Skip to main content

Muscular Pain Mechanisms: Brief Review with Special Consideration of Delayed-Onset Muscle Soreness

  • Chapter
Novel Trends in Brain Science
  • 1332 Accesses

Abstract

Muscular pain is quite common, but its mechanisms remain poorly understood. A number of experimental muscular pain models are reviewed herein, with emphasis on delayed-onset muscle soreness (DOMS). DOMS was selected for more detailed review because factors other than inflammation seem to be involved in clinically common muscle pain, and DOMS after lengthening contraction (LC) seems to involve such aspects. The discussion on the methodology of measuring muscle pain with transcutaneous pressure stimulation in humans and awake animals is reviewed; and then studies that have shown the existence of mechanical hyperalgesia in DOMS model animals produced by LC and elongation of the hyperalgesic period (for 5 days) in aged animals (130 weeks old) are introduced. In addition, the response characteristics of thin-fiber receptors and their roles in cardiorespiratory control during exercise and pain are reviewed. In addition, increased sensitivity of thin-fiber receptors to mechanical stimulation in hyperalgesic muscle after LC is discussed. Finally, a future direction for research using the DOMS model is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kellgren JH (1938) Observations on referred pain arising from muscle. Clin Sci 3:175–190.

    Google Scholar 

  2. Graven-Nielsen T, Arendt-Nielsen L, Svensson P, et al (1997) Stimulus-response functions in areas with experimentally induced referred muscle pain: a psychophysical study. Brain Res 744:121–128.

    Article  PubMed  CAS  Google Scholar 

  3. Graven-Nielsen T, Arendt-Nielsen L, Svensson M, et al (1997) Quantification of local and referred muscle pain in humans after sequential i.m. injections of hypertonic saline. Pain 69:111–117.

    Article  PubMed  CAS  Google Scholar 

  4. Graven-Nielsen T, Jansson Y, Segerdahl M, et al (2003) Experimental pain by ischaemic contractions compared with pain by intramuscular infusions of adenosine and hypertonic saline. Eur J Pain 7:93–102.

    Article  PubMed  CAS  Google Scholar 

  5. Babenko V, Graven-Nielsen T, Svensson P, et al (1999) Experimental human muscle pain induced by intramuscular injections of bradykinin, serotonin, and substance P. Eur J Pain 3:93–102.

    Article  PubMed  CAS  Google Scholar 

  6. O’Neill S, Manniche C, Graven-Nielsen T, et al (2007) Generalized deep-tissue hyperalgesia in patients with chronic low-back pain. Eur J Pain 11:415–420.

    Article  PubMed  Google Scholar 

  7. Bajaj P, Bajaj P, Madsen H, et al (2003) Endometriosis is associated with central sensitization: a psychophysical controlled study. J Pain 4:372–380.

    Article  PubMed  Google Scholar 

  8. Sorensen J, Graven-Nielsen T, Henriksson KG, et al (1998) Hyperexcitability in fibromyalgia. J Rheumatol 25:152–155.

    PubMed  CAS  Google Scholar 

  9. Hoheisel U, Unger T, Mense S (2005) Excitatory and modulatory effects of inflammatory cytokines and neurotrophins on mechanosensitive group IV muscle afferents in the rat. Pain 114:168–176.

    Article  PubMed  CAS  Google Scholar 

  10. Taguchi T, Sato J, Mizumura K (2005) Augmented mechanical response of muscle thin-fiber sensory receptors recorded from rat muscle-nerve preparations in vitro after eccentric contraction. J Neurophysiol 94:2822–2831.

    Article  PubMed  Google Scholar 

  11. Mork H, Ashina M, Bendtsen L, et al (2003) Experimental muscle pain and tenderness following infusion of endogenous substances in humans. Eur J Pain 7:145–153.

    Article  PubMed  CAS  Google Scholar 

  12. Babenko V, Graven-Nielsen T, Svensson P, et al (1999) Experimental human muscle pain and muscular hyperalgesia induced by combinations of serotonin and bradykinin. Pain 82:1–8.

    Article  PubMed  CAS  Google Scholar 

  13. Cairns BE, Svensson P, Wang K, et al (2003) Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle. J Neurophysiol 90:2098–2105.

    Article  PubMed  CAS  Google Scholar 

  14. Svensson P, Cairns BE, Wang K, et al (2003) Glutamate-evoked pain and mechanical allodynia in the human masseter muscle. Pain 101:221–227.

    Article  PubMed  CAS  Google Scholar 

  15. Caterina MJ, Schumacher MA, Tominaga M, et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824.

    Article  PubMed  CAS  Google Scholar 

  16. Witting N, Svensson P, Gottrup H, et al (2000) Intramuscular and intradermal injection of capsacin: a comparison of local and referred pain. Pain 84:407–412.

    Article  PubMed  CAS  Google Scholar 

  17. Svensson P, Cairns BE, Wang K, et al (2003) Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia. Pain 104: 241–247.

    Article  PubMed  CAS  Google Scholar 

  18. Kumazawa T, Mizumura K (1977) Thin-fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol (Lond) 273:179–194.

    CAS  Google Scholar 

  19. Graven-Nielsen T, Arendt-Nielsen L, Mense S (2002) Thermosensitivity of muscle: high-intensity thermal stimulation of muscle tissue induces muscle pain in humans. J Physiol (Lond) 540:647–656.

    Article  CAS  Google Scholar 

  20. Pan H-L, Longhurst JC, Eisenach JC, et al (1999) Role of protons in activation of cardiac sympathetic C-fibre afferents during ischaemia in cats. J Physiol (Lond) 518:857–866.

    Article  CAS  Google Scholar 

  21. Meller ST, Gebhart GF (1992) A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain. Neuroscience 48:501–524.

    Article  PubMed  CAS  Google Scholar 

  22. Pan HL, Longhurst JC (1995) Lack of a role of adenosine in activation of ischemically sensitive cardiac sympathetic afferents. Am J Physiol 269:H106–H113.

    PubMed  CAS  Google Scholar 

  23. Baker DG, Coleridge HM, Coleridge JC, et al (1980) Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat. J Physiol (Lond) 306:519–536.

    CAS  Google Scholar 

  24. Vogt A, Vetterlein F, Ri HD, Schmidt G (1979) Excitation of afferent fibres in the cardiac sympathetic nerves induced by coronary occlusion and injection of bradykinin: the influence of acetylsalicylic acid and dipyron. Arch Int Pharmacodyn Ther 239:86–98.

    PubMed  CAS  Google Scholar 

  25. Benson CJ, Eckert SP, Mccleskey EW (1999) Acid-evoked currents in cardiac sensory neurons: a possible mediator of myocardial ischemic sensation. Circ Res 84:921–928.

    PubMed  CAS  Google Scholar 

  26. Molliver DC, Immke DC, Fierro L, et al (2005) ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain 1:35.

    Article  PubMed  CAS  Google Scholar 

  27. Naves LA, McCleskey EW (2005) An acid-sensing ion channel that detects ischemic pain. Braz J Med Biol Res 38:1561–1569.

    Article  PubMed  CAS  Google Scholar 

  28. Yagi J, Wenk HN, Naves LA, et al (2006) Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia. Circ Res 99:501–509.

    Article  PubMed  CAS  Google Scholar 

  29. Berberich P, Hoheisel U, Mense S (1988) Effects of a carrageenan-induced myositis on the discharge properties of group III and IV muscle receptors in the cat. J Neurophysiol 59: 1395–1409.

    PubMed  CAS  Google Scholar 

  30. Diehl B, Hoheisel U, Mense S (1993) The influence of mechanical stimuli and of acetylsalicylic acid on the discharges of slowly conducting afferent units from normal and inflamed muscle in the rat. Exp Brain Res 92:431–440.

    Article  PubMed  CAS  Google Scholar 

  31. Ambalavanar R, Moritani M, Moutanni A, et al (2006) Deep tissue inflammation upregulates neuropeptides and evokes nociceptive behaviors which are modulated by a neuropeptide antagonist. Pain 120:53–68.

    Article  PubMed  CAS  Google Scholar 

  32. Asmussen E (1956) Observations on experimental muscular soreness. Acta Rheum Scand 2:109–116.

    PubMed  CAS  Google Scholar 

  33. Armstrong RB (1984) Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med Sci Sports Exerc 16:529–538.

    PubMed  CAS  Google Scholar 

  34. Newham DJ (1988) The consequences of eccentric contractions and their relationship to delayed onset muscle pain. Eur J Appl Physiol 57:353–359.

    Article  CAS  Google Scholar 

  35. Graven-Nielsen T, Arendt-Nielsen L (2003) Induction and assessment of muscle pain, referred pain, and muscular hyperalgesia. Curr Pain Headache Rep 7:443–451.

    Article  PubMed  Google Scholar 

  36. Armstrong RB, Oglive RW, Schwane JA (1983) Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol 54:80–93.

    PubMed  CAS  Google Scholar 

  37. McCully KK, Faulkner JA (1985) Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol 59:119–126.

    PubMed  CAS  Google Scholar 

  38. Friden J, Lieber RL (1998) Segmental muscle fiber lesions after repetitive eccentric contractions. Cell Tissue Res 293:165–171.

    Article  PubMed  CAS  Google Scholar 

  39. Newham DJ, McPhail G, Mills KR, et al (1983) Ultrastructural changes after concentric and eccentric contractions of human muscle. J Neurol Sci 61:109–122.

    Article  PubMed  CAS  Google Scholar 

  40. Ogilvie RW, Armstrong RB, Baird KE, et al (1988) Lesions in the rat soleus muscle following eccentrically biased exercise. Am J Anat 182:335–346.

    Article  PubMed  CAS  Google Scholar 

  41. Ostrowski K, Rohde T, Zacho M, et al (1998) Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol (Lond) 508:949–953.

    Article  CAS  Google Scholar 

  42. Blais C Jr, Adam A, Massicotte D, et al (1999) Increase in blood bradykinin concentration after eccentric weight-training exercise in men. J Appl Physiol 87:1197–1201.

    PubMed  CAS  Google Scholar 

  43. Jones DA, Newham DJ, Round JM, et al (1986) Experimental human muscle damage: morphological changes in relation to other indices of damage. J Physiol (Lond) 375:435–448.

    CAS  Google Scholar 

  44. Schwane JA, Johnson SR, Vandenakker CB, et al (1983) Delayed-onset muscular soreness and plasma CPK and LDH activities after downhill running. Med Sci Sports Exerc 15: 51–56.

    PubMed  CAS  Google Scholar 

  45. Malm C, Sjodin TL, Sjoberg B, et al (2004) Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running. J Physiol (Lond) 556:983–1000.

    Article  CAS  Google Scholar 

  46. Cheung K, Hume P, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 33:145–164.

    Article  PubMed  Google Scholar 

  47. Adams GR, Cheng DC, Haddad F, et al (2004) Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration. J Appl Physiol 96:1613–1618.

    Article  PubMed  CAS  Google Scholar 

  48. Itoh K, Kawakita K (2002) Effect of indomethacin on the development of eccentric exerciseinduced localized sensitive region in the fascia of the rabbit. Jpn J Physiol 52:173–180.

    Article  PubMed  Google Scholar 

  49. Taguchi T, Matsuda T, Tamura R, et al (2005) Muscular mechanical hyperalgesia revealed by behavioural pain test and c-Fos expression in the spinal dorsal horn after eccentric contraction in rats. J Physiol (Lond) 564:259–268.

    Article  PubMed  CAS  Google Scholar 

  50. Schwane JA, Watrous BG, Johnson SR, et al (1983) Is lactic acid related to delayed-onset muscle soreness? Phys Sportsmed 11:124–131.

    Google Scholar 

  51. De Vries HA (1966) Quantitative electromyographic investigation of the spasm theory of muscle pain. Am J Phys Med 45:119–134.

    PubMed  Google Scholar 

  52. Jones DA, Newham DJ, Clarkson PM (1987) Skeletal muscle stiffness and pain following eccentric exercise of the elbow flexors. Pain 30:233–242.

    Article  PubMed  CAS  Google Scholar 

  53. Friden J, Sjostrom M, Ekblom B (1983) Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 4:170–176.

    Article  PubMed  CAS  Google Scholar 

  54. Friden J, Lieber RL (1992) Structural and mechanical basis of exercise-induced muscle injury. Med Sci Sports Exerc 24:521–530.

    PubMed  CAS  Google Scholar 

  55. Lapointe BM, Frenette J, Cote CH (2002) Lengthening contraction-induced inflammation is linked to secondary damage but devoid of neutrophil invasion. J Appl Physiol 92: 1995–2004.

    Article  PubMed  CAS  Google Scholar 

  56. Matsuda T, Terazawa E, Mizumura K. (2007) Effect of nonsteroidal anti-inflammatory drugs (NSAIDS) and bradykinin (BK) receptor antagonists on mechanical hyperalgesia induced by exercise (DOMS). J Physiol Sci 57(suppl):S112 (abstract).

    Google Scholar 

  57. Vandenburgh HH, Shansky J, Solerssi R, et al (1995) Mechanical stimulation of skeletal muscle increases prostaglandin F2alpha production, cyclooxygenase activity, and cell growth by a pertussis toxin sensitive mechanism. J Cell Physiol 163:285–294.

    Article  PubMed  CAS  Google Scholar 

  58. Wretman C, Lionikas A, Widegren U, et al (2001) Effects of concentric and eccentric contractions on phosphorylation of MAPK(erk1/2) and MAPK(p38) in isolated rat skeletal muscle. J Physiol (Lond) 535:155–164.

    Article  PubMed  CAS  Google Scholar 

  59. Haring HU, Tippmer S, Kellerer M, et al (1996) Modulation of insulin receptor signaling: potential mechanisms of a cross talk between bradykinin and the insulin receptor. Diabetes 45(suppl 1):S115–S119.

    PubMed  Google Scholar 

  60. Inoue A, Iwasa M, Nishikura Y, et al (2006) The long-term exposure of rat cultured dorsal root ganglion cells to bradykinin induced the release of prostaglandin E2 by the activation of cyclooxygenase-2. Neurosci Lett 401:242–247.

    Article  PubMed  CAS  Google Scholar 

  61. Taguchi T, Matsuda T, Mizumura K (2007) Change with age in muscular mechanical hyperalgesia after lengthening contraction in rats. Neurosci Res 57:331–338.

    Article  PubMed  Google Scholar 

  62. Fischer AA (1987) Pressure algometry over normal muscles: standard values, validity and reproducibility of pressure threshold. Pain 30:115–126.

    Article  PubMed  CAS  Google Scholar 

  63. Takahashi K, Taguchi T, Itoh K, et al (2005) Influence of surface anesthesia on the pressure pain threshold measured with different-sized probes. Somatosens Mot Res 22:299–305.

    Article  PubMed  Google Scholar 

  64. Nasu T, Terazawa E, Sato J, et al (2007) Randall-Selitto device measures the mechanical withdrawal thresholds of different tissues in rats depending on its probe diameter. J Physiol Sci 57(suppl):S112 (abstract).

    Google Scholar 

  65. Takahashi K, Taguchi T, Itoh K, et al (2004) Measurement of the muscle pain by a transcutaneous pressure: theoretical and experimental analyses. AbstractViewer/Itinary Planner. Program No. 920.5 (abstract). Washington, DC, Society for Neuroscience.

    Google Scholar 

  66. Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328:632–634.

    Article  PubMed  CAS  Google Scholar 

  67. Cervero F, Connell LA (1984) Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat. J Comp Neurol 230:88–98.

    Article  PubMed  CAS  Google Scholar 

  68. Sugiura Y, Lee CL, Perl ER (1986) Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 234:358–361.

    Article  PubMed  CAS  Google Scholar 

  69. Mizumura K, Sugiura Y, Kumazawa T (1993) Spinal termination patterns of canine identified A-δ and C spermatic polymodal receptors traced by intracellular labeling with phaseolus vulgaris leucoagglutinin. J Comp Neurol 335:460–468.

    Article  PubMed  CAS  Google Scholar 

  70. Ling LJ, Honda T, Shimada Y, et al (2003) Central projection of unmyelinated (C) primary afferent fibers from gastrocnemius muscle in the guinea pig. J Comp Neurol 461:140–150.

    Article  PubMed  Google Scholar 

  71. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580.

    PubMed  CAS  Google Scholar 

  72. Zerba E, Komorowski TE, Faulkner JA (1990) Free radical injury to skeletal muscles of young, adult, and old mice. Am J Physiol 258:C429–C435.

    PubMed  CAS  Google Scholar 

  73. Brooks SV, Faulkner JA (1990) Contraction-induced injury: recovery of skeletal muscles in young and old mice. Am J Physiol 258:C436–C442.

    PubMed  CAS  Google Scholar 

  74. Mizumura K, Taguchi T, Matsuda T, et al (2007) Change by aging in muscular mechanical hyperalgesia after lengthening contraction. Neurosci Res 55(suppl):S192 (abstract).

    Google Scholar 

  75. Kitagawa J, Kanda K, Sugiura M, et al (2005) Effect of chronic inflammation on dorsal horn nociceptive neurons in aged rats. J Neurophysiol 93:3594–3604.

    Article  PubMed  Google Scholar 

  76. McArdle A, Dillmann WH, Mestril R, et al (2004) Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J 18:355–357.

    PubMed  CAS  Google Scholar 

  77. McBride TA, Gorin FA, Carlsen RC (1995) Prolonged recovery and reduced adaptation in aged rat muscle following eccentric exercise. Mech Ageing Dev 83:185–200.

    Article  PubMed  CAS  Google Scholar 

  78. Close GL, Kayani A, Vasilaki A, et al (2005) Skeletal muscle damage with exercise and aging. Sports Med 35:413–427.

    Article  PubMed  Google Scholar 

  79. Zheng Z, Gibson SJ, Khalil Z, et al (2000) Age-related differences in the time course of capsaicin-induced hyperalgesia. Pain 85:51–58.

    Article  PubMed  CAS  Google Scholar 

  80. Stacey MJ (1969) Free nerve endings in skeletal muscle of the cat. J Anat 105:231–254.

    PubMed  CAS  Google Scholar 

  81. Weerakkody NS, Whitehead NP, Canny BJ, et al (2001) Large-fiber mechanoreceptors contribute to muscle soreness after eccentric exercise. J Pain 2:209–219.

    Article  PubMed  CAS  Google Scholar 

  82. Weerakkody NS, Percival P, Hickey MW, et al (2003) Effects of local pressure and vibration on muscle pain from eccentric exercise and hypertonic saline. Pain 105:425–435.

    Article  PubMed  CAS  Google Scholar 

  83. Nagy JI, Iversen LL, Goedert M, et al (1983) Dose-dependent effects of capsaicin on primary sensory neurons in the neonatal rat. J Neurosci 3:399–406.

    PubMed  CAS  Google Scholar 

  84. Kaufman MP, Kozlowski GP, Rybicki KJ (1985) Attenuation of the reflex pressor response to muscular contraction by a substance P antagonist. Brain Res 333:182–184.

    Article  PubMed  CAS  Google Scholar 

  85. Hanna RL, Kaufman MP (2003) Role played by purinergic receptors on muscle afferents in evoking the exercise pressor reflex. J Appl Physiol 94:1437–1445.

    PubMed  CAS  Google Scholar 

  86. Kindig AE, Hayes SG, Kaufman MP (2007) Purinergic 2 receptor blockade prevents the responses of group IV afferents to post-contraction circulatory occlusion. J Physiol (Lond ) 578:301–308

    Article  PubMed  CAS  Google Scholar 

  87. Mork H, Ashina M, Bendtsen L, et al (2003) Experimental muscle pain and tenderness following infusion of endogenous substances in humans. Eur J Pain 7:145–153.

    Article  PubMed  CAS  Google Scholar 

  88. Smith SA, Williams MA, Mitchell JH, et al (2005) The capsaicin-sensitive afferent neuron in skeletal muscle is abnormal in heart failure. Circulation 111:2056–2065.

    Article  PubMed  CAS  Google Scholar 

  89. Dousset E, Marqueste T, Decherchi P, et al (2004) Effects of neonatal capsaicin deafferentation on neuromuscular adjustments, performance, and afferent activities from adult tibialis anterior muscle during exercise. J Neurosci Res 76:734–741.

    Article  PubMed  CAS  Google Scholar 

  90. Iggo A (1961) Non-myelinated afferent fibers from mammalian skeletal muscle. J Physiol (Lond) 155:52–53.

    Google Scholar 

  91. Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol (Lond) 363:403–417.

    PubMed  CAS  Google Scholar 

  92. Hoheisel U, Reinohl J, Unger T, et al (2004) Acidic pH and capsaicin activate mechanosensitive group IV muscle receptors in the rat. Pain 110:149–157.

    Article  PubMed  CAS  Google Scholar 

  93. Fock S, Mense S (1976) Excitatory effects of 5-hydroxytryptamine, histamine and potassium ions on muscular group IV afferent units: a comparison with bradykinin. Brain Res 105:459–469.

    Article  PubMed  CAS  Google Scholar 

  94. Reinohl J, Hoheisel U, Unger T, et al (2003) Adenosine triphosphate as a stimulant for nociceptive and non-nociceptive muscle group IV receptors in the rat. Neurosci Lett 338:25–28.

    Article  PubMed  CAS  Google Scholar 

  95. Hanna RL, Kaufman MP (2004) Activation of thin-fiber muscle afferents by a P2X agonist in cats. J Appl Physiol 96:1166–1169.

    Article  PubMed  CAS  Google Scholar 

  96. Sinoway LI, Hill JM, Pickar JG, et al (1993) Effects of contraction and lactic acid on the discharge of group III muscle afferents in cats. J Neurophysiol 69:1053–1059.

    PubMed  CAS  Google Scholar 

  97. Mense S, Meyer H (1988) Bradykinin-induced modulation of the response behaviour of different types of feline group III and IV muscle receptors. J Physiol (Lond) 398:49–63.

    PubMed  CAS  Google Scholar 

  98. Franz M, Mense S (1975) Muscle receptors with group IV afferent fibres responding to application of bradykinin. Brain Res 92:369–383.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Mizumura, K. (2008). Muscular Pain Mechanisms: Brief Review with Special Consideration of Delayed-Onset Muscle Soreness. In: Onozuka, M., Yen, CT. (eds) Novel Trends in Brain Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73242-6_12

Download citation

Publish with us

Policies and ethics