Skip to main content

Submergence Stress: Responses and adaptations in crop plants

  • Chapter
  • First Online:

Abstract

Submergence stress frequently encountered in crop plants is a widespread limiting factor for crop production throughout the world especially in irrigated and high-rainfall environments which results in huge economic losses. This chapter covers various features of submergence stress with special reference to crop plants, viz. causes of submergence and biophysical and biochemical alterations in crops, and various defence mechanisms adopted by crop plants. A brief discussion on different types of naturally or artificially developed tolerance mechanisms are presented here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akhtar MS, Memon M (2009) Biomass and nutrient uptake by rice and wheat: a three-way interaction of potassium, ammonium and soil type. Pak J Bot 41(6):2965–2974

    CAS  Google Scholar 

  • Albrecht G, Wiedenroth EM (1994) Protection against activated oxygen following re-aeration of hypoxically pre-treated wheat roots. The response of the glutathione system. J Exp Bot 45:449–455

    Article  CAS  Google Scholar 

  • Albrecht G, Kammerer S, Praanik W, Wiedenroth EM (1993) Fructan content of wheat seedling (Triticum aestivum L.) under hypoxia and following re-aeration. New Phytol 123:471–476

    Article  CAS  Google Scholar 

  • Arikado H (1959) Supplementary studies on the development of the ventilating systems in various plants growing on low land and on upland. Bull Fac Agric Mie Univ 20:1–24

    Google Scholar 

  • Armstrong W (1971) Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol Plant 25:192–197

    Article  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. Adv Bot Res 7:225–332

    Article  CAS  Google Scholar 

  • Armstrong J, Armstrong W (1988) Phragmites australis: a preliminary study of soil oxidizing sites and internal gas transport pathways. New Phytol 108:373–382

    Article  Google Scholar 

  • Armstrong W, Drew M (2002) Root growth and metabolism under oxygen deficiency. In: Waisel EA, Kafkafi Y (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 729–761

    Google Scholar 

  • Armstrong W, Webb T (1985) A critical oxygen pressure for root extension in rice. J Exp Bot 36:1573–1582

    Article  Google Scholar 

  • Armstrong W, Brändle R, Jackson MB (1994) Mechanisms of flood tolerance in plants. Acta Bot Neerl 43:307–358

    CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Ann Rev Plant Biol 59:313–339. doi:10.1146/annurev.arplant.59.032607.092752

    Article  CAS  Google Scholar 

  • Bange MP, Milroy SP, Thongbai P (2004) Growth and yield of cotton in response to water logging. Field Crops Res 88:129–142. doi:10.1016/j.fcr.2003.12.002

    Article  Google Scholar 

  • Barrett-Lennard EG (1986) Effects of waterlogging on the growth and NaCl uptake by vascular plants under saline conditions. Reclam Reveg Res 5:245–261

    Google Scholar 

  • Barrett-Lennard ED, Robson AD, Greenway H (1982) Effect of phosphorus deficiency and water deficit on phosphatase activities from wheat leaves. J Exp Bot 33:682–693

    Article  CAS  Google Scholar 

  • Barrett-Lennard EG, Leighton P, Buwalda F, Gibbs J, Armstrong W, Thomson CJ, Greenway H (1988) Effects of growing wheat in hypoxic nutrient solutions and of subsequent transfer to aerated solutions I. Growth and carbohydrate status of shoots and roots. Aust J Plant Physiol 15:585–598

    Article  CAS  Google Scholar 

  • Belford RK (1981) Response of winter wheat to prolonged water logging under outdoor conditions. J Agric Sci Camb 97:557–568

    Article  Google Scholar 

  • Benjamin LR, Greenway H (1979) Effects of a range of O2 concentrations on the porosity of barley roots and on their sugar and protein concentrations. Ann Bot 43:383–391

    CAS  Google Scholar 

  • Biemelt S, Keetman U, Albrecht G (1998) Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiol 116:651–658

    Article  PubMed  CAS  Google Scholar 

  • Biemelt S, Keetman U, Mock HP, Grimm B (2000) Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell Environ 23:135–144

    Article  CAS  Google Scholar 

  • Blokhina OB, Fagerstedt KV, Chirkova TV (1999) Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration. Physiol Plant 105:625–632

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194. doi:10.1093/aob/mcf118

    Article  PubMed  CAS  Google Scholar 

  • Blom CWPM (1999) Adaptations to flooding stress: from plant community to molecule. Plant Biol 1:261–273

    Article  CAS  Google Scholar 

  • Blom CWPM, Voesenek LACJ (1996) Flooding: the survivals strategies of plants. Trends Ecol Evol 11:290–295

    Article  PubMed  CAS  Google Scholar 

  • Boivin P, Favre F, Hammecker C, Maeght JL, Delarivière J, Poussin JC, Wopereis MCS (2002) Processes driving soil solution chemistry in a flooded rice-cropped vertisol: analysis of long-time monitoring data. Geoderma 110:87–107

    Article  CAS  Google Scholar 

  • Boru G, Vantoai T, Alves J, Hua D, Knee M (2003a) Responses of soybean to oxygen deficiency and elevated root-zone carbon dioxide concentration. Ann Bot 91:447–453. doi:10.1093/aob/mcg040

    Article  PubMed  CAS  Google Scholar 

  • Boru G, van Ginkel M, Trethowan RM, Boersma L, Kronstad WE (2003b) Oxygen use from solution by wheat genotypes differing in tolerance to waterlogging. Euphytica 132:151–158

    Article  Google Scholar 

  • Botha AM, Botha FC (1991) Effect of anoxia on the expression and molecular form of the pyrophosphate-dependent phosphofructokinase. Plant Cell Physiol 32:1299–1302

    CAS  Google Scholar 

  • Bouny JM, Saglio PH (1996) Glycolytic flux and hexokinase activities in anoxic maize root tips acclimated by hypoxic pretreatment. Plant Physiol 111:187–194

    PubMed  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Stomatal behaviour and water relations of waterlogged tomato plants. Plant Physiol 70:1508–1513

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJND, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65:322–326

    Article  PubMed  CAS  Google Scholar 

  • Bucher M, Kuhlemeier C (1993) Long-term anoxia tolerance. Plant Physiol 103:441–448

    Article  PubMed  CAS  Google Scholar 

  • Buwalda F, Barrett-Lennard EG, Greenway H, Davies BA (1988a) Effects of growing wheat in hypoxic nutrient solutions and of subsequent transfer to aerated solutions. II. Concentrations and uptake of nutrients and sodium in shoots and roots. Aust J Plant Physiol 15:599–612

    Article  CAS  Google Scholar 

  • Buwalda F, Thomson CJ, Steigner W, Barrett-Lennard EG, Gibbs J, Greenway H (1988b) Hypoxia induces membrane depolarization and potassium loss from wheat roots but does not increase their permeability to sorbitol. J Exp Bot 39:1169–1183

    Article  CAS  Google Scholar 

  • Carystinos GD, MacDonald HR, Monroy AF, Dhinsda RS, Poole RJ (1995) Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol 108:641–649

    Article  PubMed  CAS  Google Scholar 

  • Chirkova TV, Novitskaya LO, Blokhina OB (1998) Lipid peroxidation and antioxidant systems under anoxia in plants differing in their tolerance to oxygen deficiency. Russ J Plant Physiol 45:55–62

    CAS  Google Scholar 

  • Cohen E, Kende H (1987) In vivo 1-aminocyclopropane-1-carboxylate synthase activity in internodes of deep water rice: Enhancement by submergence and low oxygen levels. Plant Physiol 84:282–286

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Gibberd MR, Wiengweera A, Tinh TK (1998) The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. J Exp Bot 49:1431–1436

    CAS  Google Scholar 

  • Colmer TD, Peeters AJM, Wagemaker CAM, Vriezen WH, Ammerlaan A, Voesenek LACJ (2004) Expression of α-expansin genes during root acclimations to O2 deficiency in Rumex palustris. Plant Mol Biol 56:423–437

    Article  PubMed  CAS  Google Scholar 

  • Conaty WC, Tan DKY, Constable GA, Sutton BG, Field DJ, Mamum EA (2008) Genetic variation for waterlogging tolerance in cotton. J Cotton Sci 12:53–61

    Google Scholar 

  • Crawford RMM (1982) Physiological responses to flooding. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, new series, vol 12B, Physiological plant ecology II. Springer, Berlin, pp 453–477

    Google Scholar 

  • Crawford RMM (1992) Oxygen availability as an ecological limit to plant distribution. Adv Ecol Res 23:93–185

    Article  CAS  Google Scholar 

  • Crawford RMM, Brändle R (1996) Oxygen deprivation stress in a changing environment. J Exp Bot 47:145–159. doi:10.1093/jxb/47.2.145

    Article  CAS  Google Scholar 

  • Dat J, Capelli N, Folzer H, Bourgeade P, Badot PM (2004) Sensing and signaling during plant flooding. Plant Physiol Biochem 42:273–282

    Article  PubMed  CAS  Google Scholar 

  • Davies DD (1980) Anaerobic metabolism and the production of organic acids. In: Davies DD (ed) The biochemistry of plants, vol 2. Academic, New York, pp 581–611

    Google Scholar 

  • Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ (2000) Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51:89–97

    Article  PubMed  CAS  Google Scholar 

  • Drew MC (1983) Plant injury and adaptation to oxygen deficiency in the root environment: a review. Plant Soil 75:179–199

    Article  CAS  Google Scholar 

  • Drew MC (1988) Effects of flooding and oxygen deficiency on plant mineral nutrition. Adv Plant Nutr 3:115–159

    Google Scholar 

  • Drew MC (1990) Sensing soil oxygen. Plant Cell Environ 13:681–693

    Article  CAS  Google Scholar 

  • Drew MC (1991) Oxygen deficiency in the root environment and plant mineral nutrition. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. Academic, The Hague, pp 303–316

    Google Scholar 

  • Drew M (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Ann Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  CAS  Google Scholar 

  • Drew MC, Sisworo EJ (1979) The development of waterlogging damage in young barley plants in relation to plant nutrient status and changes in soil properties. New Phytol 82:301–314. doi:10.1111/j.1469-8137.1979.tb02656.x

    Article  CAS  Google Scholar 

  • Drew MC, Jackson MB, Giffard S (1979) Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta 147:83–88

    Article  CAS  Google Scholar 

  • Drew MC, Jackson MB, Giffard SC, Campbell R (1981) Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta 153:217–224

    Article  CAS  Google Scholar 

  • Drew MC, Saglio PH, Pradet A (1985) Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport. Planta 165:51–58

    Article  CAS  Google Scholar 

  • Elliot GC, Lauchli A (1986) Evaluation of an acid phosphatase assay for detection of phosphorus deficiency in leaves of maize (Zea mays L.). J Plant Nutr 9:1469–1477

    Article  Google Scholar 

  • Else M, Hall K, Arnold G, Davies W, Jackson M (1995) Export of abscisic acid, 1-aminocyclopropane-1-carboxilyc acid, phosphate, and nitrate from roots to shoots of flooded tomato plants. Plant Physiol 107:377–384

    PubMed  CAS  Google Scholar 

  • Else MA, Coupland D, Dutton L, Jackson MB (2001) Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiol Plant 111:46–54

    Article  CAS  Google Scholar 

  • Elstner EF (1986) Metabolism of activated oxygen species. In: Davies DD (ed) The biochemistry of plants, vol 11, Biochemistry of metabolism. Academic, San Diego, pp 253–315

    Google Scholar 

  • Erdmann B, Wiedenroth EM (1986) Changes in the root system of wheat seedlings following root anaerobiosis. II. Morphology and anatomy of evolution forms. Ann Bot 58:607–616

    Google Scholar 

  • Evans DE (2003) Aerenchyma formation. New Phytol 161:35–49

    Article  Google Scholar 

  • FAO (2002) Agriculture. Available online at: http://www.fao.org/waicent/FAOINFO/AGRICULT/ag1/ag11/gaez//nav.html. Accessed 18 Mar 2009

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jounanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Looez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Furlani AMC, Clark RB, Maranville JW, Ross WM (1984) Root phosphatase activity of sorghum genotypes grown with organic and inorganic sources of phosphorus. J Plant Nutr 7:1583–1595

    Article  CAS  Google Scholar 

  • Garnczarska M (2005) Response of the ascorbate–glutathione cycle to reaeration following hypoxia in lupine roots. Plant Physiol Biochem 43:583–590

    Article  PubMed  CAS  Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6:247–256

    Article  PubMed  CAS  Google Scholar 

  • Germain V, Ricard B, Raymond P, Saglio PH (1997) The role of sugars, hexokinase and sucrose synthase in the determination of hypoxically induced tolerance to anoxia in tomato roots. Plant Physiol 114:167–175

    PubMed  CAS  Google Scholar 

  • Gibberd MR, Cocks PS (1997) Effect of waterlogging and soil pH on the micro-distribution of naturalized annual legumes. Aust J Agr Res 48:223–229

    Article  Google Scholar 

  • Gibberd MR, Gray JD, Cocks PS, Colmer TD (2001) Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and ‘aerotropic rooting’. Ann Bot 88:579–589

    Article  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30(10):999–1036

    Article  CAS  Google Scholar 

  • Grist DH (1986) Rice, 6th edn. Longman Group Ltd, New York

    Google Scholar 

  • Gupta A, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress: induction of ascorbate peroxidase in superoxide dismutase overexpressing plants. Plant Physiol 103:1067–1073

    PubMed  Google Scholar 

  • Gutierrez Boem FH, Lavado RS, Porcelli CA (1996) Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res 47:175–179. doi:10.1016/ 0378-4290(96)00025-1

    Article  Google Scholar 

  • Haldemann C, Brändle R (1983) Avoidance of oxygen deficit stress and release of oxygen by stalked rhizomes of Schoenoplectus lacustris. Physiol Veg 21:109–113

    CAS  Google Scholar 

  • Haque ME, Abe F, Kawaguchi K (2010) Formation and extension of lysigenous aerenchyma in seminal root cortex of spring wheat (Triticum aestivum cv. Bobwhite line SH 9826) seedlings under different strength of waterlogging. Plant Root 4:31–39

    Article  Google Scholar 

  • Helal HM (1990) Varietal differences in root phosphatase activity as related to the utilization of organic phosphates. Plant Soil 123:161–163

    Article  CAS  Google Scholar 

  • Hocking PJ, Reicosky DC, Meyer WS (1985) Nitrogen status of cotton subjected to two short term periods of waterlogging of varying severity using a sloping plot water table facility. Plant Soil 87:375–391. doi:10.1007/BF02181905

    Article  Google Scholar 

  • Hocking PJ, Reicosky DC, Meyer WS (1987) Effects of intermittent waterlogging on the mineral nutrition of cotton. Plant Soil 101:211–221. doi:10.1007/BF02370647

    Article  CAS  Google Scholar 

  • Hodgson AS (1990) Micronutrients: are they important under waterlogging? In: Swallow D (ed) Fifth Australian cotton conference. ACGRA, Broadbeach, pp 165–170

    Google Scholar 

  • Huang B (1997) Mechanisms of plant resistance to waterlogging. In: Basra AS, Basra RK (eds) Mechanisms of environmental stress resistance in plants. Harwood Academic Publishers, Amsterdam, pp 59–82

    Google Scholar 

  • Huang B, Johnson JW (1995) Root respiration and carbohydrate status of two wheat genotypes in response to hypoxia. Ann Bot 75:427–432

    Article  CAS  Google Scholar 

  • Huang B, Johnson JW, Nesmith DS, Bridges DC (1994a) Root and shoot growth of wheat genotypes in response to hypoxia and subsequent resumption of aeration. Crop Sci 34:1538–1544

    Article  Google Scholar 

  • Huang B, Johnson JW, Nesmith S, Bridges DC (1994b) Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J Exp Bot 45:193–202

    Article  Google Scholar 

  • Huang B, Ne Smith DS, Bridges DC, Johnson JW (1995a) Responses of squash to salinity, waterlogging, and subsequent drainage: I. Gas exchange, water relations, and nitrogen status. J Plant Nutr 18:127–140

    Article  CAS  Google Scholar 

  • Huang B, NeSmith DS, Bridges DC, Johnson JW (1995b) Responses of squash to salinity, waterlogging, and subsequent drainage: II. Root and shoot growth. J Plant Nutr 18:141–152

    Article  CAS  Google Scholar 

  • Huang B, Johnson JW, Box JE, Nesmith S (1997) Root characteristics and physiological activities of wheat in response to hypoxia and ethylene. Crop Sci 37:812–818

    Article  CAS  Google Scholar 

  • Huck MG (1970) Variation in taproot elongation rate as influenced by composition of the soil air. Agron J 62:815–818

    Article  Google Scholar 

  • Igamberdiev AU, Baron K, Manac’h-Little N, Stoimenova M, Hill RD (2005) The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling. Ann Bot 96:557–564

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB (1982) Ethylene as a growth promoting hormone under flooded conditions. In: Wareing PF (ed) Plant growth substances. Academic, London, pp 291–301

    Google Scholar 

  • Jackson MB (1989) Regulation of aerenchyma formation in roots and shoots by oxygen and ethylene. In: Osborn DJ, Jackson MB (eds) Cell separation in plants. Springer, Berlin, pp 263–274

    Chapter  Google Scholar 

  • Jackson M (2002) Long-distance signaling from roots to shoots assessed: the flooding story. J Exp Bot 53:175–181

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB (2004) The impact of flooding stress on plants and crops. http://www.plantstress.com/Articles/index.asp. A website addressing plant environmental stress issues in agriculture, plant physiology, breeding, genetics and biotechnology

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  • Jackson MB, Colmer TD (2005) Response and adaptation by plants to flood- ing stress. Ann Bot 96:501–505

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Drew MC (1984) Effects of flooding on growth and metabolism of herbaceous plants. In: Kozlowski TT (ed) Flooding and plant growth. Academic, New York, pp 47–128

    Google Scholar 

  • Jackson MB, Hall KC (1987) Early stomatal closure in water logged pea plants is mediated by abscisic acid in the absence of foliar water deficits. Plant Cell Environ 10:121–130

    CAS  Google Scholar 

  • Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot 91:227–241. doi:10.1093/aob/mcf242

    Article  PubMed  CAS  Google Scholar 

  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Article  Google Scholar 

  • Justin SHFW, Armstrong W (1991) Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa). New Phytol 118:49–62

    Article  CAS  Google Scholar 

  • Kalashnikov YE, Balakhnina TI, Zakrzhevsky DA (1994) Effect of soil hypoxia on activation of oxygen and the system of protection from oxidative destruction in roots and leaves of Hordeum vulgare. Russ J Plant Physiol 41:583–588

    CAS  Google Scholar 

  • Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kirk GJD, Solivas JL, Alberto MC (2003) Effects of flooding and redox conditions on solute diffusion in soil. Eur J Soil Sci 54:617–624

    Article  CAS  Google Scholar 

  • Kozlowski TT (1984) Plant responses to flooding of soil. Bioscience 34(3):162–167. doi:10.2307/1309751

    Article  Google Scholar 

  • Kozlowski TT (1997) Response of woody plants to flooding and salinity. Tree Physiol Monogr 1:1–29

    Google Scholar 

  • Kramer P, Boyer J (1995) Water relations of plants and soils. Academic, San Diego

    Google Scholar 

  • Kriedemann PE, Sands R (1984) Salt resistance and adaptation to root-zone hypoxia in sunflower. Aust J Plant Physiol 11:287–301

    Article  CAS  Google Scholar 

  • Krizek DT (1982) Plant response to atmospheric stress caused by waterlogging. In: Christiansen MN, Lewis CF (eds) Breeding plants for less favorable environments. Wiley, New York, pp 293–335

    Google Scholar 

  • Kyozuka J, Olive MR, Peacock WJ, Dennis ES, Shimamoto K (1994) Promoter elements required for the developmental expression of the maize Adhl gene in transgenic rice. Plant Cell 6:799–810

    PubMed  CAS  Google Scholar 

  • Lambers H (1976) Respiration and NADH oxidation of the root of flood- intolerant Senecio species as affected by anaerobiosis. Plant Physiol 37:117–122

    Article  CAS  Google Scholar 

  • Liao CT, Lin CH (2001) Physiological adaptation of crop plants to flooding stress. Proc Natl Sci Counc ROC (B) 25:148–157

    CAS  Google Scholar 

  • Lu Y, Watanabe A, Kimura M (2004) Contribution of plant photosynthates to dissolved organic carbon in a flooded rice soil. Biogeochemistry 71:1–15

    Article  CAS  Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Marshall DR, Broue P, Pryor AJ (1973) Adaptive significance of alcohol dehydrogenase isozymes in maize. Nature 244:16–17

    CAS  Google Scholar 

  • McDonald MP, Galwey NW, Colmer TD (2001a) Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell Environ 24:585–596

    Article  Google Scholar 

  • McDonald MP, Galwey NW, Ellneskog-Staam P, Colmer TD (2001b) Evaluation of Lophopyrum elongatum as a source of genetic diversity to increase waterlogging tolerance of hexaploid wheat (Triticum aestivum). New Phytol 151:369–380

    Article  Google Scholar 

  • McKee WH, McKevlin MR (1993) Geochemical processes and nutrient uptake by plants in hydric soils. Environ Toxicol Chem 12:2197–2207

    Article  CAS  Google Scholar 

  • Mclachlan KD, Demarco DG (1982) Acid phosphatase activity of intact roots and phosphorus nutrition in plants: III. Its relation to phosphorus garnering by wheat and a comparison with leaf activity as a measure of phosphorus status. Aust J Agric Res 33:1–11

    Article  CAS  Google Scholar 

  • Meek BD, Owen-Bartlett EC, Stolzy LH, Labanauskas CK (1980) Cotton yield and nutrient uptake in relation to water table depth. Soil Sci Soc Am J 44:301–305. doi:10.2136/sssaj1980.03615995004400020020x

    Article  CAS  Google Scholar 

  • Menegus F, Cattaruzza L, Chersi A, Fronza G (1989) Differences in the anaerobic lactate- succinate production and in the changes of cell sap pH for plants with high and low resistance to anoxia. Plant Physiol 90:29–32

    Article  PubMed  CAS  Google Scholar 

  • Menegus F, Cattaruzza L, Mattana M, Beffagna N, Ragg E (1991) Response to anoxia in rice and wheat seedlings. Changes in the pH of intracellular compartments, glucose-6- phosphate level, and metabolic rate. Plant Physiol 95:760–767

    Article  PubMed  CAS  Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H (2001) Principles of plant nutrition. Kluwer Academic Publishers, Dordrecht/Nethelands, pp 849. ISBN 9781402000089

    Book  Google Scholar 

  • Mertens E (1991) Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett 285:1–5

    Article  PubMed  CAS  Google Scholar 

  • Mishra PN, Fatma T, Singhal GS (1995) Development of antioxidative defence system of wheat seedlings in response to high light. Physiol Plant 95:72–82

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Monk LS, Fagerstedt KV, Crawford RMM (1987) Superoxide dismutase as an anaerobic polypeptide. A key factor in recovery from oxygen deprivation in Iris pseudacorus? Plant Physiol 85:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Monk LS, Fagerstedt KV, Crawford RMM (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol Plant 76(3):456–459

    Google Scholar 

  • Morard E, Silvestre J (1996) Plant injury due to oxygen deficiency in the root environment of soilless culture: a review. Plant Soil 184:243–254

    Article  CAS  Google Scholar 

  • Mortvedt JJ, Cox FR, Shuman LM, Weich RM (eds) (1991) Micronutrients in agriculture. Soil Science Society of America, Madison

    Google Scholar 

  • Mustroph A, Albrecht G (2003) Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol Plant 117:508–520

    Article  PubMed  CAS  Google Scholar 

  • Narayanan S, Ruma D, Gitika B, Sharma SK, Pauline T, Ram MS, Ilavazhagan G, Sawhney RC, Kumarand D, Banerjee PK (2005) Antioxidant activities of sea buckthorn (Hippophae rhamnoides) during hypoxia induced oxidative stress in glial cells. Mol Cell Biochem 278:9–14

    Article  PubMed  CAS  Google Scholar 

  • Nathanson K, Lawn RJ, de Jarun PLM, Byth DE (1984) Growth, nodulation and nitrogen accumulation by soybean in saturated soil culture. Field Crops Res 8:73–92. doi:10.1016/0378-4290(84)90053-4

    Article  Google Scholar 

  • Orchard PW, So HB (1985) The response of sorghum and sunflower to short-term waterlogging .2. Changes in the soil environment under waterlogged conditions. Plant Soil 88:407–419

    Google Scholar 

  • Pang JY, Zhou MX, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agr Res 55:895–906. doi:10.1071/AR03097

    Article  Google Scholar 

  • Perata P, Alpi A (1993) Plant response to anaerobiosis. Plant Sci 93:1–7

    Article  CAS  Google Scholar 

  • Pezeshki SR (2001) Wetland plant responses to soil flooding. Environ Exp Bot 46:299–312

    Article  Google Scholar 

  • Pezeshki SR, DeLaune RD (1998) Responses of seedlings of selected woody species to soil oxidation-reduction conditions. Environ Exp Bot 40:123–133

    Article  Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic, Orlando, pp 9–45

    Google Scholar 

  • Probert ME, Keating BA (2000) What soil constraints should be included in crop and forest models? Agric Ecosyst Environ 82:273–281

    Article  Google Scholar 

  • Reicosky DC, Meyer WS, Schaefer NL, Sides RD (1985) Cotton response to short-term waterlogging imposed with a water-table gradient facility. Agric Water Manag 10:127–143. doi:10.1016/0378-3774. (85)90002-2

    Article  Google Scholar 

  • Ricard B, Couee I, Raymond P, Saglio PH, Saint-Ges V, Pradet A (1994) Plant metabolism under hypoxia and anoxia. Plant Physiol Biochem 32:1–10

    CAS  Google Scholar 

  • Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O (1984) Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Natl Acad Sci U S A 81:3379–3383

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Saxena DC (2000) Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biol Plant 43:245–251

    Article  CAS  Google Scholar 

  • Sairam RK, Chandrasekhar V, Srivastava GC (2001) Comparison of hexaploid and tetraploid wheat cultivars in their response to water stress. Biol Plant 44:89–94

    Article  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC (2008) Physiology and biochemistry of waterlogging tolerance in plants. Biol Plant 52:401–412

    Article  CAS  Google Scholar 

  • Sairam RK, Kumutha D, Chinnusamy V, Meena RC (2009) Waterlogging- induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata). J Plant Physiol 166:602–616

    Article  PubMed  CAS  Google Scholar 

  • Scott P (2000) Resurrection plants and the secrets of eternal leaf. Ann Bot 85:159–166

    Article  CAS  Google Scholar 

  • Setter TL, Kupkanchanakul T, Pakinnaka L, Aguru Y, Greenway H (1987) Mineral nutrients in floodwater and floating rice growing at water depths up to two metres. Plant Soil 104:147–150. doi:10.1007/BF02370637

    Article  CAS  Google Scholar 

  • Setter TL, Ellis M, Laureles EV, Ella ES, Senadhira D, Mishra SB, Sarkarung S, Datta S (1997) Physiology and genetics of submergence tolerance in rice. Ann Bot 79(suppl A):67–77

    Article  CAS  Google Scholar 

  • Settler TL, Waters I (2003) Reviews of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34

    Article  Google Scholar 

  • Shuduan T, Zhu MY, Zhang KR, Zhang QF (2010) Physiological responses of bermudagrass (Cynodon dactylon) to submergence. Acta Physiologiae Plant 32(1):133–140. doi:10.1007/s11738-009-0388-y

    Article  Google Scholar 

  • Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A (2003) Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann Bot 91:255–261

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Crawford RMM (1983) Variation in the structure and response to flooding of root aerenchyma in some wetland plants. Ann Bot 51:237–249

    Google Scholar 

  • Smith KA, Russell RS (1969) Occurrence of ethylene, and its significance, in anaerobic soil. Nature 222:769–771

    Article  CAS  Google Scholar 

  • Subbaiah CC, Sachs MM (2003) Molecular and cellular adaptations of maize to flooding stress. Ann Bot 90:119–127

    Article  CAS  Google Scholar 

  • Thomson CJ, Armstrong W, Waters I, Greenway H (1990) Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat. Plant Cell Environ 13:395–403

    Article  Google Scholar 

  • Thomson CJ, Colmer TD, Watkin ELJ, Greenway H (1992) Tolerance of wheat (Triticum aestivum cv. Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging. New Phytol 120:335–344

    Article  Google Scholar 

  • Toojinda T, Siangliw M, Tragoonrung S, Vanavichit A (2003) Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot 91:243–253

    Article  PubMed  CAS  Google Scholar 

  • Trought MCT, Drew MC (1980a) The development of waterlogging damage in wheat seedlings (Triticum aestivum L.) I. Shoot and root growth in relation to changes in concentration of dissolved gases and solutes in the soil solutions. Plant Soil 54:77–94

    Article  CAS  Google Scholar 

  • Trought MCT, Drew MC (1980b) The development of waterlogging damage in wheat seedlings (Triticum aestivum L.) II. Accumulation and redistribution of nutrients by the shoot. Plant Soil 56(2):187–199

    Article  CAS  Google Scholar 

  • Trought MCT, Drew MC (1980c) The development of waterlogging damage in young wheat plants in anaerobic solution cultures. J Exp Bot 31:1573–1585

    Article  CAS  Google Scholar 

  • Trought MCT, Drew MC (1982) Effects of waterlogging on young wheat plants (Triticum aestivum L.) and on soil solutes at different temperatures. Plant Soil 69:311–326

    Article  CAS  Google Scholar 

  • Umeda M, Uchimiya H (1994) Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress. Plant Physiol 106:1015–1022

    PubMed  CAS  Google Scholar 

  • Ushimaru T, Maki Y, Sano S, Koshiba K, Asada K, Tsuji H (1997) Induction of enzymes involved in the ascorbate-dependent antioxidative system, namely ascorbate peroxidase, mono dehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water. Plant Cell Physiol 38:541–549

    Article  CAS  Google Scholar 

  • Van der Sman AJM, Blom CWPM, van de Steeg HM (1992) Phenology and seed production in Chenopodium rubrum, Rumex maritimus and Rumex palustris as related to photoperiod in river forelands. Can J Bot 70:392–400

    Article  Google Scholar 

  • Van Toai TT, Bolles CS (1991) Postanoxic injury in soybean (Glycine max) seedlings. Plant Physiol 97:588–592

    Article  Google Scholar 

  • Vartapetian BB, Jackson M (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20

    Article  CAS  Google Scholar 

  • Visser EJW, Voesenek LACJ (2004) Acclimation to soil flooding – sensing and signal – transduction. Plant Soil 254:197–214

    Google Scholar 

  • Visser EJW, Nabben RHM, Blom CWPM, Voesenek LACJ (1997) Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant Cell Environ 20:647–653

    Article  CAS  Google Scholar 

  • Visser EJW, Voesenek LACJ, Vartapetian BB, Jackson MB (2003) Flooding and plant growth. Ann Bot 91:107–109. doi:10.1093/aob/mcg014

    Article  CAS  Google Scholar 

  • Voesenek LACJ, Jackson MB, Toebes AHW, Vriezen WH, Colmer TD (2003) Desubmergence-induced ethylene production in Rumex palustris: regulation and ecophysiological significance. Plant J 33:341–352

    Article  PubMed  CAS  Google Scholar 

  • Waters I, Kuiper PJC, Watkin E, Greenway H (1991a) Effects of anoxia on wheat seedlings I. Interaction between anoxia and other environmental factors. J Exp Bot 42:1427–1435

    Article  CAS  Google Scholar 

  • Waters I, Morrell S, Greenway H, Colmer TD (1991b) Effects of anoxia on wheat seedlings II. Effects of O2 supply prior to anoxia on tolerance to anoxia, alcoholic fermentation and sugars. J Exp Bot 42:1437–1447

    Article  CAS  Google Scholar 

  • Watkin ELJ, Thomson CJ, Greenway H (1998) Root development in two wheat cultivars and one triticale cultivar grown in stagnant agar and aerated nutrient solution. Ann Bot 81:349–354

    Article  Google Scholar 

  • Webb T, Armstrong W (1983) The effects of anoxia and carbohydrates on the growth and viability of rice, pea and pumpkin roots. J Exp Bot 34:579–603

    Article  CAS  Google Scholar 

  • Wesseling J, van Wijk WR (1957) In: Luthin JN (ed) Drainage in agricultural lands. American Society for Agronomy, Madison, pp 461–504

    Google Scholar 

  • Xia JH, Saglio PH (1992) Lactic acid efflux as a mechanism of hypoxic acclimation of maize root tips to anoxia. Plant Physiol 100:40–46

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1 A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  PubMed  CAS  Google Scholar 

  • Yan B, Dai Q, Liu X, Huang S, Wang Z (1996) Flooding induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179:261–268

    Article  CAS  Google Scholar 

  • Zeng Y, Avigne WT, Koch KE (1999) Rapid repression of maize invertase by low oxygen. Invertase / sucrose synthase balance, sugar signaling potential and seedling survival. Plant Physiol 121:599–608

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Kirkham MB (1994) Drought- stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  • Zitomer RS, Lowry CV (1992) Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev 56:1–11

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmay Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Pradhan, C., Mohanty, M. (2013). Submergence Stress: Responses and adaptations in crop plants. In: Rout, G., Das, A. (eds) Molecular Stress Physiology of Plants. Springer, India. https://doi.org/10.1007/978-81-322-0807-5_14

Download citation

Publish with us

Policies and ethics