Skip to main content

Melatonin: Its Microbicidal Properties and Clinical Applications

  • Chapter
  • First Online:
Book cover Melatonin and Melatonergic Drugs in Clinical Practice

Abstract

Melatonin is a versatile molecule, synthesized mainly by the pineal gland and in small amounts by other organs like retina, gastrointestinal tract, thymus, bone marrow, and lymphocytes. Other than its important role in various body functions like sleep and circadian rhythm regulation, antioxidant functions, and control of reproductive functions, melatonin has been found to be effective in combating infections by various bacteria including chlamydia and Mycobacterium tuberculosis, as well as by viruses. Molecular mechanisms of antimicrobial actions of melatonin have been proposed to be due to its effects on free radical formation, direct regulation of bacterial duplication, and depletion of intracellular substrates like iron. It also has protective effect against sepsis as shown in various animal models of septic shock. This protective effect is suggested to be due to its antioxidant, immunomodulating, and inhibitory actions against the production and activation of pro-inflammatory mediators. Clinical studies have shown the potential beneficial use of melatonin in treating septic shock with severe respiratory distress syndrome and associated multiorgan failure in addition to its antimicrobial and antiviral actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4HDA:

4-hydroxyalkenals

cAMP:

Cyclic adenosine monophosphate

CLP:

Cecal ligation and puncture

cNOS:

Constitutive nitric oxide synthase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

H2O2 :

Hydrogen peroxide

HEp-2:

Human epithelial type 2

IFN:

Interferon

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

MDA:

Malondialdehyde

MIC:

Minimum inhibitory concentrations

MODS:

Multiorgan dysfunction syndrome

MOF:

Multiorgan failure

MPO:

Myeloperoxidase

mtNOS:

Mitochondrial nitric oxide synthase

MTP:

Mitochondrial transition pore

NO:

Nitric oxide

NOS:

Nitric oxide synthase

O2 :

Superoxide anion radical

ONOO :

Peroxynitrite

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

TNF:

Tumor necrosis factors

VEE:

Venezuelan equine encephalomyelitis

References

  1. Srinivasan V, Spence DW, Pandi-Perumal SR, Cardinali DP, Maestroni GJ. Immunomodulation by melatonin: its significance for seasonally occurring diseases. Neuroimmunomodulation. 2008;15:93–101.

    Article  CAS  PubMed  Google Scholar 

  2. Baysallar M, Kilic A, Aydogan H, Cilli F, Doganci L. Linezolid and quinupristin resistance in vancomycin-resistant enterococci and methicillin-resistant staphylococcus aureus prior to clinical use in Turkey. Int J Antimicrob Agents. 2004;23:510–2.

    Article  CAS  PubMed  Google Scholar 

  3. Srinivasan V. The pineal gland: its physiological and pharmacological role. Indian J Physiol Pharmacol. 1989;33:263–72.

    CAS  PubMed  Google Scholar 

  4. Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin. Nature’s most versatile signal? FEBS J. 2006;273:2813–38.

    Article  CAS  PubMed  Google Scholar 

  5. Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005;9:11–24.

    Article  PubMed  Google Scholar 

  6. Ben-Nathan D, Maestroni GJ, Lustig S, Conti A. Protective effects of melatonin in mice infected with encephalitis viruses. Arch Virol. 1995;140:223–30.

    Article  CAS  PubMed  Google Scholar 

  7. Ben-Nathan D, Maestroni GJM, Conti A. The protective effect of melatonin in viral and bacterial infections. In: Maestroni GJM, Conti A, Reiter RJ, editors. Therapeutic potential of melatonin. Basel: Karger; 1997. p. 71–80.

    Google Scholar 

  8. Wiid I, Hoal-van Helden E, Hon D, Lombard C, van Helder P. Potentiation of isoniazid activity against Mycobacterium tuberculosis by melatonin. Antimicrob Agents Chemother. 1999;43:975–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Gitto E, Reiter RJ, Amodio A, Romeo C, Cuzzocrea E, Sabatino G, et al. Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J Pineal Res. 2004;36:250–5.

    Article  CAS  PubMed  Google Scholar 

  10. Escames G, Lopez LC, Tapias V, Utrilla P, Reiter RJ, Hitos AB, et al. Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice. J Pineal Res. 2006;40:71–8.

    Article  CAS  PubMed  Google Scholar 

  11. Reppert SM, Weaver DR, Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron. 1994;13:1177–85.

    Article  CAS  PubMed  Google Scholar 

  12. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci U S A. 1995;92:8734–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Godson C, Reppert SM. The Mel1a melatonin receptor is coupled to parallel signal transduction pathways. Endocrinology. 1997;138:397–404.

    CAS  PubMed  Google Scholar 

  14. Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F, et al. Identification of the melatonin binding site MT3 as the quinone reductase 2. J Biol Chem. 2001;275:31311–7.

    Article  Google Scholar 

  15. Ekmekcioglu C. Melatonin receptors in humans. Biological role and clinical relevance. Biomed Pharmacother. 2006;60:97–101.

    Article  CAS  PubMed  Google Scholar 

  16. Becker-Andre M, Wiesenberg I, Schaeren-Wiemer N, Andre E, Missbach M, Saurat JH, et al. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem. 1994;269:28531–4.

    CAS  PubMed  Google Scholar 

  17. Giguere V. Orphan nuclear receptors: from gene to function. Endocr Rev. 1999;20:689–725.

    CAS  PubMed  Google Scholar 

  18. Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJM, Zisapel N, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008;85:335–53.

    Article  CAS  PubMed  Google Scholar 

  19. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin A pleiotropic orchestrating molecule. Prog Neurobiol. 2011;93:350–84.

    Article  CAS  PubMed  Google Scholar 

  20. Tan DX, Chen LD, Poeggeler B, Manchester LD, Reiter RJ. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J. 1993;1:57–60.

    Google Scholar 

  21. Tan DX, Poeggeler B, Reiter RJ. The pineal hormone melatonin inhibits DNA adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett. 1993;70:65–71.

    Article  CAS  PubMed  Google Scholar 

  22. Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F. Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci. 1994;55:L271–6.

    Article  Google Scholar 

  23. Sewerynek E, Melchiorri D, Ortiz GG, Poeggeler B, Reiter RJ. Melatonin reduces H2O2 induced lipid peroxidation in homogenates of different rat brain regions. J Pineal Res. 1995;19:51–6.

    Article  CAS  PubMed  Google Scholar 

  24. Sewerynek E, Melchiorri D, Reiter RJ, Ortiz GG, Lewinski A. Lipopolysaccharide-induced hepatotoxicity is inhibited by the antioxidant melatonin. Eur J Pharmacol. 1995;293:327–34.

    Article  CAS  PubMed  Google Scholar 

  25. Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabo C. Melatonin is a scavenger of peroxynitrite. Life Sci. 1997;60:169–74.

    Article  Google Scholar 

  26. Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species. Cell Biochem Biophys. 2001;34:237–54.

    Article  CAS  PubMed  Google Scholar 

  27. Rottenberg ME, Gigliotti-Rothfuchs A, Wigzell H. The role of IFN-gamma in the outcome of chlamydial infection. Curr Opin Immunol. 2001;14:444–51.

    Article  Google Scholar 

  28. Rosen J, Than NN, Koch D, Poeggeler B, Laatsch H, Hardeland R. Interactions of melatonin and its metabolites with ABTS cation radical: extension of radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J Pineal Res. 2006;41:374–81.

    Article  CAS  PubMed  Google Scholar 

  29. Reiter RJ. Interactions of the pineal hormone melatonin with oxygen centered free radicals: a brief review. Braz J Med Biol Res. 1993;26:1141–55.

    CAS  PubMed  Google Scholar 

  30. Morrey KM, McLachlan JA, Serkin CD, Bakouche O. Activation of monocytes by the pineal hormone melatonin. J Immunol. 1994;153(267):1–80.

    Google Scholar 

  31. Cristafanon S, Uguccioni F, Cerella C, Radogna F, Dicato M, Ghibelli L, et al. Intracellular prooxidant activity of melatonin induces a survival pathway involving NF-κB activation. Ann N Y Acad Sci. 2009;1171:472–8.

    Article  Google Scholar 

  32. Hahn DL, Dodge RW, Golubjatnikov R. Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthma, bronchitis and adult-onset asthma. JAMA. 1991;266:225–30.

    Article  CAS  PubMed  Google Scholar 

  33. Schachter J. Chlamydial infections (first of three parts). N Engl J Med. 1978;298:428–35.

    Article  CAS  PubMed  Google Scholar 

  34. Kalman SMW, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, et al. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet. 1999;21:385–9.

    Article  CAS  PubMed  Google Scholar 

  35. Pantoja LG, Miller RD, Ramirez JA, Molestina RE, Summersgill JT. Inhibition of Chlamydia pneumoniae replication in human aortic smooth muscle cells by gamma interferon-induced indoleamine 2,3-dioxygenase activity. Infect Immun. 2000;68:6478–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Xie GBC, Bonner CA, Jensen RA. Dynamic diversity of the tryptophan pathway in chlamydiae: reductive evolution and a novel operon for tryptophan metabolism recapture. Genome Biol. 2002;51:1–17.

    Google Scholar 

  37. Mehta SJ, Miller RD, Ramirez JA, Summersgill JT. Inhibition of Chlamydia pneumonia replication in HEp-2 cells by interferon-gamma: role of tryptophan catabolism. J Infect Dis. 1998;177:1326–31.

    Article  CAS  PubMed  Google Scholar 

  38. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol. 2003;81:247–65.

    Article  CAS  PubMed  Google Scholar 

  39. Valero N, Bonilla E, Pons H, Chacin-Bonilla L, Anez F, Espina LM, et al. Melatonin induces changes to serum cytokines in mice infected with the Venezuelan equine encephalomyelitis virus. Trans R Soc Trop Med Hyg. 2002;96:348–51.

    Article  CAS  PubMed  Google Scholar 

  40. Rahman MA, Azuma Y, Fukunaga H, Murakami T, Sugi K, Fukushi K, et al. Serotonin and melatonin, neurohormones for homeostasis, as novel inhibitors of infections by the intracellular parasite Chlamydia. J Antimicrob Chemother. 2005;56:861–8.

    Article  CAS  PubMed  Google Scholar 

  41. Ward ME, Salari H. Control mechanisms governing the infectivity of Chlamydia trachomatis for hela cells: modulation by cyclic nucleotides, prostaglandins and calcium. J Gen Microbiol. 1982;128:639–50.

    CAS  PubMed  Google Scholar 

  42. Tekbas OF, Ogur R, Korkmaz A, Killic A, Reiter RJ. Melatonin as an antibiotic: new insights into the actions of this ubiquitous molecule. J Pineal Res. 2008;44:222–6.

    Article  CAS  PubMed  Google Scholar 

  43. Konar V, Yilmaz O, Ozturk AI, Kirbag S, Arslan M. Antimicrobial and biological effects of bomphos and phomphos on bacterial and yeast cells. Bioorg Chem. 2000;28:214–25.

    Article  CAS  PubMed  Google Scholar 

  44. Nauseef WM, Malech HL. Analysis of the peptide subunits of human neutrophil myeloperoxidase. Blood. 1986;67:1504–7.

    CAS  PubMed  Google Scholar 

  45. Klebanoff SJ, Waltersdorph AM, Rosen H. Antimicrobial activity of myeloperoxidase. Methods Enzymol. 1984;105:399–403.

    CAS  PubMed  Google Scholar 

  46. Podrez EA, Abu-Soud HM, Hazen SL. Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med. 2000;28:1717–25.

    Article  CAS  PubMed  Google Scholar 

  47. Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1102–11.

    Article  CAS  PubMed  Google Scholar 

  48. Xu W, Zheng S, Dweik RA, Erzurum SC. Role of epithelial nitric oxide in airway viral infections. Free Radic Biol Med. 2006;41:19–28.

    Article  CAS  PubMed  Google Scholar 

  49. Pattison DI, Davies MJ. Reactions of myeloperoxidase -derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem. 2006;13:3271–90.

    Article  CAS  PubMed  Google Scholar 

  50. Glijasevic S, Abdulhamid I, Husam M, Abu-Sood HM. Melatonin is a potent inhibitor for myeloperoxidase. Biochemistry. 2008;47:2668–77.

    Article  Google Scholar 

  51. Bowen GS, Calisher CH. Virological and serological studies of Venezuelan equine encephalomyelitis in humans. J Clin Microbiol. 1976;4:22–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Weaver SC, Salas R, Rico-Hesse R, Ludwig GV, Oberste MS, Boshell J, et al. Reemergence of epidemic Venezuelan equine encephalomyelitis virus in South America. Lancet. 1996;358:436–40.

    Article  Google Scholar 

  53. Bonilla E, Valero N, Pons H, Chacin-Bonilla L. Melatonin protects mice infected with Venezuelan equine encephalomyelitis virus. Cell Mol Life Sci. 1997;53:430–4.

    Article  CAS  PubMed  Google Scholar 

  54. Bonilla E, Rodon C, Valero N, Pons H, Chacin-Bonilla L, Garcia Tamayo J, et al. Melatonin prolongs survival of immunodepressed mice infected with the Venezuelan equine encephalomyelitis virus. Trans R Soc Trop Med Hyg. 2001;95:207–10.

    Article  CAS  PubMed  Google Scholar 

  55. Finocchiaro LM, Artz ES, Fernandez S, Crisculo M, Finkielman S, Nahmod VE. Serotonin and melatonin synthesis in peripheral blood mononuclear cells stimulation by interferon -gamma as part of the immunomodulatory pathway. J Interferon Res. 1988;8:705–16.

    Article  CAS  PubMed  Google Scholar 

  56. Bonilla E, Valero N, Chacin-Bonilla L, Pons H, Larreal Y, Medina-Leendert S, et al. Melatonin increases interleukin-1β and decreases tumor necrosis factor alpha in the brain of mice infected with the Venezuelan equine encephalomyelitis virus. Neurochem Res. 2003;28:687–92.

    Article  Google Scholar 

  57. Bonilla E, Valero N, Chacin-Bonilla L, Medina-Leendertz S. Melatonin and viral infections. J Pineal Res. 2004;36:73–9.

    Article  CAS  PubMed  Google Scholar 

  58. Baker CC, Huynh T. Sepsis in the critically ill patients. Curr Probl Surg. 1995;32:1013–92.

    Article  CAS  PubMed  Google Scholar 

  59. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885–91.

    Article  CAS  PubMed  Google Scholar 

  60. Annane D, Bellissant E, Cavallion JM. Septic shock. Lancet. 2005;365:63–78.

    Article  CAS  PubMed  Google Scholar 

  61. Calandra T, Cohen J. The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med. 2005;33:1538–48.

    Article  PubMed  Google Scholar 

  62. Sriskandan S, Cohen J. The pathogenesis of septic shock. J Infect. 1995;30:201–6.

    Article  CAS  PubMed  Google Scholar 

  63. Victor VM, Rocha M, De La Fuente M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol. 2004;4:327–47.

    Article  CAS  PubMed  Google Scholar 

  64. Tsiotoo AG, Sakorafas GH, Anagnostopoolos G, Bramis J. Septic shock: current pathogenetic concepts from a clinical perspective. Med Sci Monit. 2005;11:RA76–85.

    Google Scholar 

  65. Pinsky MR. Sepsis, a pro and anti-inflammatory disequilibrium. Contrib Nephrol. 2001;132:354–66.

    Article  CAS  PubMed  Google Scholar 

  66. Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines. Adv Immunol. 1994;55:97–179.

    Article  CAS  PubMed  Google Scholar 

  67. Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. Tumor necrosis factor α and interleukin 1 beta are responsible for in vitro myocardial cell depression induced by human septic shock. J Exp Med. 1996;183:949–58.

    Article  CAS  PubMed  Google Scholar 

  68. Carreras MC, Franco MC, Peralta JG, Poderoso JJ. Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Mol Aspects Med. 2004;25:125–39.

    Article  CAS  PubMed  Google Scholar 

  69. Boveris DJ, Alvarez S, Navarro A. The role of mitochondrial nitric oxide synthase in inflammation and septic shock. Free Radic Biol Med. 2002;33:1186–93.

    Article  CAS  PubMed  Google Scholar 

  70. Escames G, León J, Macías M, Khaldy H, Acuña-Castroviejo D. Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. FASEB J. 2003;17:932–4.

    CAS  PubMed  Google Scholar 

  71. Annane D, Bellisant E, Bollaert P, Brigel J, Keh D, Kupfer Y. Corticosteroids for severe sepsis and septic shock: a systematic review and meta-analysis. Br Med J. 2004;329:480.

    Article  CAS  Google Scholar 

  72. Wu CC, Chiao CW, Hsiao G, Chen A, Yen MH. Melatonin prevents endotoxin-induced circulatory failure in rats. J Pineal Res. 2001;30:147–56.

    Article  CAS  PubMed  Google Scholar 

  73. Carrillo-Vico A, Lardone PJ, Naji L, Fernandez-Santos JM, Martin-Lacave I, Guerrero JM, et al. Beneficial pleiotropic actions of melatonin in an experimental model of septic shock in mice: regulation of pro-/anti-inflammatory cytokine network, protection against oxidative damage and anti-apoptotic effects. J Pineal Res. 2005;39:400–8.

    Article  CAS  PubMed  Google Scholar 

  74. Wu J-Y, Tsou MY, Chen TH, Chen SJ, Tsao CM, Wu CC. Therapeutic effects of melatonin on peritonitis-induced septic shock with multiple organ dysfunction syndrome in rats. J Pineal Res. 2008;45:106–16.

    Article  CAS  PubMed  Google Scholar 

  75. Adams JM, Hauser CJ, Adams Jr CA, Xu DZ, Livingston DH, Deitch EA. Entry of gut lymph into the circulation primes rat neutrophil respiratory burst in hemorrhagic shock. Crit Care Med. 2001;29:2194–8.

    Article  CAS  PubMed  Google Scholar 

  76. Heller AR, Groth G, Heller SC, Breitkreutz R, Nebe T, Quintel M, et al. N-acetylcysteine reduces respiratory burst but augments neutrophil phagocytosis in intensive care unit patients. Crit Care Med. 2001;29:272–6.

    Article  CAS  PubMed  Google Scholar 

  77. De Filipps D, Iuvone T, Esposito G, Sterdo L, Arnold GH, Paul AP, et al. Melatonin reverses lipopolysaccharide-induced gastro-intestinal motility disturbances through the inhibition of oxidative stress. J Pineal Res. 2008;44:45–51.

    Google Scholar 

  78. De Winter BY, van Nassaow L, de Man JG, De Jonge F, Bredenoord AJ, Seerden TC, et al. Role of the oxidative stress in the pathogenesis of septic ileus in mice. Neurogastroenterol Motil. 2005;17:251–61.

    Article  PubMed  Google Scholar 

  79. Hussain SN. Respiratory muscle dysfunction in sepsis. Mol Cell Biochem. 1998;179:125–34.

    Article  CAS  PubMed  Google Scholar 

  80. Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci. 2005;26:190–5.

    Article  CAS  PubMed  Google Scholar 

  81. Poderoso JJ, Carreras MC, Lisdero C. Nitric oxide inhibits electron transfer and increases O2 - radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys. 1996;308:89–95.

    Google Scholar 

  82. Martin M, Macias M, Escames G, Reiter RJ, Agapito MT, Ortiz GG, et al. Melatonin induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J Pineal Res. 2000;28:242–8.

    Article  CAS  PubMed  Google Scholar 

  83. Martin M, Macias M, Escames G, Leon J, Acuna-Castroviejo D. Melatonin but not vitamin C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J. 2000;14:1677–9.

    CAS  PubMed  Google Scholar 

  84. Karbownik M, Tan D, Manchester LC, Reiter RJ. Renal toxicity of the carcinogen delta-aminolevulinic acid: antioxidant effects of melatonin. Cancer Lett. 2000;161:1–7.

    Article  CAS  PubMed  Google Scholar 

  85. Park JW, Youn YC, Kwon OS, Jang YY, Han ES, Lee CS. Protective effect of serotonin on 6-hydroxydopamine and dopamine induced oxidative damage of brain mitochondria and synaptosomes and PC12 cells. Neurochem Int. 2002;40:223–33.

    Article  CAS  PubMed  Google Scholar 

  86. Leon J, Acuna-Castroviejo D, Escames G, Tan DX, Reiter RJ. Melatonin mitigates mitochondrial malfunction. J Pineal Res. 2005;38:1–9.

    Article  CAS  PubMed  Google Scholar 

  87. Srinivasan V, Pandi-Perumal SR, Spence DW, Kato H, Cardinali DP. Melatonin septic shock. J Crit Care. 2010;25:656.e1–6.

    Article  Google Scholar 

  88. Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis. 2011;2011:326320.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Kirton OC, Civetta JM. Ischemia-reperfusion injury in the critically ill: a progenitor of multiple organ failure. New Horiz. 1999;7:87–95.

    Google Scholar 

  90. Mundigler G, Delle-Karth G, Koreny M, Zehetgruber M, Steindl-Munda P, Marktl W, et al. Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med. 2002;30:536–40.

    Article  CAS  PubMed  Google Scholar 

  91. Bourne RS, Mills GH. Melatonin: possible implications for the postoperative and critically ill patient. Intensive Care Med. 2006;32:371–9.

    Article  CAS  PubMed  Google Scholar 

  92. Olofsson K, Alling C, Lundberg D, Malmros C. Abolished circadian rhythm of melatonin secretion in sedated and artificially ventilated intensive care patients. Acta Anaesthesiol Scand. 2004;48:679–84.

    Article  CAS  PubMed  Google Scholar 

  93. Frisk U, Olsson J, Nylen P, Hahn RG. Low melatonin excretion during mechanical ventilation in the intensive care unit. Clin Sci. 2004;107:47–53.

    Article  CAS  PubMed  Google Scholar 

  94. Perras B, Kurowski V, Dodt C. Nocturnal melatonin concentration is correlated with illness severity in patients with septic disease. Intensive Care Med. 2006;32:624–5.

    Article  PubMed  Google Scholar 

  95. Gitto E, Karbownik M, Reiter RJ, Tan DX, Cuzzocrea S, Chiurazzi S, et al. Effects of melatonin treatment in septic newborns. Pediatr Res. 2001;50:756–60.

    Article  CAS  PubMed  Google Scholar 

  96. Fulia F, Gitto E, Cuzzocrea S, Reiter RJ, Dugo L, Gitto P, et al. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res. 2001;31:343–9.

    Article  CAS  PubMed  Google Scholar 

  97. Gitto E, Reiter RJ, Sabatino G, Buonocore G, Romeo C, Gitto P, et al. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment. J Pineal Res. 2005;39:287–93.

    Article  CAS  PubMed  Google Scholar 

  98. Gitto E, Pellegrino S, Gitto P, Barberi I, Reiter RJ. Oxidative stress of the new born in the pre- and postnatal period and the clinical utility of melatonin. J Pineal Res. 2009;46:128–39.

    Article  CAS  PubMed  Google Scholar 

  99. Bourne RS, Mills GH, Minelli C. Melatonin therapy to improve nocturnal sleep in critically ill patients: encouraging results from a small randomized controlled trial. Crit Care. 2008;12:R52.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataramanujam Srinivasan MSc, PhD, MAMS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Srinivasan, V., Mohamed, M., Kato, H. (2014). Melatonin: Its Microbicidal Properties and Clinical Applications. In: Srinivasan, V., Brzezinski, A., Oter, S., Shillcutt, S. (eds) Melatonin and Melatonergic Drugs in Clinical Practice. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0825-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0825-9_5

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0824-2

  • Online ISBN: 978-81-322-0825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics