goldstein AH (1994) Solubilization of exogenous phosphates by gram negative bacteria. In: Silver S (ed) Cellular and molecular biology of phosphate and phosphorylated compounds in microorganisms. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Graham DR, Webb MJ (1991) Micronutrient and disease resistance and tolerance in plant. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture, 2nd edn. Soil Science Society of America, Madison, pp 329–370

    Google Scholar 

  • Gutierrez-Manero FJ, Ramos B, Probanza A, Mehouachi J, Talon M (2001) The plant growth-promoting rhizobacteria Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Google Scholar 

  • Gysegom P (2005) Study of the transcriptional regulation of a key gene in indole-3-acetic acid biosynthesis in Azospirillum brasilense. Ph.D. thesis, K.U. Leuven, Flanders

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    CAS  PubMed  Google Scholar 

  • Haichar FZ, Christine Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    CAS  PubMed  Google Scholar 

  • Hanzelka BL, Greenberg EP (1995) Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J Bacteriol 77(3):815–817

    Google Scholar 

  • Haran S, Schickler H, Chet A (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142:2321–2331

    CAS  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    CAS  Google Scholar 

  • Hartwig UA, Cecillia MJ, Donald AP (1991) Flavonoids released naturally from Alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol 95:797–803

    CAS  PubMed  Google Scholar 

  • Hassett DJ, Woodruff WA, Wozniak DJ, Vasil ML, Cohen MS, Ohman DE (1993) Cloning and characterization of the Pseudomonas aeruginosa sodA and sodB genes encoding manganese- and iron-cofactored superoxide dismutase: demonstration of increased manganese superoxide dismustase activity in alginate-producing bacteria. J Bacteriol 175:7658–7665

    CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth and promotion: a review. Annu Microbiol. doi:10.1007/s13213-010-0117-1

    Google Scholar 

  • Heeb S, Matthew SRC, Stephen PD, Paul W, Miguel C (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35(2):247–274

    CAS  PubMed  Google Scholar 

  • Hentzer M, Wu H, Andersen JB (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815

    CAS  PubMed  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints – a review. Plant Soil 248:43–59

    CAS  Google Scholar 

  • Holden MT, Chhabra R, de Nys S, Stead R, Bainton P, Hill NJ, Manefield PJ, Kumar MN, Labatte MM (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Axinella vaceleti and other Gram-negative bacteria. Mol Microbiol 33:1254–1266

    CAS  PubMed  Google Scholar 

  • Holden M, Swift S, Williams P (2000) New signal molecules on the quorum-sensing block trends. Microbiology 8:101–104

    CAS  Google Scholar 

  • Honma M (1993) Stereospecific reaction of 1-aminocyclopropane-1-carboxylate deaminase. In: Pech JC, Latché A, Balagué C (eds) Cellular and molecular aspects of the plant hormone ethylene. Kluwer, Dordrecht, pp 111–116

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19:550–555

    CAS  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum induced damping off of cotton seedlings by Pseudomonas fluorescens on its antibiotic pyoluteorin. Phytopathology 70:712–715

    CAS  Google Scholar 

  • Hu M, Zhang C, Mu Y, Shen Q, Feng Y (2010) Indole affects biofilm formation in bacteria. Indian J Microbiol 50:362–368

    CAS  PubMed  Google Scholar 

  • Huang PM, Wang MC, Wang MK (1999) Catalytic transformation of phenolic compounds in the soil. In: Inderjit et al (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 287–306

    Google Scholar 

  • Huang R, Xuefeng Z, Tunhai X, Xianwen Y, Liu Y (2010) Diketopiperazines from marine organisms. Chem Biodiv 7(12):2809–2829

    CAS  Google Scholar 

  • Huber DM, Graham RD (1999) The role of nutrition in crop resistance and tolerance to disease. In: Rengel Z (ed) Mineral nutrition of crops fundamental mechanisms and implications. Food Product Press, New York, pp 205–226

    Google Scholar 

  • Hughes J, Mellows G (1980) Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochem J 191:209–219

    CAS  PubMed  Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27:257–263

    CAS  Google Scholar 

  • Inderjit A, Weston LA (2003) Root exudation: an overview. In: de Kroon H (ed) Root ecology, Ecological studies. Springer, London, pp 235–255

    Google Scholar 

  • Ingledew WM, Campbell JJR (1969) Evaluation of shikimic acid as a precursor of pyocyanine. Can J Microbiol 15:535–541

    CAS  PubMed  Google Scholar 

  • Jia YJ, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63:542–549

    CAS  PubMed  Google Scholar 

  • Jones DL, Darrah PR (1995) Influx and efflux of organic acid across the root-soil interface of Zea mays L. and its implication in rhizosphere C flow. Plant Soil 173:103–109

    CAS  Google Scholar 

  • Joo GJ, Kin YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    CAS  PubMed  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91

    PubMed  Google Scholar 

  • Kang BR, Yang KY, Cho BH, Han TH, Kim IS, Lee MC, Anderson AJ, Kim YC (2006) Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase, GacS. Curr Microbiol 52:473–476

    CAS  PubMed  Google Scholar 

  • Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, Hong JK, Lee IJ (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281

    CAS  PubMed  Google Scholar 

  • Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci USA 102:309–314

    CAS  PubMed  Google Scholar 

  • Keel C, Défago G (1997) Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, Oxford, pp 27–46

    Google Scholar 

  • Kevany BM, Rasko DA, Thomas MG (2009) Characterization of the complete Zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol 75(4):1144–1155

    CAS  PubMed  Google Scholar 

  • Khare E, Arora NK (2010) Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr Microbiol 61:64–68

    CAS  PubMed  Google Scholar 

  • Khare E, Arora NK (2011) Dual activity of pyocyanin from Pseudomonas aeruginosa – antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Can J Microbiol 57:708–713

    CAS  PubMed  Google Scholar 

  • Kleerebezem M, Quadri LEN (2001) Peptide pheromone dependent regulation of antimicrobial peptide production in Gram-positive bacteria; a case of multicellular behavior. Peptides 22:1579–1596

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978). In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Végétale et de Phytobactériologie, INRA, Angers, pp 879–882

    Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    CAS  PubMed  Google Scholar 

  • Koch AK, Kappeli O, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219

    CAS  PubMed  Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967–973

    CAS  PubMed  Google Scholar 

  • Lata H, Li XC, Silva B, Moraes RM, Halda-Alija L (2006) Identification of IAA producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Org Cult 85:353–359

    CAS  Google Scholar 

  • Le pine F, Déziel E, Milot S, Rahme LG (2003) A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochem Biophys Acta 1622:36–41

    CAS  Google Scholar 

  • Lee JH, Lee J (2012) Indole as an intercellular signal in microbial communities. Afr J Microbiol Res 6(30):6005–6012

    Google Scholar 

  • Lee SW, Han SW, Bartley LE, Ronald PC (2006) Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA 103:18395–18400

    CAS  PubMed  Google Scholar 

  • Lee SW, Jeong KS, Han SW, Lee SE, Phee BK, Hahn TR, Ronald P (2008) The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. J Bacteriol 190:2183–2197

    CAS  PubMed  Google Scholar 

  • Lerouge P (1994) Symbiotic host specificity between leguminous plants and rhizobia is determined by substituted and acylated glucosamine oligosaccharide signals. Glycobiology 4:127–134

    CAS  PubMed  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    CAS  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3(7):2702

    Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions of plant surfaces. Mol Plant Microbe Interact 4:5–13

    CAS  Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Woo SL, Di Piettro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83:302–307

    CAS  Google Scholar 

  • Lucangeli C, Bottini R (1997) Effects of Azospirillum spp. on endogenous gibberellins content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 23:63–72

    CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinations of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    CAS  PubMed  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) The Rhizobium leguminosarum bv. viciae ACC deaminase protein promotes the nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    CAS  PubMed  Google Scholar 

  • MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi and bacteria. J Plant Growth Regul 20:387–442

    Google Scholar 

  • Maheshwari DK, Kumar S, Narendra K, Maheshwari DP, Saraf M (2012) Nutrient availability and management in the rhizosophere by microorganisms. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889

    Google Scholar 

  • Mathesius U (2008) Auxin: at the root of nodule development? Funct Plant Biol 35:651–668

    CAS  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3(1):1–7

    CAS  Google Scholar 

  • Maurhofer M, Baehler E, Notz R, Martinez V, Keel C (2004) Cross talk between 2,4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots. Appl Environ Microbiol 70:1990–1998

    CAS  PubMed  Google Scholar 

  • McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708

    CAS  PubMed  Google Scholar 

  • McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284

    CAS  PubMed  Google Scholar 

  • Miller LD, Yost CK, Hynes MF, Alexandre G (2007) The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Mol Microbiol 63:348–362

    CAS  PubMed  Google Scholar 

  • Misra N, Gupta G, Jha PN (2012) Assessment of mineral phosphate solubilizing properties and molecular characterization of zinc tolerant bacteria. J Basic Microbiol 52:1–10

    Google Scholar 

  • Murray JD, Bogumil JK, Shusei SH, Satoshi T, Lisa A, Krzysztof S (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–107

    CAS  PubMed  Google Scholar 

  • Nakouti I, Sihanonth P, Hobbs G (2012) A new approach to isolating siderophore-producing actinobacteria. Lett Appl Microbiol 55:68–72

    CAS  PubMed  Google Scholar 

  • Navazio L, Moscatiello R, Genre G, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681

    CAS  PubMed  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7(4):e35498

    CAS  PubMed  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    CAS  PubMed  Google Scholar 

  • Neufeld JD, Wagner M, Murrell JC (2007) Witnessing the last supper of uncultivated microbial cells with Raman-FISH. ISME J 1:269–270

    PubMed  Google Scholar 

  • Nieto KF, Frankenberger WT (1990) Microbial production of cytokinins. Soil Biochem 6:191–248

    CAS  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agro Soc Environ 15:327–337

    Google Scholar 

  • Oldroyd GE (2007) Nodules and hormones. Science 315:52–53

    CAS  PubMed  Google Scholar 

  • Park SW, Bais HP, Weir TL, Callaway RM, Vivanco JM (2002) Enzymatic specificity of three ribosome-inactivating proteins against fungal ribosomes, and correlation with antifungal activity. Planta 216:227–234

    CAS  PubMed  Google Scholar 

  • Parmar N, Dufresne J (2011) Beneficial interactions of plant growth promoting rhizosphere microorganisms. In: Singh A et al (eds) Bioaugmentation, biostimulation and biocontrol, soil biology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610. doi:10.1111/j.1469-8137.2006.01931.x

    CAS  PubMed  Google Scholar 

  • Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of autoinducer required for the expression of Pseudomonas aeruginosa virulence gene. Proc Natl Acad Sci USA 91:197–201

    CAS  PubMed  Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    CAS  PubMed  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    CAS  PubMed  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassan FD, Luna MV (2007) Plant growth promoting compounds produced by two strains of Azospirillum brasilense and implications for inoculant formation. Appl Microbiol Biotechnol 75:1143–1150

    CAS  PubMed  Google Scholar 

  • Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende S, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234

    CAS  PubMed  Google Scholar 

  • Phillips DA, Tsai SM (1992) Flavonoids as signals of rhizosphere microbes. Mycorrhiza 1:55–58

    CAS  Google Scholar 

  • Piccoli P, Masciarelli O, Bottini R (1999) Gibberellin production by Azospirillum lipoferum cultured in chemically-defined medium as affected by oxygen availability and water status. Symbiosis 27:135–146

    CAS  Google Scholar 

  • Pierson EA, Wood DW, Cannon JA, Blachere FM (1998) Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 11:1078–1084

    CAS  Google Scholar 

  • Pieterse CMJ, Van Loon LC (1999) Salicylic acid independent plant defense pathways. Trends Plant Sci 4:52–58

    PubMed  Google Scholar 

  • Pinton R, Veranini Z, Nannipieri P (2007) The rhizosphere biochemistry and organic substances at the soil-plant interface. Taylor & Francis Group, LLC, New York

    Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2005) Jasmonates – signals in plant-microbe interactions. J Plant Growth Regul 23:211–222

    Google Scholar 

  • Principe A, Alvarez F, Castro M, Zachi L, Fischer S, Mori G, Jofr E (2007) Biocontrol and PGPR feature in native strains isolated from saline soils of Argentina. Curr Microbiol 55:314–322

    CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    CAS  Google Scholar 

  • Raaijmakers JM, Leeman M, Van Oorschot MMP, Van der Sluis I, Schippers B, Bakker PAHM (1995) Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1081

    Google Scholar 

  • Raaijmakers JM, De Bruijn I, De Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis and regulation. Mol Plant Microbe Interact 19:699–710

    CAS  PubMed  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    CAS  PubMed  Google Scholar 

  • Raffel SJ, Stabb EV, Milner JL, Handelsman J (1996) Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus. Microbiology 142:3425–3436

    CAS  PubMed  Google Scholar 

  • Raut JS, Shinde RB, Karuppayil MS (2012) Indole, a bacterial signaling molecule, exhibits inhibitory activity against growth, dimorphism and biofilm formation in Candida albicans. Afr J Microbiol Res 6(30):6005–6012

    CAS  Google Scholar 

  • Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370

    CAS  PubMed  Google Scholar 

  • Rice SA, Givskov M, Steinberg P, Kjelleberg S (1999) Bacterial signals and antagonists: the interaction between bacteria and higher organisms. J Mol Microbiol Biotechnol 1:23–31

    CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan T (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15

    Google Scholar 

  • Ron EZ, Roserberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    CAS  PubMed  Google Scholar 

  • Rouatt JW, Katznelson H, Payne TMB (1960) Statistical evaluation of the rhizosphere effect. Soil Sci Soc Am Proc 24:271–273

    Google Scholar 

  • Ruiz LM, Valenzuela S, Castro M, Gonzalez A, Frezza M, Soulère L, Rohwerder T, Queneau Y, Doutheau A, Sand W, Jerez CA, Guiliani N (2008) AHL communication is a widespread phenomenon in bio priming bacteria and seems to be involved in mineral-adhesion efficiency. Hydrometallurgy 94:133–137

    CAS  Google Scholar 

  • Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845–1858

    CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    CAS  PubMed  Google Scholar 

  • Sacherer P, Défago G, Haas D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160

    CAS  PubMed  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Besterbelt LL (2012) Microbial siderophores: a mini review. J Basic Microbiol 52:1–15

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    CAS  PubMed  Google Scholar 

  • Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47:698–705

    CAS  PubMed  Google Scholar 

  • Saravanan VS, Subramoniam SR, Savariappan AR (2003) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Braz J Microbiol 34:121–125

    Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    CAS  PubMed  Google Scholar 

  • Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480

    CAS  PubMed  Google Scholar 

  • Schloter M, Lebuhn M, Heulin T, Hartmann A (2000) Ecology and evolution of bacterial microdiversity. FEMS Microbiol Rev 24:647–660

    CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) what are endophytes? In: Schulz B, Boyle C and Sieber T, (eds) Microbial root endophytes. Springer-Verlag, Berlin, pp 1–13

    Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    CAS  PubMed  Google Scholar 

  • Sgroy V, Cassάn F, Masciarelli O, Papa MFD, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    CAS  PubMed  Google Scholar 

  • Shapira R, Ordentlich A, Chet OA (1989) Control of plant disease by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79:1246–1249

    CAS  Google Scholar 

  • Shilev S, Naydenov M, Prieto MS, Vassile N, Sancho ED (2012) PGPR as inoculants in management of lands contaminated with trace elements. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer Berlin Heidelberg, pp 259–277

    Google Scholar 

  • Singh MV (2001) Evaluation of current micronutrient stocks in different agro ecological zones of India for sustainable crop production. Fertil News 46:25–28

    CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    CAS  PubMed  Google Scholar 

  • Spaepen S, Das F, Luyten E, Michiels J, Vanderleyden J (2009) Indole-3-acetic acid-regulated genes in Rhizobium etli CNPAF512. FEMS Microbiol Lett 291:195–200

    CAS  PubMed  Google Scholar 

  • Stacey G, Sanjuan J, Luka S, Dockendorc T, Carlson RW (1995) Signal exchange in the Bradyrhizobium-soybean symbiosis. Soil Biol Biochem 27:473–483

    CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microb Rev 24:487–506

    CAS  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Thanasan K, Jean-Patrick T, Horst V (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    CAS  PubMed  Google Scholar 

  • Stenlid G (1982) Cytokinins as inhibitors of root growth. Physiol Plant 56:500–506

    CAS  Google Scholar 

  • Sturme MH, Kleerebezem M, Nakayama J, Akkermans AD, Vaugha EE, de Vos WM (2002) Cell to cell communication by autoinducing peptides in Gram-positive bacteria. Antonie Van Leeuwenhoek 81:233–243

    CAS  PubMed  Google Scholar 

  • Sutherland R, Boon RJ, Griffin KE, Masters PJ, Slocombe B, White AR (1985) Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother 27:495–498

    CAS  PubMed  Google Scholar 

  • Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2010) The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol 192(1):117–126

    CAS  PubMed  Google Scholar 

  • Tambong JT, Hofte M (2001) Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Eur J Plant Pathol 107:511–521

    CAS  Google Scholar 

  • Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17:2922–2939

    CAS  PubMed  Google Scholar 

  • Tews I, Vincentelli R, Vorgias CE (1996) N-acetylglucosaminidase (chitobiase) from Serratia marcescens: gene sequence, and protein production and purification in Escherichia coli. Gene 170:63

    CAS  PubMed  Google Scholar 

  • Thaler J, Bostock RM (2004) Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85:48–58

    Google Scholar 

  • Thimon L, Peypoux F, Wallach J (1995) Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol Lett 128:101–106

    CAS  PubMed  Google Scholar 

  • Thomas FC, Woeng CA, Bloemberg GA, Lugtenberg B, Lugtenberg LL (2003) Tel: phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Google Scholar 

  • Thompson BN, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174

    Google Scholar 

  • Thuler DS, Floh EIS, Handro W, Barbosa HR (2003) Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Lett Appl Microbiol 37:174–178

    CAS  PubMed  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    CAS  Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD (1990) Soil fertility and fertilizers, 4th edn. Macmillan, New York

    Google Scholar 

  • Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhizal development by inoculation of soil with phosphate solubilizing bacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    CAS  PubMed  Google Scholar 

  • Travis SW, Bais HP, Erich G, Jorge MV (2003) Root Exudation and Rhizosphere Biology. Plant Physiol 132:44–5

    Google Scholar 

  • Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagné S, Avis TJ, Rioux JA (2005) Dependence of Arbuscular-Mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71(9):5341–5347

    PubMed  Google Scholar 

  • Turner JM, Messenger AJ (1986) Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microbial Physiol 27:211–275

    CAS  Google Scholar 

  • Uren NC (1981) Chemical reduction of an insoluble higher oxide of manganese by plant roots. J Plant Nutr Soil Sci 4:65–71

    CAS  Google Scholar 

  • Uren NC (2007) Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinto RZ, Varanini PN (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, pp 1–21

    Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205

    Google Scholar 

  • van Overbeek L, van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296

    PubMed  Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    PubMed  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppresses black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed  Google Scholar 

  • Voisard C, Bull CT, Keel C, Laville J, Maurhofer M, Schnider U, Défago G, Haas D (1994) Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. In: Gara FO, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. VCH, Weinheim, pp 69–89

    Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    CAS  Google Scholar 

  • Wang C, Ramette A, Punjasamarnwong P, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (2001) Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin. FEMS Microbiol Ecol 37:105–116

    CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    PubMed  Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516

    CAS  PubMed  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    CAS  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    CAS  PubMed  Google Scholar 

  • Winzer K, Hardie KR, Williams P (2002) Bacterial cell-to-cell communication: sorry, can’t talk now gone to lunch! Curr Opin Microbiol 5:216–222

    CAS  PubMed  Google Scholar 

  • Wu G, Lewis DR, Spalding EP (2007) Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell 19:1826–1837

    CAS  PubMed  Google Scholar 

  • Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197

    CAS  PubMed  Google Scholar 

  • Yang CC, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    CAS  PubMed  Google Scholar 

  • Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16:1123–1127

    CAS  PubMed  Google Scholar 

  • Yao J, Allen C (2006) Chemotaxis is required for virulence and competitive fitness in the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 188:3697–3708

    CAS  PubMed  Google Scholar 

  • Zafar-ul-Hye M, Zahir ZA, Shahzad SM, Irshad U, Arshad M (2007) Isolation and screening of rhizobia for improving growth and nodulation of lentil (Lens culinaris Medic) seedlings under axenic conditions. Soil Environ 26(1):81–91

    Google Scholar 

  • Zhang Y, Li XM, Feng Y, Wang BG (2010) Phenethyl-α-pyrone derivatives and cyclodipeptides from a marine algous endophytic fungus Aspergillus niger EN-13. Nat Prod Res 24:1036–1043

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

 Authors are grateful to Vice Chancellor Babasaheb Bhimrao Ambedkar University, Lucknow, India, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Tewari, S., Arora, N.K. (2013). Transactions Among Microorganisms and Plant in the Composite Rhizosphere Habitat. In: Arora, N. (eds) Plant Microbe Symbiosis: Fundamentals and Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1287-4_1

Download citation

Publish with us

Policies and ethics