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Chapter 3
Invariant Representations of 
Objects in Natural Scenes in the 
Temporal Cortex Visual Areas
Edmund T. Rolls

University of Oxford, Department of Experimental Psychology, South Parks Road, 
Oxford, OX1 3UD, England

1. Introduction

Evidence on how information about visual stimuli is represented in the temporal 
cortical visual areas and on how these representations are formed is described. 
The neurophysiological recordings are made mainly in nonhuman primates, 
macaques, fi rst because the temporal lobe, in which this processing occurs, is 
much more developed than in nonprimates, and second because the fi ndings are 
relevant to understanding the effects of brain damage in patients, as will be 
shown. In this chapter, attention is paid to neural systems involved in processing 
information about faces, because with the large number of neurons devoted to 
this class of stimuli, this system has proved amenable to experimental analysis; 
because of the importance of face recognition and expression identifi cation in 
primate, including human, social and emotional behavior; and because of the 
application of understanding this neural system to understanding the effects of 
damage to this system in humans. It is also shown that the temporal cortical visual 
areas have neuronal populations that provide invariant representations of objects. 
Although there is some segregation of face identity and object identity represen-
tations in different cytoarchitectonic regions, the proportion of face-selective 
neurons in any one region reaches only 20%, so that no region is devoted exclu-
sively to faces (see Section 2).

In Section 2, I show that there are two main populations of face-selective 
neurons in the temporal cortical visual areas. The fi rst population is tuned to the 
identity of faces and has representations that are invariant with respect to, for 
example, retinal position, size, and even view. These invariant representations 
are ideally suited to provide the inputs to brain regions such as the orbitofrontal 
cortex and amygdala that learn the reinforcement associations of an individual’s 
face, for then the learning, and the appropriate social and emotional responses, 
generalize to other views of the same face. Moreover, these inferior temporal 
cortex neurons have sparse distributed representations of faces, which are shown 

RAB03.indd   47RAB03.indd   47 4/30/2007   4:03:01 PM4/30/2007   4:03:01 PM



48  E.T. Rolls

Y2

to be well suited as inputs to the stimulus–reinforcer association learning mecha-
nisms in the orbitofrontal cortex and amygdala that allow different emotional 
and social responses to be made to the faces of different individuals, depending 
on the reinforcers received. The properties of these neurons tuned to face 
identity or object identity are described in Sections 3–11. Section 12 describes a 
second main population of neurons that are in the cortex in the superior temporal 
sulcus, which encode other aspects of faces such as face expression, eye gaze, 
face view, and whether the head is moving. This second population of neurons 
thus provides important additional inputs to parts of the brain such as the orbi-
tofrontal cortex and amygdala that are involved in social communication and 
emotional behavior. This second population of neurons may in some cases encode 
reinforcement value (e.g., face expression neurons), or provide social informa-
tion that is very relevant to whether reinforcers will be received, such as neurons 
that signal eye gaze, or whether the head is turning toward or away from the 
receiver. Sections 13 and 14 show how the brain may learn these invariant rep-
resentations of objects and faces. Section 15 shows how attention operates 
computationally in natural visual scenes, and Section 16 describes the biased 
competition approach to how attention can modulate representations in the 
brain. In Sections 17 and 18, I describe the representations of faces in two areas, 
the amygdala and orbitofrontal cortex, to which the temporal cortical areas have 
direct projections. I also review evidence (Section 18) that damage to the human 
orbitofrontal cortex can impair face (and voice) expression identifi cation.

The orbitofrontal cortex is also shown to be involved in the rapid reversal of 
behavior to stimuli (which could be the face of an individual) when the reinforce-
ment contingencies change, and therefore to have an important role in social and 
emotional behavior. Moreover, the human orbitofrontal cortex is shown to be 
activated in a simple model of human social interaction when a face expression 
change indicates that the face of a particular individual is no longer reinforcing. 
The representations in the orbitofrontal cortex are thus of the reward or affective 
value of the visual stimuli that are useful in emotional behavior, in contrast to 
the representations in the temporal cortical visual areas, where the representa-
tions that are built are primarily of the identity of the visual stimulus.

2. Neuronal Responses Found in Different Temporal Lobe 
Cortex Visual Areas

Visual pathways project by a number of cortico-cortical stages from the primary 
visual cortex until they reach the temporal lobe visual cortical areas (Baizer 
et al. 1991; Maunsell and Newsome 1987; Seltzer and Pandya 1978), in which 
some neurons that respond selectively to faces are found (Bruce et al. 1981; 
Desimone 1991; Desimone and Gross 1979; Desimone et al. 1984; Gross et al. 
1985; Perrett et al. 1982; Rolls 1981, 1984, 1991, 1992a, 2000a, 2005, 2006; Rolls 
and Deco 2002). The inferior temporal visual cortex, area TE, is divided on the 
basis of cytoarchitecture, myeloarchitecture, and afferent input into areas TEa, 
TEm, TE3, TE2, and TE1. In addition, there is a set of different areas in the 
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cortex in the superior temporal sulcus (Baylis et al. 1987; Seltzer and Pandya 
1978) (Fig. 1). Of these latter areas, TPO receives inputs from temporal, parietal, 
and occipital cortex; PGa and IPa from parietal and temporal cortex; and TS and 
TAa primarily from auditory areas (Seltzer and Pandya 1978).

Considerable specialization of function was found in recordings made from 
more than 2600 neurons in these architectonically defi ned areas (Baylis et al. 
1987). Areas TPO, PGa, and IPa are multimodal, with neurons that respond to 
visual, auditory, and/or somatosensory inputs; the inferior temporal gyrus and 
adjacent areas (TE3, TE2, TE1, TEa, and TEm) are primarily unimodal visual 
areas; areas in the cortex in the anterior and dorsal part of the superior temporal 
sulcus (e.g., TPO, IPa, and IPg) have neurons specialized for the analysis of 
moving visual stimuli; and neurons responsive primarily to faces are found more 
frequently in areas TPO, TEa, and TEm, where they comprise approximately 
20% of the visual neurons responsive to stationary stimuli, in contrast to the 
other temporal cortical areas, in which they comprise 4% to 10%. The stimuli 
that activate other cells in these TE regions include simple visual patterns such 
as gratings and combinations of simple stimulus features (Gross et al. 1985; 
Tanaka et al. 1990). Because face-selective neurons have a wide distribution, it 
might be expected that only large lesions, or lesions that interrupt outputs of 
these visual areas, would produce readily apparent face-processing defi cits. 
Moreover, neurons with responses related to facial expression, movement, and 
gesture are more likely to be found in the cortex in the superior temporal sulcus, 
whereas neurons with activity related to facial identity are more likely to be 
found in the TE areas (Hasselmo et al. 1989a).

In human functional magnetic resonance imaging (fMRI) studies, evidence 
for specialization of function is described (Grill-Spector and Malach 2004; 
Haxby et al. 2002; Spiridon and Kanwisher 2002) related to face processing (in 

Fig. 1. Lateral view of the macaque brain (left) and coronal section (right) showing the 
different architectonic areas (e.g., TEm, TPO) in and bordering the anterior part of the 
superior temporal sulcus (STS) of the macaque (see text). (After Seltzer and Pandya 1978) 
(seltzer.eps) 44
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the fusiform face area, which may correspond to parts of the macaque inferior 
temporal visual cortex in which face neurons are common); to face expression and 
gesture (i.e., moving faces) (in the cortex in the superior temporal sulcus, which 
corresponds to the macaque cortex in the superior temporal sulcus); to objects (in 
an area that may correspond to the macaque inferior temporal cortex in which 
object but not face representations are common, as already described); and to 
spatial scenes (in a parahippocampal area, which probably corresponds to the 
macaque parahippocampal gyrus areas in which neurons are tuned to spatial view 
and to combinations of objects and the places in which they are located (Georges-
François et al. 1999; Robertson et al. 1998; Rolls 1999c; Rolls and Kesner 2006; 
Rolls and Xiang 2005, 2006; Rolls et al. 1997b, 1998, 2005). However, there is 
much debate arising from these human fMRI studies about how specifi c each 
region is for a different type of function, in that such studies do not provide clear 
evidence on whether individual neurons can be very selective for face identity 
versus face expression versus objects and thereby convey specifi c information 
about these different classes of object; whether each area contains a mixture of 
different populations of neurons each tuned to different specifi c classes of visual 
stimuli, or neurons with relatively broad tuning that respond at least partly to 
different classes of stimuli; and about the fi ne-grain topology within a cortical 
area. The single-neuron studies in macaques described above and below do 
provide clear answers to these questions. The neuronal recording studies show 
that individual neurons can be highly tuned in that they convey information about 
face identity, or about face expression, or about objects, or about spatial view. 
The recording studies show that within these different classes, individual neurons 
by responding differently to different members of the class convey information 
about whose face it is, what the face expression is, etc., using a sparse distributed 
code with an approximately exponential fi ring rate probability distribution. The 
neuronal recording studies also show that each cytoarchitectonically defi ned area 
contains different proportions of face identity versus object neurons, but that the 
proportion of face-selective neurons in any one area is not higher than 20% of 
the visually responsive neurons in an area, so that considerable intermixing of 
specifi cally tuned neurons is the rule (Baylis et al. 1987). The neuronal recording 
studies also show that at the fi ne spatial scale, clusters of neurons extending for 
approximately 0.5–1 mm with tuning to one aspect of stimuli are common (e.g., 
face identity, or the visual texture of stimuli, or a particular class of head motion), 
and this can be understood as resulting from self-organizing mapping based on 
local cortical connectivity when a high dimensional space of objects, faces, etc., 
must be represented on a two-dimensional cortical sheet (Rolls and Deco 2002).

3. The Selectivity of One Population of Neurons for Faces

The neurons described in our studies as having responses selective for faces are 
selective in that they respond 2 to 20 times more (and statistically signifi cantly 
more) to faces than to a wide range of gratings, simple geometric stimuli, or 

RAB03.indd   50RAB03.indd   50 4/30/2007   4:03:01 PM4/30/2007   4:03:01 PM



 3. Visual Object and Face Representations  51

Y2

complex three-dimensional (3-D) objects (Baylis et al. 1985, 1987; Rolls and 
Deco 2002; Rolls 1984, 1992a, 1997, 2000a, 2006). The recordings are made while 
the monkeys perform a visual fi xation task in which, after the fi xation spot has 
disappeared, a stimulus subtending typically 8° is presented on a video monitor 
(or, in some earlier studies, while monkeys perform a visual discrimination task). 
The responses to faces are excitatory, with fi ring rates often reaching 100 spikes/s, 
sustained, and have typical latencies of 80–100 ms. The neurons are typically 
unresponsive to auditory or tactile stimuli and to the sight of arousing or aversive 
stimuli. These fi ndings indicate that explanations in terms of arousal, emotional 
or motor reactions, and simple visual feature sensitivity are insuffi cient to account 
for the selective responses to faces and face features observed in this population 
of neurons (Baylis et al. 1985; Perrett et al. 1982; Rolls and Baylis 1986). Obser-
vations consistent with these fi ndings have been published by Desimone et al. 
(1984), who described a similar population of neurons located primarily in the 
cortex in the superior temporal sulcus that responded to faces but not to simpler 
stimuli such as edges and bars or to complex non-face stimuli (see also Gross 
et al. 1985).

These neurons are specialized to provide information about faces in that they 
provide much more information (on average, 0.4 bits) about which (of 20) face 
stimuli is being seen than about which (of 20) non-face stimuli is being seen (on 
average, 0.07 bits) (Rolls and Tovee 1995a; Rolls et al. 1997a). These information 
theoretical procedures provide an objective and quantitative way to show what 
is “represented” by a particular population of neurons, and indicate that different 
categories of visual stimulus are represented by different populations of inferior 
temporal cortex neurons (see also Hasselmo et al. 1989a).

4. The Selectivity of These Neurons for Individual Face 
Features or for Combinations of Face Features

Masking out or presenting parts of the face (e.g., eyes, mouth, or hair) in isola-
tion reveal that different cells respond to different features or subsets of features. 
For some cells, responses to the normal organization of cut-out or line-drawn 
facial features are signifi cantly larger than to images in which the same facial 
features are jumbled (Perrett et al. 1982; Rolls et al. 1994). These fi ndings are 
consistent with the hypotheses developed below that by competitive self-
organization some neurons in these regions respond to parts of faces by respond-
ing to combinations of simpler visual properties received from earlier stages of 
visual processing, and that other neurons respond to combinations of parts of 
faces and thus respond only to whole faces. Moreover, the fi nding that for some 
of these latter neurons the parts must be in the correct spatial confi guration 
shows that the combinations formed can refl ect not just the features present, but 
also their spatial arrangement; this provides a way in which binding can be imple-
mented in neural networks (Elliffe et al. 2002; Rolls and Deco 2002). Further 
evidence that neurons in these regions respond to combinations of features in 
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the correct spatial confi guration was found by Tanaka et al. (1990) using combi-
nations of features that are used by comparable neurons to defi ne objects.

5. Distributed Encoding of Face and Object Identity

An important question for understanding brain function is whether a particular 
object (or face) is represented in the brain by the fi ring of one or a few gnostic 
(or “grandmother”) cells (Barlow 1972), or whether instead the fi ring of a popu-
lation or ensemble of cells each with different profi les of responsiveness to the 
stimuli provides the representation. It has been shown that the representation of 
which particular object (face) is present is rather distributed. Baylis, Rolls, and 
Leonard (1985) showed this with the responses of temporal cortical neurons that 
typically responded to several members of a set of 5 faces, with each neuron 
having a different profi le of responses to each face. In a further study using 23 
faces and 45 non-face natural images, a distributed representation was again 
found (Rolls and Tovee 1995a), with the average sparseness being 0.65. The 
sparseness of the representation provided by a neuron can be defi ned as

a r S r Ss S s s S s= ( ) ( )= =Σ Σ1

2

1
2

, ,

where rs is the mean fi ring rate of the neuron to stimulus s in the set of S stimuli 
[see Rolls and Treves (1998) and Franco et al. (2006)]. If the neurons are binary 
(either fi ring or not to a given stimulus), then a would be 0.5 if the neuron 
responded to 50% of the stimuli and 0.1 if a neuron responded to 10% of the 
stimuli. If the spontaneous fi ring rate was subtracted from the fi ring rate of the 
neuron to each stimulus, so that the changes of fi ring rate, that is, the active 
responses of the neurons, were used in the sparseness calculation, then the 
“response sparseness” had a lower value, with a mean of 0.33 for the population 
of neurons.

The distributed nature of the representation can be further understood by the 
fi nding that the fi ring rate distribution of single neurons when a wide range of 
natural visual stimuli are being viewed is approximately exponentially distributed, 
with rather few stimuli producing high fi ring rates, and increasingly large numbers 
of stimuli producing lower and lower fi ring rates (Baddeley et al. 1997; Franco 
et al. 2006; Rolls and Tovee 1995a; Treves et al. 1999) (Fig. 2). The sparseness 
of such an exponential distribution of fi ring rates is 0.5. It has been shown that 
the distribution may arise from the threshold nonlinearity of neurons combined 
with short-term variability in the responses of neurons (Treves et al. 1999).

Complementary evidence comes from applying information theory to analyze 
how information is represented by a population of these neurons. The informa-
tion required to identify which of S equiprobable events occurred (or stimuli 
were shown) is log2S bits. (Thus, 1 bit is required to specify which of 2 stimuli 
was shown, 2 bits to specify which of 4 stimuli was shown, 3 bits to specify which 
of 8 stimuli was shown, etc.) The important point for the present purposes is that 
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if the encoding was local (or grandmother cell-like), then the number of stimuli 
encoded by a population of neurons would be expected to rise approximately 
linearly with the number of neurons in the population. In contrast, with distrib-
uted encoding, provided that the neuronal responses are suffi ciently indepen-
dent, and are suffi ciently reliable (not too noisy), the number of stimuli encodable 
by the population of neurons might be expected to rise exponentially as the 
number of neurons in the sample of the population was increased. The informa-
tion available about which of 20 equiprobable faces had been shown that was 
available from the responses of different numbers of these neurons is shown in 
Fig. 3. First, it is clear that some information is available from the responses of 
just one neuron, on average, approximately 0.34 bits. Thus, knowing the activity 
of just one neuron in the population does provide some evidence about which 
stimulus was present. This evidence that information is available in the responses 
of individual neurons in this way, without having to know the state of all the 

11

Fig. 2. Firing rate distribution of a single neuron in the temporal visual cortex to a set of 
23 face (F) and 45 non-face images of natural scenes. The fi ring rate to each of the 68 
stimuli is shown. P, a face profi le stimulus; B, a body part stimulus such as a hand. (After 
Rolls and Tovee 1995a) (fratedist.eps)
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other neurons in the population, indicates that information is made explicit in 
the fi ring of individual neurons in a way that will allow neurally plausible decod-
ing, involving computing a sum of input activities each weighted by synaptic 
strength, to work (see following). Second, it is clear (see Fig. 3) that the informa-
tion rises approximately linearly, and the number of stimuli encoded thus rises 
approximately exponentially, as the number of cells in the sample increases 
(Abbott et al. 1996; Rolls and Treves 1998; Rolls et al. 1997a).

This direct neurophysiological evidence thus demonstrates that the encoding 
is distributed, and the responses are suffi ciently independent and reliable, that 
the representational capacity increases exponentially with the number of neurons 
in the ensemble (Fig. 4). The consequence of this is that large numbers of stimuli, 
and fi ne discriminations between them, can be represented without having to 
measure the activity of an enormous number of neurons. [It has been shown that 
the main reason why the information tends to asymptote, as shown in Fig. 3, as 
the number of neurons in the sample increases is just that the ceiling is being 
approached of how much information is required to discriminate between the 
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Fig. 3. a The values for the average information available in the responses of different 
numbers of these neurons on each trial, about which of a set of 20 face stimuli has been 
shown. The decoding method was dot product (DP, x) or probability estimation (PE, +), 
and the effects obtained with cross validation procedures utilizing 50% of the trials as test 
trials are shown. The remainder of the trials in the cross-validation procedure were used 
as training trials. The full line indicates the amount of information expected from popula-
tions of increasing size, when assuming random correlations within the constraint given 
by the ceiling (the information in the stimulus set, I = 4.32 bits). b The percent correct 
for the corresponding data to those shown in a. (After Rolls, Treves, and Tovee 1997) 
(multicellinfo20f.eps)
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set of stimuli, which with 20 stimuli is log2 20 = 4.32 bits (Abbott et al. 1996; Rolls 
et al. 1997a)].

It has in addition been shown that there are neurons in the inferior temporal 
visual cortex that encode view invariant representations of objects, and for these 
neurons the same type of representation is found, namely distributed encoding 
with independent information conveyed by different neurons (Booth and Rolls 
1998).

The analyses just described were obtained with neurons that were not simul-
taneously recorded, but we have more recently shown that with simultaneously 
recorded neurons similar results are obtained, that is, the information about 
which stimulus was shown increases approximately linearly with the number of 
neurons, showing that the neurons convey information that is nearly independent 
(Panzeri et al. 1999b; Rolls et al. 2004). [Consistently, Gawne and Richmond 
(1993) showed that even adjacent pairs of neurons recorded simultaneously from 
the same electrode carried information that was approximately 80% indepen-
dent.] In the research described by Panzeri et al. (1999b), Rolls et al. (2003b), 
and Franco et al. (2004), we developed methods for measuring the information 
in the relative time of fi ring of simultaneously recorded neurons, which might be 
signifi cant if the neurons became synchronized to some but not other stimuli in 
a set, as postulated by Singer (1999). We found that for the set of cells currently 
available, almost all the information was available in the fi ring rates of the cells, 
and very little (not more than approximately 5% of the total information) was 
available about these static images in the relative time of fi ring of different simul-
taneously recorded neurons (Franco et al. 2004; Panzeri et al. 1999b; Rolls et al. 
2003b, 2004). Thus, the evidence is that for representations of faces and objects 

Fig. 4. The number of stimuli (in this case from a set of 20 faces) that are encoded in the 
responses of different numbers of neurons in the temporal lobe visual cortex, based on 
the results shown in Fig. 3. The decoding method was dot product (DP, open circles) or 
probability estimation (PE, fi lled circles). (After Rolls, Treves, and Tovee 1997; Abbott, 
Rolls, and Tovee 1996) (multicellexprot.eps)
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in the inferior temporal visual cortex (and of space in the primate hippocampus 
and of odors in the orbitofrontal cortex; see Rolls et al. 1996, 1998), most of the 
information is available in the fi ring rates of the neurons.

To obtain direct evidence on whether stimulus-dependent synchrony is im -
portant in encoding information in natural and normal visual processing, we 
(Aggelopoulos et al. 2005) analyzed the activity of simultaneously recorded 
neurons using an object-based attention task in which macaques searched for a 
target object to touch in a complex natural scene. In the task, object-based atten-
tion was required as the macaque knew which of the two objects he was searching 
for. Feature binding was required in that two objects (each requiring correct 
binding of the features of that object but not the other object) were present, and 
segmentation was required to segment the objects from their background. This 
is a real-world task with natural visual scenes, in which, if temporal synchrony 
was important in neuronal encoding, it should be present. Information theoreti-
cal techniques were used to assess how much information was provided by the 
fi ring rates of the neurons about the stimuli and how much by the stimulus-
dependent cross-correlations between the fi ring of different neurons that were 
sometimes present. The use of information theoretic procedures was important, 
for it allowed the relative contributions of rates and stimulus-dependent syn-
chrony to be quantifi ed (Franco et al. 2004). It was found that between 99% and 
94% of the information was present in the fi ring rates of inferior temporal cortex 
neurons, and less that 5% in any stimulus-dependent synchrony that was present, 
as illustrated in Fig. 5 (Aggelopoulos et al. 2005). The implication of these results 
is that any stimulus-dependent synchrony that is present is not quantitatively 
important, as measured by information theoretical analyses under natural scene 
conditions; this has been found for the inferior temporal cortex, a brain region 
where features are put together to form representations of objects (Rolls and 
Deco 2002), and where attention has strong effects, at least in scenes with blank 
backgrounds (Rolls et al. 2003a). The fi nding as assessed by information theoreti-
cal methods of the importance of fi ring rates and not stimulus-dependent syn-
chrony is consistent with previous information theoretic approaches (Franco 
et al. 2004; Rolls et al. 2003b, 2004). It would of course also be of interest to test 
the same hypothesis in earlier visual areas, such as V4, with quantitative, infor-
mation theoretical, techniques. In connection with rate codes, it should be noted 
that a rate code implies using the number of spikes that arrive in a given time, 
and that this time can be very short, as little as 20 to 50 ms, for very useful 
amounts of information to be made available from a population of neurons (Rolls 
2003; Rolls and Tovee 1994; Rolls et al. 1994, 1999, 2006b; Tovee and Rolls 1995; 
Tovee et al. 1993).

The implications of these fi ndings for the computational bases of attention are 
important. First, the fi ndings indicate that top-down attentional biasing inputs 
could, by providing biasing inputs to the appropriate object-selective neurons, 
facilitate bottom-up information about objects without any need to alter the time 
relations between the fi ring of different neurons. The neurons to which the top-
down biases should be applied could in principle be learned by simple Hebbian 

RAB03.indd   56RAB03.indd   56 4/30/2007   4:03:03 PM4/30/2007   4:03:03 PM



 3. Visual Object and Face Representations  57

Y2

associativity between the source of the biasing signals, in for example the pre-
frontal cortex, and the inferior temporal cortex neurons (Rolls and Deco 2002). 
Thus, rate encoding would be suffi cient for the whole system to implement atten-
tion, a conclusion supported by the spiking network model of attention of Deco 
and Rolls (2005c), in which nonlinear interactions between top-down and bottom-
up signals without specifi c temporal encoding can implement the details of the 
interactions found neurophysiologically in V4 and V2. Second, the fi ndings are 
consistent with the hypothesis that feature binding is implemented by feature 
combination neurons which respond to features in the correct relative spatial 
locations (Elliffe et al. 2002; Rolls and Deco 2002), and not by temporal synchrony 
and attention (Singer 1999; Singer and Gray 1995; von der Malsburg 1990).

With respect to the synchrony model, von der Malsburg (1990) suggested that 
features that should be bound together would be linked by temporal binding. 
There has been considerable neurophysiological investigation of this possibility 
(Singer 1999; Singer and Gray 1995). A problem with this approach is that tem-
poral binding might enable features 1, 2, and 3 (which might defi ne one stimulus) 
to be bound together and kept separate from, for example, another stimulus 

Fig. 5. Right. The information available from the fi ring rates (Rate Inf ) or from stimulus-
dependent synchrony (Cross-Corr Inf ) from populations of simultaneously recorded infe-
rior temporal cortex neurons about which stimulus had been presented in a complex 
natural scene. The total information (Total Inf ) is that available from both the rate and 
the stimulus-dependent synchrony, which do not necessarily contribute independently. 
Left. Eye position recordings and spiking activity from two neurons on a single trial of 
the task. (Neuron 31 tended to fi re more when the macaque looked at one of the stimuli, 
S−, and neuron 21 tended to fi re more when the macaque looked at the other stimulus, 
S+. Both stimuli were within the receptive fi eld of the neuron.) (After Aggelopoulos 
et al. 2005) (infoscene.eps)
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consisting of features 2, 3, and 4, but would require a further temporal binding 
(leading in the end potentially to a combinatorial explosion) to indicate the rela-
tive spatial positions of the 1, 2, and 3 in the 123 stimulus, so that it can be dis-
criminated from 312, for example. Thus, temporal synchrony could it seems at 
best be useful for grouping features (e.g., features 1, 2, and 3 are part of object 
1, and features 4 and 6 are part of object 2), but would not, without a great deal 
more in the way of implementation, be useful to encode the relative spatial posi-
tions of features within an object or of objects in a scene.

It is unlikely that there are further processing areas beyond those described 
where ensemble coding changes into grandmother cell (local) encoding. Ana-
tomically, there does not appear to be a whole further set of visual processing 
areas present in the brain; and outputs from the temporal lobe visual areas such 
as those described, are taken to limbic and related regions such as the amygdala 
and orbitofrontal cortex, and via the entorhinal cortex to the hippocampus, 
where associations between the visual stimuli and other sensory representations 
are formed (Rolls and Deco 2002; Rolls 2005). Indeed, tracing this pathway 
onward, we have found a population of neurons with face-selective responses in 
the amygdala (Leonard et al. 1985; Rolls 2000b) and orbitofrontal cortex (Rolls 
et al. 2006a), and in the majority of these neurons, different responses occur to 
different faces, with ensemble (not local) coding still being present. The amyg-
dala in turn projects to another structure that may be important in other behav-
ioral responses to faces, the ventral striatum, and comparable neurons have also 
been found in the ventral striatum (Williams et al. 1993).

6. Advantages of the Distributed Representation of Objects 
and Faces for Brain Processing

The advantages of the distributed encoding found are now considered, and apply 
to both fully distributed and to sparse distributed (but not to local) encoding 
schemes, as explained elsewhere (Rolls 2005; Rolls and Deco 2002; Rolls and 
Treves 1998).

6.1. Exponentially High Coding Capacity
This property arises from a combination of the encoding being suffi ciently close 
to independent by the different neurons (i.e., factorial), and suffi ciently distrib-
uted. Part of the biological signifi cance of the exponential encoding capacity 
found is that a receiving neuron or neurons can obtain information about which 
one of a very large number of stimuli is present by receiving the activity of rela-
tively small numbers of inputs (of the order of hundreds) from each of the neu-
ronal populations from which it receives. In particular, the characteristics of the 
actual visual cells described here indicate that the activity of 15 would be able to 
encode 192 face stimuli (at 50% accuracy); of 20 neurons, 768 stimuli; of 25 
neurons; 3 072 stimuli; of 30 neurons, 12 288 stimuli; and of 35 neurons, 49 152 
stimuli (the values are for the optimal decoding case) (Abbott et al. 1996). Given 
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that most neurons receive a limited number of synaptic contacts, of the order of 
several thousand, this type of encoding is ideal. (It should be noted that the 
capacity of the distributed representations was calculated from ensembles of 
neurons each already shown to provide information about faces. If inferior tem-
poral cortex neurons were chosen at random, 20 times as many neurons would 
be needed in the sample if face-selective neurons comprised 5% of the popula-
tion. This brings the number of inputs required from an ensemble up to reason-
able numbers given brain connectivity, a number of the order of the thousands 
of synapses being received by each neuron.) This type of encoding would enable, 
for example, neurons in the amygdala and orbitofrontal cortex to form pattern 
associations of visual stimuli with reinforcers such as the taste of food when each 
neuron received a reasonable number, perhaps in the order of hundreds, of 
inputs from the visually responsive neurons in the temporal cortical visual areas 
which specify which visual stimulus or object is being seen (Rolls 1990, 1992a,b; 
Rolls and Deco 2002; Rolls and Treves 1998). It is useful to realize that although 
the sensory representation may have exponential encoding capacity, this does 
not mean that the associative networks that receive the information can store 
such large numbers of different patterns. Indeed, there are strict limitations on 
the number of memories that associative networks can store (Rolls and Treves 
1990, 1998; Treves and Rolls 1991). The particular value of the exponential 
encoding capacity of sensory representations is that very fi ne discriminations can 
be made, as there is much information in the representation, and that the repre-
sentation can be decoded if the activity of even a limited number of neurons in 
the representation is known.

One of the underlying themes here is the neural representation of faces and 
objects. How would one know that one had found a neuronal representation of 
faces or objects in the brain? The criterion suggested (Rolls and Treves 1998) is 
that when one can identify the face or object that is present (from a large set of 
stimuli, which might be thousands or more) with a realistic number of neurons, 
say of the order of 100, and with some invariance, then one has a useful repre-
sentation of the object.

The properties of the representation of faces, of objects (Booth and Rolls 
1998), and of olfactory and taste stimuli, have been evident when the readout of 
the information was by measuring the fi ring rate of the neurons, typically over a 
20-, 50-, or 500-ms period. Thus, at least where objects are represented in the 
visual, olfactory, and taste systems (e.g., individual faces, odors, and tastes), 
information can be read out without taking into account any aspects of the pos-
sible temporal synchronization between neurons, or temporal encoding within a 
spike train (Aggelopoulos et al. 2005; Franco et al. 2004; Panzeri et al. 1999b; 
Rolls et al. 1997a, 2003b, 2004; Tovee et al. 1993).

6.2. Ease with Which the Code Can Be Read by 
Receiving Neurons
For brain plausibility, it is also a requirement that neurons should be able to read 
the code. This is why when we have estimated the information from populations 
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of neurons, we have used in addition to a probability estimating measure (PE, 
optimal, in the Bayesian sense), also a dot product measure, which is a way of 
specifying that all that is required of decoding neurons would be the property 
of adding up postsynaptic potentials produced through each synapse as a result 
of the activity of each incoming axon (Abbott et al. 1996; Rolls et al. 1997a). It 
was found that with such a neurally plausible algorithm (the dot product, DP, 
algorithm), which calculates which average response vector the neuronal response 
vector on a single test trial was closest to by performing a normalized dot product 
(equivalent to measuring the angle between the test and the average vector), the 
same generic results were obtained, with only a 40% reduction of information 
compared to the more effi cient (PE) algorithm. This is an indication that the 
brain could utilize the exponentially increasing capacity for encoding stimuli as 
the number of neurons in the population increases. For example, by using the 
representation provided by the neurons described here as the input to an associa-
tive or autoassociative memory, which computes effectively the dot product on 
each neuron between the input vector and the synaptic weight vector, most of 
the information available would in fact be extracted (Franco et al. 2004; Rolls 
and Deco 2002; Rolls and Treves 1990, 1998; Treves and Rolls 1991).

6.3. Higher Resistance to Noise
This, like the next few properties, is an advantage of distributed over local rep-
resentations, which applies to artifi cial systems as well, but is presumably of 
particular value in biological systems in which some of the elements have an 
intrinsic variability in their operation. Because the decoding of a distributed 
representation involves assessing the activity of a whole population of neurons, 
and computing a dot product or correlation, a distributed representation pro-
vides more resistance to variation in individual components than does a local 
encoding scheme (Panzeri et al. 1996; Rolls and Deco 2002).

6.4. Generalization
Generalization to similar stimuli is again a property that arises in neuronal net-
works if distributed but not if local encoding is used. The generalization arises 
as a result of the fact that a neuron can be thought of as computing the inner or 
dot product of the stimulus representation with its weight vector. If the weight 
vector leads to the neuron having a response to one visual stimulus, then the 
neuron will have a similar response to a similar visual stimulus. This computation 
of correlations between stimuli operates only with distributed representations. If 
an output is based on a single input or output pair, then if either is lost, the cor-
relation drops to zero (Rolls and Treves 1998; Rolls and Deco 2002).

6.5. Completion
Completion occurs in associative memory networks by a similar process. Com-
pletion is the property of recall of the whole of a pattern in response to any part 
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of the pattern. Completion arises because any part of the stimulus representation, 
or pattern, is effectively correlated with the whole pattern during memory storage. 
Completion is thus a property of distributed representations, and not of local 
representations. It arises, for example, in autoassociation (attractor) neuronal 
networks, which are characterized by recurrent connectivity. It is thought that 
such networks are important in the cerebral cortex, where the association fi bers 
between nearby pyramidal cells may help the cells to retrieve a representation 
that depends on many neurons in the network (Rolls and Deco 2002; Rolls and 
Treves 1998).

6.6. Graceful Degradation or Fault Tolerance
This also arises only if the input patterns have distributed representations, and 
not if they are local. Local encoding suffers sudden deterioration once the few 
neurons or synapses carrying the information about a particular stimulus are 
destroyed.

6.7. Speed of Readout of the Information
The information available in a distributed representation can be decoded by an 
analyzer more quickly than can the information from a local representation, 
given comparable fi ring rates. Within a fraction of an interspike interval, with a 
distributed representation, much information can be extracted (Panzeri et al. 
1999a; Rolls et al. 1997a; Rolls et al. 2006b; Treves 1993; Treves et al. 1996, 1997). 
In effect, spikes from many different neurons can contribute to calculating the 
angle between a neuronal population and a synaptic weight vector within an 
interspike interval (Franco et al. 2004; Rolls and Deco 2002). With local encod-
ing, the speed of information readout depends on the exact model considered, 
but if the rate of fi ring needs to be taken into account, this will necessarily take 
time, because of the time needed for several spikes to accumulate in order to 
estimate the fi ring rate.

7. Invariance in the Neuronal Representation of Stimuli

One of the major problems that must be solved by a visual system is the building 
of a representation of visual information that allows recognition to occur rela-
tively independently of size, contrast, spatial frequency, position on the retina, 
angle of view, etc. This is required so that if the receiving associative networks 
(in, e.g., the amygdala, orbitofrontal cortex, and hippocampus) learn about one 
view, position, etc., of the object, the animal generalizes correctly to other posi-
tions or views of the object. It has been shown that the majority of face-selective 
inferior temporal cortex neurons have responses that are relatively invariant with 
respect to the size of the stimulus (Rolls and Baylis 1986). The median size 
change tolerated with a response of greater than half the maximal response was 
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12 times. Also, the neurons typically responded to a face when the information 
in it had been reduced from 3-D to a 2-D representation in gray on a monitor, 
with a response which was on average 0.5 of that to a real face. Another trans-
form over which recognition is relatively invariant is spatial frequency. For 
example, a face can be identifi ed when it is blurred (when it contains only low 
spatial frequencies), and when it is high-pass spatial frequency fi ltered (when it 
looks like a line drawing). It has been shown that if the face images to which 
these neurons respond are low-pass fi ltered in the spatial frequency domain (so 
that they are blurred), then many of the neurons still respond when the images 
contain frequencies only up to 8 cycles per face. Similarly, the neurons still 
respond to high-pass fi ltered images (with only high spatial frequency edge infor-
mation) when frequencies down to only 8 cycles per face are included (Rolls 
et al. 1985). Face recognition shows similar invariance with respect to spatial 
frequency (Rolls et al. 1985). Further analysis of these neurons with narrow 
(octave) bandpass spatial frequency fi ltered face stimuli shows that the responses 
of these neurons to an unfi ltered face can not be predicted from a linear combi-
nation of their responses to the narrow band stimuli (Rolls et al. 1987). This lack 
of linearity of these neurons, and their responsiveness to a wide range of spatial 
frequencies, indicate that in at least this part of the primate visual system recog-
nition does not occur using Fourier analysis of the spatial frequency components 
of images.

Inferior temporal visual cortex neurons also often show considerable transla-
tion (shift) invariance, not only under anesthesia (see Gross et al. 1985), but also 
in the awake behaving primate (Tovee et al. 1994). It was found that in most 
cases the responses of the neurons were little affected by which part of the face 
was fi xated, and that the neurons responded (with a greater than half-maximal 
response) even when the monkey fi xated 2° to 5° beyond the edge of a face which 
subtended 8° to 17° at the retina. Moreover, the stimulus selectivity between 
faces was maintained this far eccentric within the receptive fi eld.

Until recently, research on translation invariance considered the case in which 
there is only one object in the visual fi eld. What happens in a cluttered, natural, 
environment? Do all objects that can activate an inferior temporal neuron do so 
whenever they are anywhere within the large receptive fi elds of inferior temporal 
cortex neurons (Sato 1989)? If so, the output of the visual system might be con-
fusing for structures which receive inputs from the temporal cortical visual areas. 
In an investigation of this, it was found that the mean fi ring rate across all cells 
to a fi xated effective face with a noneffective face in the parafovea (centered 8.5° 
from the fovea) was 34 spikes/s. On the other hand, the average response to a 
fi xated non-effective face with an effective face in the periphery was 22 spikes/s 
(Rolls and Tovee 1995b). Thus these cells gave a reliable output about which 
stimulus is actually present at the fovea, in that their response was larger to a 
fi xated effective face than to a fi xated noneffective face, even when there are 
other parafoveal stimuli effective for the neuron.

It has now been shown that the receptive fi elds of inferior temporal cortex 
neurons, while large (typically 70° in diameter) when a test stimulus is presented 
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against a blank background, become much smaller, as little as several degrees 
in diameter, when objects are seen against a complex natural background (Rolls 
et al. 2003a). Object representation and selection in complex natural scenes is 
considered in Section 9.

8. A View-Independent Representation of 
Faces and Objects

It has also been shown that some temporal cortical neurons reliably responded 
differently to the faces of two different individuals independently of viewing 
angle (Hasselmo et al. 1989b), although in most cases (16/18 neurons) the response 
was not perfectly view independent. Mixed together in the same cortical regions 
are neurons with view-dependent responses (Hasselmo et al. 1989b). Such 
neurons might respond for example to a view of a profi le of a monkey but not 
to a full-face view of the same monkey (Perrett et al. 1985a). These fi ndings, of 
view-dependent, partially view-independent, and view-independent representa-
tions in the same cortical regions are consistent with the hypothesis discussed 
below that view-independent representations are being built in these regions 
by associating together neurons that respond to different views of the same 
individual.

Further evidence that some neurons in the temporal cortical visual areas have 
object-based rather than view-based responses comes from a study of a popula-
tion of neurons that responds to moving faces (Hasselmo et al. 1989b). For 
example, four neurons responded vigorously to a head undergoing ventral fl exion, 
irrespective of whether the view of the head was full face, of either profi le, or 
even of the back of the head. These different views could only be specifi ed as 
equivalent in object-based coordinates. Further, for all of the ten neurons that 
were tested in this way, the movement specifi city was maintained across inver-
sion, responding, for example, to ventral fl exion of the head irrespective of 
whether the head was upright or inverted. In this procedure, retinally encoded 
or viewer-centered movement vectors are reversed, but the object-based descrip-
tion remains the same. It is an important property of these neurons that they can 
encode a description of an object that is based on relative motions of different 
parts of the object and which is not based on fl ow relative to the observer. The 
implication of this type of encoding is that the upper eyelids closing could be 
encoded as the same social signal that eye contact is being broken independently 
of the particular in-plane rotation (tilt, as far as being fully inverted) of the face 
being observed (or of the observer’s head).

Also consistent with object-based encoding is the fi nding of a small number of 
neurons that respond to images of faces of a given absolute size, irrespective of 
the retinal image size or distance (Rolls and Baylis 1986).

Neurons with view-invariant responses of objects seen naturally by macaques 
have also been found (Booth and Rolls 1998). The stimuli were presented for 
0.5 s on a color video monitor while the monkey performed a visual fi xation task. 
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The stimuli were images of ten real plastic objects that had been in the monkey’s 
cage for several weeks to enable him to build view-invariant representations of 
the objects. Control stimuli were views of objects that had never been seen as 
real objects. The neurons analyzed were in the TE cortex in and close to the 
ventral lip of the anterior part of the superior temporal sulcus. Many neurons 
were found that responded to some views of some objects. However, for a smaller 
number of neurons, the responses occurred only to a subset of the objects (using 
ensemble encoding), irrespective of the viewing angle. Further evidence consis-
tent with these fi ndings is that some studies have shown that the responses of 
some visual neurons in the inferior temporal cortex do not depend on the pres-
ence or absence of critical features for maximal activation (Perrett et al. 1982; 
Tanaka 1993, 1996). For example, Mikami et al (1994) have shown that some TE 
cells respond to partial views of the same laboratory instrument(s), even when 
these partial views contain different features. In a different approach, Logothetis 
et al. (1994) have reported that in monkeys extensively trained (over thousands 
of trials) to treat different views of computer-generated wire-frame “objects” as 
the same, a small population of neurons in the inferior temporal cortex did 
respond to different views of the same wire-frame object (Logothetis and Shein-
berg 1996). The difference in the approach taken by Booth and Rolls (1998) was 
that no explicit training was given in invariant object recognition, as Rolls’ 
hypothesis (1992a) is that view-invariant representations can be learned by asso-
ciating together the different views of objects as they are moved and inspected 
naturally in a period that may be in the order of a few seconds.

9. The Representation of Objects in Complex 
Natural Scenes

9.1. Object-Based Attention and Object Selection in Complex 
Natural Scenes
Object-based attention refers to attention to an object. For example, in a visual 
search task the object might be specifi ed as what should be searched for, and its 
location must be found. In spatial attention, a particular location in a scene is 
pre-cued, and the object at that location may need to be identifi ed.

Much of the neurophysiology, psychophysics, and modeling of attention has 
been with a small number, typically two, of objects in an otherwise blank scene. 
In this section, I consider how attention operates in complex natural scenes, and 
in particular describe how the inferior temporal visual cortex operates to enable 
the selection of an object in a complex natural scene.

To investigate how attention operates in complex natural scenes, and how 
information is passed from the inferior temporal cortex (IT) to other brain 
regions to enable stimuli to be selected from natural scenes for action, Rolls et al. 
(2003a) analyzed the responses of inferior temporal cortex neurons to stimuli 
presented in complex natural backgrounds. The monkey had to search for two 
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objects on a screen, and a touch of one object was rewarded with juice, and that 
of another object was punished with saline (Fig. 6). Neuronal responses to the 
effective stimuli for the neurons were compared when the objects were presented 
in the natural scene or on a plain background. It was found that the overall 
response of the neuron to objects was hardly reduced when they were presented 
in natural scenes, and the selectivity of the neurons remained. However, the main 
fi nding was that the magnitudes of the responses of the neurons typically became 
much less in the real scene the further the monkey fi xated in the scene away from 
the object (Fig. 7). It is proposed that this reduced translation invariance in 
natural scenes helps an unambiguous representation of an object that may be the 
target for action to be passed to the brain regions which receive from the primate 
inferior temporal visual cortex. It helps with the binding problem, by reducing in 
natural scenes the effective receptive fi eld of at least some inferior temporal 
cortex neurons to approximately the size of an object in the scene.

It is also found that, in natural scenes, the effect of object-based attention on 
the response properties of inferior temporal cortex neurons is relatively small, 
as illustrated in Fig. 8 (Rolls et al. 2003a). The results summarized in Fig. 8 for 
5° stimuli show that the receptive fi elds were large (77.6°) with a single stimulus 

Fig. 6. Objects shown in a natural scene, in which the task was to search for and touch 
one of the stimuli. The objects in the task as run were smaller. The diagram shows that if 
the receptive fi elds of inferior temporal cortex neurons are large in natural scenes with 
multiple objects, then any receiving neuron in structures such as the orbitofrontal and 
amygdala would receive information from many stimuli in the fi eld of view and would not 
be able to provide evidence about each of the stimuli separately. (background.eps)
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in a blank background (top left) and were greatly reduced in size (to 22.0°) when 
presented in a complex natural scene (top right). The results also show that there 
was little difference in receptive fi eld size or fi ring rate in the complex back-
ground when the effective stimulus was selected for action (bottom right, 19.2°), 
and when it was not (middle right, 15.6°) (Rolls et al. 2003a). (For comparison, 
the effects of attention against a blank background were much larger, with the 
receptive fi eld increasing from 17.2° to 47.0° as a result of object-based attention, 
as shown in Fig. 8.) The computational basis for these relatively minor effects of 
object-based attention when objects are viewed in natural scenes is considered 
in Section 15.

These fi ndings on how objects are represented in natural scenes make the 
interface to memory and to action systems simpler, in that what is at the fovea 
can be interpreted (e.g., by an associative memory in the orbitofrontal cortex or 
amygdala) partly independently of the surroundings, and choices and actions can 
be directed if appropriate to what is at the fovea (Ballard 1993; Rolls and Deco 
2002).

9.2. The Representation of Information About the Relative 
Positions of Multiple Objects in a Scene
These experiments have been extended to address the issue of how several 
objects are represented in a complex scene. The issue arises because the relative 
spatial locations of objects in a scene must be encoded (and is possible even in 
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Fig. 7. Firing of a temporal cortex cell to an effective stimulus presented either in a blank 
background or in a natural scene, as a function of the angle in degrees at which the monkey 
was fi xating away from the effective stimulus. The task was to search for and touch the 
stimulus. (After Rolls et al. 2003) (rateinbackground.eps)
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Fig. 8. Summary of the receptive fi eld sizes of inferior temporal cortex neurons to a 5° 
effective stimulus presented in either a blank background (blank screen) or in a natural 
scene (complex background). The stimulus that was a target for action in the different 
experimental conditions is marked by T. When the target stimulus was touched, a reward 
was obtained. The mean receptive fi eld diameter of the population of neurons analyzed, 
and the mean fi ring rate in spikes/s, is shown. The stimuli subtended 5° × 3.5° at the retina, 
and occurred on each trial in a random position in the 70° × 55° screen. The dashed circle 
is proportional to the receptive fi eld size. Top row: responses with one visual stimulus in 
a blank (left) or complex (right) background. Middle row: responses with two stimuli, 
when the effective stimulus was not the target of the visual search. Bottom row: responses 
with two stimuli, when the effective stimulus was the target of the visual search. (After 
Rolls et al. 2003) (rec_fi eld7.eps)
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short presentation times without eye movements) (Biederman 1972) (and this 
has been held to involve some spotlight of attention); and because as shown 
above what is represented in complex natural scenes is primarily about what is 
at the fovea, yet we can locate more than one object in a scene even without eye 
movements. Aggelopoulos and Rolls (2005) showed that with fi ve objects simul-
taneously present in the receptive fi eld of inferior temporal cortex neurons, 
although all the neurons responded to their effective stimulus when it was at the 
fovea, some could also respond to their effective stimulus when it was in a para-
foveal position 10° from the fovea. An example of such a neuron is shown in Fig. 
9. The asymmetry is much more evident in a scene with fi ve images present (Fig. 
9A) than when only one image is shown on an otherwise blank screen (Fig. 9B). 
Competition between different stimuli in the receptive fi eld thus reveals the 
asymmetry in the receptive fi eld of inferior temporal visual cortex neurons.

The asymmetry provides a way of encoding the position of multiple objects in 
a scene. Depending on which asymmetrical neurons are fi ring, the population of 
neurons provides information to the next processing stage, not only about which 
image is present at or close to the fovea, but where it is with respect to the fovea. 
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Fig. 9. A The responses (fi ring rate with the spontaneous rate subtracted, means ± SEM) 
of one neuron when tested with fi ve stimuli simultaneously present in the close (10°) 
confi guration with the parafoveal stimuli located 10° from the fovea. B The responses of 
the same neuron when only the effective stimulus was presented in each position. The 
fi ring rate for each position is that when the effective stimulus for the neuron was in that 
position. The P value is that from the ANOVA calculated over the four parafoveal posi-
tions. (After Aggelopoulos and Rolls 2005) (5stim_fi g1a.eps)
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This information is provided by neurons that have fi ring rates, which refl ect the 
relevant information, and stimulus-dependent synchrony is not necessary. Top-
down attentional biasing input could thus, by biasing the appropriate neurons, 
facilitate bottom-up information about objects without any need to alter the time 
relationships between the fi ring of different neurons. The exact position of the 
object with respect to the fovea, and effectively thus its spatial position relative 
to other objects in the scene, would then be made evident by the subset of asym-
metrical neurons fi ring.

This is, thus, the solution that these experiments indicate is used to the repre-
sentation of multiple objects in a scene (Aggelopoulos and Rolls 2005), an issue 
which has previously been diffi cult to account for in neural systems with distrib-
uted representations (Mozer 1991) and for which “attention” has been a pro-
posed solution.

10. Learning of New Representations in the Temporal 
Cortical Visual Areas

To investigate the hypothesis that visual experience might guide the formation 
of the responsiveness of neurons so that they provide an economical and 
ensemble-encoded representation of items actually present in the environment, 
the responses of inferior temporal cortex face-selective neurons have been anal-
ysed while a set of new faces were shown. It was found that some of the neurons 
studied in this way altered the relative degree to which they responded to the 
different members of the set of novel faces over the fi rst few (1–2) presentations 
of the set (Rolls et al. 1989b). If in a different experiment a single novel face was 
introduced when the responses of a neuron to a set of familiar faces was being 
recorded, it was found that the responses to the set of familiar faces were not 
disrupted, while the responses to the novel face became stable within a few pre-
sentations. It is suggested that alteration of the tuning of individual neurons in 
this way results in a good discrimination over the population as a whole of the 
faces known to the monkey. This evidence is consistent with the categorization 
being performed by self-organizing competitive neuronal networks, as described 
below and elsewhere (Rolls 1989a; Rolls and Deco 2002; Rolls and Treves 1998; 
Rolls et al. 1989a).

Further evidence that these neurons can learn new representations very rapidly 
comes from an experiment in which binarized black-and-white images of faces 
that blended with the background were used. These images did not activate face-
selective neurons. Full gray-scale images of the same photographs were then 
shown for ten 0.5-s presentations. It was found that in a number of cases, if the 
neuron happened to be responsive to that face, when the binarized version of 
the same face was shown next, the neurons responded to it (Tovee et al. 1996). 
This is a direct parallel to the same phenomenon that is observed psychophysi-
cally and provides dramatic evidence that these neurons are infl uenced by only 
a very few seconds (in this case 5 s) of experience with a visual stimulus. We have 
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shown a neural correlate of this effect using similar stimuli and a similar paradigm 
in a positron emission tomography (PET) neuroimaging study in humans, with 
a region showing an effect of the learning found for faces in the right temporal 
lobe and for objects in the left temporal lobe (Dolan et al. 1997).

Such rapid learning of representations of new objects appears to be a major 
type of learning in which the temporal cortical areas are involved. Ways in which 
this learning could occur are considered below. It is also the case that there is a 
much shorter term form of memory in which some of these neurons are involved, 
for whether a particular familiar visual stimulus (such as a face) has been seen 
recently, for some of these neurons respond differently to recently seen stimuli 
in short-term visual memory tasks (Baylis and Rolls 1987; Miller and Desimone 
1994; Xiang and Brown 1998), and neurons in a more ventral cortical area 
respond during the delay in a short-term memory task (Miyashita 1993; Renart 
et al. 2000).

11. The Speed of Processing in the Temporal Cortical 
Visual Areas

Given that there is a whole sequence of visual cortical processing stages including 
V1, V2, V4, and the posterior inferior temporal cortex to reach the anterior 
temporal cortical areas, and that the response latencies of neurons in V1 are 
about 40 to 50 ms, and in the anterior inferior temporal cortical areas approxi-
mately 80 to 100 ms, each stage may need to perform processing for only 15 to 
30 ms before it has performed suffi cient processing to start infl uencing the next 
stage. Consistent with this, response latencies between V1 and the inferior tem-
poral cortex increase from stage to stage (Thorpe and Imbert 1989). In a fi rst 
approach to this issue, we measured the information available in short temporal 
epochs of the responses of temporal cortical face-selective neurons about which 
face had been seen. We found that if a period of the fi ring rate of 50 ms was 
taken, then this contained 84.4% of the information available in a much longer 
period of 400 ms about which of 4 faces had been seen. If the epoch was as little 
as 20 ms, the information was 65% of that available from the fi ring rate in the 
400-ms period (Tovee et al. 1993). These high information yields were obtained 
with the short epochs taken near the start of the neuronal response, for example, 
in the poststimulus period of 100 to 120 ms. Moreover, we were able to show that 
the fi ring rate in short periods taken near the start of the neuronal response was 
highly correlated with the fi ring rate taken over the whole response period, so 
that the information available was stable over the whole response period of the 
neurons (Tovee et al. 1993). We were able to extend this fi nding to the case when 
a much larger stimulus set, of 20 faces, was used. Again, we found that the infor-
mation available in short (e.g., 50-ms) epochs was a considerable proportion (e.g., 
65%) of that available in a 400-ms-long fi ring rate analysis period (Tovee and 
Rolls 1995). These investigations thus showed that there was considerable infor-
mation about which stimulus had been seen in short time epochs near the start 
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of the response of temporal cortex neurons. Moreover, we have shown that the 
information is available in the number of action potentials from each neuron 
(which might be 1, 2, or 3) in these short time periods (a rate code), and not in 
the order in which the spikes arrive from different neurons (Rolls et al. 2006b).

The next approach has been to use a visual backward masking paradigm. In 
this paradigm, there is a brief presentation of a test stimulus that is rapidly fol-
lowed (within 1–100 ms) by the presentation of a second stimulus (the mask), 
which impairs or masks the perception of the test stimulus. It has been shown 
(Rolls and Tovee 1994) that when there is no mask inferior temporal cortex 
neurons respond to a 16-ms presentation of the test stimulus for 200 to 300 ms, 
far longer than the presentation time. It is suggested that this refl ects the opera-
tion of a short-term memory system implemented in cortical circuitry, the impor-
tance of which in learning invariant representations is considered below in Section 
13. If the pattern mask followed the onset of the test face stimulus by 20 ms (a 
stimulus onset asynchrony of 20 ms), face-selective neurons in the inferior tem-
poral cortex of macaques responded for a period of 20 to 30 ms before their fi ring 
was interrupted by the mask (Rolls and Tovee 1994; Rolls et al. 1999). We went 
on to show that under these conditions (a test-mask stimulus onset asynchrony 
of 20 ms), human observers looking at the same displays could just identify which 
of six faces was shown (Rolls et al. 1994).

These results provide evidence that a cortical area can perform the computa-
tion necessary for the recognition of a visual stimulus in 20 to 30 ms (although it 
is true that for conscious perception, the fi ring needs to occur for 40–50 ms; see 
Rolls 2003). This condition provides a fundamental constraint that must be 
accounted for in any theory of cortical computation. The results emphasize just 
how rapidly cortical circuitry can operate. Although this speed of operation does 
seem fast for a network with recurrent connections (mediated by, e.g., recurrent 
collateral or inhibitory interneurons), analyses of networks with analogue mem-
branes that integrate inputs, and with spontaneously active neurons, do show that 
such networks can settle very rapidly (Rolls and Treves 1998; Treves 1993; Treves 
et al. 1996). This approach has been extended to multilayer networks such as 
those found in the visual system, and again very rapid propagation (in 40–50 ms) 
of information through such a four-layer network with recurrent collaterals oper-
ating at each stage has been found (Panzeri et al. 2001). The computational 
approaches thus show that there is suffi cient time for feedback processing using 
recurrent collaterals within each cortical stage during the fast cortical processing 
of visual inputs.

12. Different Neural Systems Are Specialized for Face 
Expression Decoding and for Face Recognition

It has been shown that some neurons respond to face identity and others to face 
expression (Hasselmo et al. 1989a). The neurons responsive to expression were 
found primarily in the cortex in the superior temporal sulcus, whereas the neurons 
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responsive to identity (described in the preceding sections) were found in the 
inferior temporal gyrus including areas TEa and TEm. Information about facial 
expression is of potential use in social interactions (Rolls 1984, 1986a,b, 1990, 
1999b, 2005). Damage to this population may contribute to the defi cits in social 
and emotional behavior that are part of the Kluver–Bucy syndrome produced by 
temporal lobe damage in monkeys (Leonard et al. 1985; Rolls 1981, 1984, 1986a,b, 
1990, 1999b, 2005).

A further way in which some of these neurons in the cortex in the superior 
temporal sulcus may be involved in social interactions is that some of them 
respond to gestures, for example, to a face undergoing ventral fl exion, as described 
above and by Perrett et al. (1985b). The interpretation of these neurons as being 
useful for social interactions is that in some cases these neurons respond not only 
to ventral head fl exion, but also to the eyes lowering and the eyelids closing 
(Hasselmo et al. 1989a). These two movements (head lowering and eyelid lower-
ing) often occur together when a monkey is breaking social contact with another. 
It is also important when decoding facial expression to retain some information 
about the head direction of the face stimulus being seen relative to the observer, 
for this is very important in determining whether a threat is being made in your 
direction. The presence of view-dependent, head and body gesture (Hasselmo et 
al. 1989b), and eye gaze (Perrett et al. 1985b), representations in some of these 
cortical regions where face expression is represented is consistent with this 
requirement. In contrast, the TE areas (more ventral, mainly in the macaque 
inferior temporal gyrus), in which neurons tuned to face identity (Hasselmo et 
al. 1989a) and with view-independent responses (Hasselmo et al. 1989b) are more 
likely to be found, may be more related to a view-invariant representation of 
identity. Of course, for appropriate social and emotional responses, both types 
of subsystem would be important, for it is necessary to know both the direction 
of a social gesture, and the identity of the individual, to make the correct social 
or emotional response.

13. Possible Computational Mechanisms in the Visual 
Cortex for Face and Object Recognition

The neurophysiological fi ndings described above, and wider considerations on 
the possible computational properties of the cerebral cortex (Rolls 1989a,b, 
1992a; Rolls and Treves 1998), lead to the following outline working hypotheses 
on object (including face) recognition by visual cortical mechanisms (Rolls and 
Deco 2002).

Cortical visual processing for object recognition is considered to be organized 
as a set of hierarchically connected cortical regions consisting at least of V1, V2, 
V4, posterior inferior temporal cortex (TEO), inferior temporal cortex (e.g., 
TE3, TEa and TEm), and anterior temporal cortical areas (e.g., TE2 and TE1), 
as shown in Fig. 10. There is convergence from each small part of a region to the 
succeeding region (or layer in the hierarchy) in such a way that the receptive 
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fi eld sizes of neurons (e.g., 1° near the fovea in V1) become larger by a factor of 
approximately 2.5 with each succeeding stage (and the typical parafoveal recep-
tive fi eld sizes found would not be inconsistent with the calculated approxima-
tions of, e.g., 8° in V4, 20° in TEO, and 50° in inferior temporal cortex) (Boussaoud 
et al. 1991) (see Fig. 10). Such zones of convergence would overlap continuously 
with each other. This connectivity would be part of the architecture by which 
translation invariant representations are computed. Each layer is considered to 
act partly as a set of local self-organizing competitive neuronal networks with 
overlapping inputs. The region within which competition would be implemented 
would depend on the spatial properties of inhibitory interneurons and might 
operate over distances of 1 to 2 mm in the cortex. These competitive nets operate 
by a single set of forward inputs leading to (typically nonlinear, e.g., sigmoid) 
activation of output neurons; of competition between the output neurons medi-
ated by a set of feedback inhibitory interneurons that receive from many of the 
principal (in the cortex, pyramidal) cells in the net and project back (via inhibi-
tory interneurons) to many of the principal cells, which serves to decrease the 
fi ring rates of the less active neurons relative to the rates of the more active 
neurons; and then of synaptic modifi cation by a modifi ed Hebb rule, such that 
synapses to strongly activated output neurons from active input axons strengthen 
and those from inactive input axons weaken (Rolls and Deco 2002; Rolls and 
Treves 1998).
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Fig. 10. Schematic diagram showing convergence achieved by the forward projections in 
the visual system and the types of representation that may be built by competitive net-
works operating at each stage of the system from the primary visual cortex (V1) to the 
inferior temporal visual cortex (area TE) (see text). LGN, lateral geniculate nucleus. Area 
TEO forms the posterior inferior temporal cortex. The receptive fi elds in the inferior 
temporal visual cortex (e.g., in the TE areas) cross the vertical midline (not shown) 
(4_7.eps)
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Translation, size, and view invariance could be computed in such a system by 
utilizing competitive learning operating across short time scales to detect regu-
larities in inputs when real objects are transforming in the physical world (Rolls 
1992a, 2000a; Rolls and Deco 2002; Wallis and Rolls 1997). The hypothesis is 
that because objects have continuous properties in space and time in the world, 
an object at one place on the retina might activate feature analyzers at the next 
stage of cortical processing, and when the object was translated to a nearby posi-
tion, because this would occur in a short period (e.g., 0.5 s), the membrane of the 
postsynaptic neuron would still be in its “Hebb-modifi able” state (caused, for 
example, by calcium entry as a result of the voltage-dependent activation of 
NMDA receptors, or by continuing fi ring of the neuron implemented by recur-
rent collateral connections forming a short term memory), and the presynaptic 
afferents activated with the object in its new position would thus become strength-
ened on the still-activated postsynaptic neuron. It is suggested that the short 
temporal window (e.g., 0.5 s) of Hebb modifi ability helps neurons to learn the 
statistics of objects moving in the physical world, and at the same time to form 
different representations of different feature combinations or objects, as these 
are physically discontinuous and present less regular correlations to the visual 
system. Földiák (1991) has proposed computing an average activation of the 
postsynaptic neuron to assist with translation invariance. I also suggest that other 
invariances, for example, size, spatial frequency, rotation, and view invariance, 
could be learned by similar mechanisms to those just described (Rolls 1992a). It 
is suggested that the process takes place at each stage of the multiple layer corti-
cal processing hierarchy, so that invariances are learned fi rst over small regions 
of space, and then over successively larger regions; this limits the size of the con-
nection space within which correlations must be sought.

Increasing complexity of representations could also be built in such a multiple 
layer hierarchy by similar competitive learning mechanisms. To avoid the com-
binatorial explosion, it is proposed that low-order combinations of inputs would 
be what is learned by each neuron. Evidence consistent with this suggestion that 
neurons are responding to combinations of a few variables represented at the 
preceding stage of cortical processing is that some neurons in V2 and V4 respond 
to end-stopped lines, to tongues fl anked by inhibitory subregions, or to combina-
tions of colors (see references cited by Rolls 1991); in posterior inferior temporal 
cortex to stimuli that may require two or more simple features to be present 
(Tanaka et al. 1990); and in the temporal cortical face processing areas to images 
which require the presence of several features in a face (such as eyes, hair, and 
mouth) to respond (Perrett et al. 1982; Yamane et al. 1988). It is an important 
part of this suggestion that some local spatial information would be inherent in 
the features which were being combined (Elliffe et al. 2002). For example, cells 
might not respond to the combination of an edge and a small circle unless they 
were in the correct spatial relationship to each other. [This is in fact consistent 
with the data of Tanaka et al. (1990) and with our data on face neurons (Rolls 
et al. 1994), in that some faces neurons require the face features to be in the 
correct spatial confi guration, and not jumbled.] The local spatial information in 
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the features being combined would ensure that the representation at the next 
level would contain some information about the (local) arrangement of features. 
Further low-order combinations of such neurons at the next stage would include 
suffi cient local spatial information so that an arbitrary spatial arrangement of the 
same features would not activate the same neuron, and this is the proposed, and 
limited, solution that this mechanism would provide for the feature-binding 
problem (Elliffe et al. 2002).

It is suggested that view-independent representations could be formed by the 
same type of computation, operating to combine a limited set of views of objects. 
The plausibility of providing view-independent recognition of objects by combin-
ing a set of different views of objects has been proposed by a number of investi-
gators (Koenderink and Van Doorn 1979; Logothetis et al. 1994; Poggio and 
Edelman 1990; Ullman 1996). Consistent with the suggestion that the view-
independent representations are formed by combining view-dependent represen-
tations in the primate visual system is the fact that in the temporal cortical areas, 
neurons with view-independent representations of faces are present in the same 
cortical areas as neurons with view-dependent representations (from which the 
view-independent neurons could receive inputs) (Booth and Rolls 1998; 
Hasselmo et al. 1989b; Perrett et al. 1987). This solution to “object-based” rep-
resentations is very different from that traditionally proposed for artifi cial vision 
systems, in which the coordinates in 3-D space of objects are stored in a database, 
and general-purpose algorithms operate on these to perform transforms such as 
translation, rotation, and scale change in 3-D space (Ullman 1996), or a linked 
list of feature parts is used ( Marr 1982). In the present, much more limited but 
more biologically plausible scheme, the representation would be suitable for 
recognition of an object, and for linking associative memories to objects, but 
would be less good for making actions in 3-D space to particular parts of, or 
inside, objects, as the 3-D coordinates of each part of the object would not be 
explicitly available. It is therefore proposed that visual fi xation is used to locate 
in foveal vision part of an object to which movements must be made, and that 
local disparity and other measurements of depth then provide suffi cient informa-
tion for the motor system to make actions relative to the small part of space in 
which a local, view-dependent, representation of depth would be provided 
(Ballard 1990; Rolls and Deco 2002).

14. A Computational Model of Invariant Visual Object and 
Face Recognition

To test and clarify the hypotheses just described about how the visual system 
may operate to learn invariant object recognition, we have performed simula-
tions that implement many of the ideas just described and which are consistent 
with and based on much of the neurophysiology summarized here. The network 
simulated (VisNet) can perform object, including face, recognition in a biologi-
cally plausible way, and after training shows, for example, translation and view 
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invariance (Rolls and Deco 2002; Rolls and Milward 2000; Wallis and Rolls 1997; 
Wallis et al. 1993).

In the four-layer network, the successive layers correspond approximately to 
V2, V4, the posterior temporal cortex, and the anterior temporal cortex. The 
forward connections to a cell in one layer are derived from a topologically cor-
responding region of the preceding layer, using a Gaussian distribution of con-
nection probabilities to determine the exact neurons in the preceding layer to 
which connections are made. This schema is constrained to preclude the repeated 
connection of any cells. Each cell receives 100 connections from the 32 × 32 cells 
of the preceding layer, with a 67% probability that a connection comes from 
within 4 cells of the distribution center. Figure 11 shows the general convergent 
network architecture used, and may be compared with Fig. 10. Within each layer, 
lateral inhibition between neurons has a radius of effect just greater than the 
radius of feed-forward convergence just defi ned. The lateral inhibition is simu-
lated via a linear local contrast-enhancing fi lter active on each neuron. (Note that 
this differs from the global “winner-take-all” paradigm implemented by Földiák 
1991.) The cell activation is then passed through a nonlinear cell activation func-
tion, which also produces contrast enhancement of the fi ring rates.

So that the results of the simulation might be made particularly relevant to 
understanding processing in higher cortical visual areas, the inputs to layer 1 
come from a separate input layer that provides an approximation to the encoding 
found in visual area 1 (V1) of the primate visual system.

The synaptic learning rule used can be summarized as follows:

δwij = k mi r ′j and

mi
t = (1 − η)r i

(t) + ηm i
(t−1)

Layer 4

Layer 3

Layer 2

Layer 1

Fig. 11. Hierarchical network structure of VisNet (visnetarchi.eps)
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where r′j is the jth input to the neuron, ri is the output of the ith neuron, wij is the 
jth weight on the ith neuron, η governs the relative infl uence of the trace and the 
new input (typically 0.4–0.6), and mi

(t) represents the value of the ith cell’s memory 
trace at time t. In the simulation, the neuronal learning was bounded by normal-
ization of each cell’s dendritic weight vector, as in standard competitive learning 
(Rolls and Treves 1998; Rolls and Deco 2002).

To train the network to produce a translation-invariant representation, one 
stimulus was placed successively in a sequence of nine positions across the input, 
then the next stimulus was placed successively in the same sequence of nine posi-
tions across the input, and so on through the set of stimuli. The idea was to enable 
the network to learn whatever was common at each stage of the network about 
a stimulus shown in different positions. To train on view invariance, different 
views of the same object were shown in succession, then different views of the 
next object were shown in succession, and so on. It has been shown that the 
network can learn to form neurons in the last layer of the network that respond 
to one of a set of simple shapes (such as “T, L, and +”) with translation invari-
ance, or to a set of fi ve to eight faces with translation, view, or size invariance, 
provided that the trace learning rule (and not a simple Hebb rule) is used (Figs. 
12, 13) (Rolls and Deco 2002; Wallis and Rolls 1997).

There have been a number of investigations to explore this type of learning 
further. Rolls and Milward (2000) explored the operation of the trace learning 
rule used in the VisNet architecture, and showed that the rule operated especially 
well if the trace incorporated activity from previous presentations of the same 
object, but no contribution from the current neuronal activity being produced by 
the current exemplar of the object. The explanation for this is that this temporally 
asymmetrical rule (the presynaptic term from the current exemplar, and the trace 
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from the preceding exemplars) encourages neurons to respond to the current 
exemplar in the same way as they did to previous exemplars. It is of interest to 
consider whether intracellular processes related to LTP might implement an 
approximation of this rule, given that it is somewhat more powerful than the 
standard trace learning rule described above. Rolls and Stringer (2001) went on 
to show that part of the power of this type of trace rule can be related to gradient 
descent and temporal difference learning (Sutton and Barto 1998). Elliffe et al. 
(2002) examined the issue of spatial binding in this general class of hierarchical 
architecture studied originally by Fukushima (1980, 1989, 1991), and showed how 
by forming high spatial precision feature combination neurons early in process-
ing, it is possible for later layers to maintain high precision for the relative spatial 
position of features within an object, yet achieve invariance for the spatial posi-
tion of the whole object.

These results show that the proposed learning mechanism and neural archi-
tecture can produce cells with responses selective for stimulus identity with 
considerable position or view invariance (Rolls and Deco 2002). This ability to 
form invariant representations is an important property of the temporal cortical 
visual areas, for if a reinforcement association leading to an emotional or social 
response is learned to one view of a face, that learning will automatically gen-
eralize to other views of the face. This is a fundamental aspect of the way in 
which the brain is organized to allow this type of capability for emotional and 
social behavior (Rolls 1999b, 2005). Further developments include operation of 
the system in a cluttered environment (Stringer and Rolls 2000), generalization 
from trained to untrained views of objects (Stringer and Rolls 2002), a new 
training algorithm named continuous transformation learning (Stringer et al. 
2006), and a unifying theory of how invariant representations of optic fl ow pro-
duced by rotating or looming objects could be produced in the brain (Rolls and 
Stringer 2006).
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15. Object Representation and Attention in Natural Scenes: 
A Computational Account

The results described in Section 9 and summarized in Fig. 8 show that the recep-
tive fi elds of inferior temporal cortex neurons were large (77.6°) with a single 
stimulus in a blank background (top left) and were greatly reduced in size (to 
22°) when presented in a complex natural scene (top right). The results also show 
that there was little difference in receptive fi eld size or fi ring rate in the complex 
background when the effective stimulus was selected for action (bottom right) 
and when it was not (middle right) (Rolls et al. 2003a).

Trappenberg et al. (2002) have suggested what underlying mechanisms could 
account for these fi ndings and simulated a model to test the ideas. The model 
utilizes an attractor network representing the inferior temporal visual cortex 
(implemented by the recurrent excitatory connections between inferior temporal 
cortex neurons) and a neural input layer with several retinotopically organized 
modules representing the visual scene in an earlier visual cortical area such as 
V4 (Fig. 14). The attractor network aspect of the model produces the property 
that receptive fi elds of IT neurons can be large in blank scenes by enabling a 
weak input in the periphery of the visual fi eld to act as a retrieval cue for the 
object attractor. On the other hand, when the object is shown in a complex 
background, the object closest to the fovea tends to act as the retrieval cue for 
the attractor, because the fovea is given increased weight in activating the IT 
module because the magnitude of the input activity from objects at the fovea is 
greatest because of the cortical higher magnifi cation factor of the fovea incorpo-
rated into the model. [The cortical magnifi cation factor can be expressed as the 
number of millimeters of cortex representing 1° of visual fi eld. The cortical mag-
nifi cation factor decreases rapidly with increasing eccentricity from the fovea 
(Cowey and Rolls 1975; Rolls and Cowey 1970).] This difference results in 
smaller receptive fi elds of IT neurons in complex scenes because the object tends 
to need to be close to the fovea to trigger the attractor into the state representing 
that object. (In other words, if the object is far from the fovea in a cluttered 
scene, then the object will not trigger neurons in IT that represent it, because 
neurons in IT are preferentially being activated by another object at the fovea.) 
This may be described as an attractor model in which the competition for which 
attractor state is retrieved is weighted toward objects at the fovea.

Attentional top-down object-based inputs can bias the competition imple-
mented in this attractor model, but have relatively minor effects (in for example 
increasing receptive fi eld size) when they are applied in a complex natural scene, 
because then as usual the stronger forward inputs dominate the states reached. 
In this network, the recurrent collateral connections may be thought of as imple-
menting constraints between the different inputs present to help arrive at fi ring 
in the network that best meets the constraints. In this scenario, the preferential 
weighting of objects close to the fovea because of the increased magnifi cation 
factor at the fovea is a useful principle in enabling the system to provide useful 
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output. The attentional object biasing effect is much more marked in a blank 
scene, or a scene with only two objects present at similar distances from the 
fovea, which are conditions in which attentional effects have frequently been 
examined. The results of the investigation (Trappenberg et al. 2002) thus suggest 
that attention may be a much more limited phenomenon in complex, natural 
scenes than in reduced displays with one or two objects present. The results also 

IT

V4

Visual Input

Object bias

Fig. 14. The architecture of the inferior temporal cortex (IT) model of Trappenberg et 
al. (2002) operating as an attractor network with inputs from the fovea given preferential 
weighting by the greater magnifi cation factor of the fovea. The model also has a top-down 
object-selective bias input. The model was used to analyze how object vision and recogni-
tion operate in complex natural scenes (itcattractor.eps)
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suggest that the alternative principle, of providing strong weight to whatever is 
close to the fovea, is an important principle governing the operation of the infe-
rior temporal visual cortex, and in general of the output of the ventral visual 
system in natural environments. This principle of operation is very important in 
interfacing the visual system to action systems, because the effective stimulus in 
making inferior temporal cortex neurons fi re is in natural scenes usually on or 
close to the fovea. This means that the spatial coordinates of where the object is 
in the scene do not have to be represented in the inferior temporal visual cortex, 
nor passed from it to the action selection system, as the latter can assume that 
the object making IT neurons fi re is close to the fovea in natural scenes (Rolls 
and Deco 2002; Rolls et al. 2003a).

There may of course be in addition a mechanism for object selection that takes 
into account the locus of covert attention when actions are made to locations not 
being looked at. However, the simulations described in this Section suggest that 
in any case covert attention is likely to be a much less signifi cant infl uence on 
visual processing in natural scenes than in reduced scenes with one or two objects 
present.

Given these points, one might question why inferior temporal cortex neurons 
can have such large receptive fi elds, which show translation invariance (Rolls 
2000a; Rolls et al. 2003a). At least part of the answer to this may be that inferior 
temporal cortex neurons must have the capability to have large receptive fi elds 
if they are to handle large objects (Rolls and Deco 2002). A V1 neuron, with its 
small receptive fi eld, simply could not receive input from all the features neces-
sary to defi ne an object. On the other hand, inferior temporal cortex neurons 
may be able to adjust their size to approximately the size of objects, using in part 
the interactive attentional effects of bottom-up and top-down effects described 
elsewhere in this chapter.

The implementation of the simulations is described by Trappenberg et al. 
(2002), and some of the results obtained with the architecture (Fig. 14) follow. 
In one simulation, only one object was present in the visual scene in a plain 
background at different eccentricities from the fovea. As shown in Fig. 15A by 
the line labeled “simple background,” the receptive fi elds of the neurons were 
very large. The value of the object bias kITBIAS was set to 0 in these simulations. 
Good object retrieval (indicated by large correlations) was found even when the 
object was far from the fovea, indicating large IT receptive fi elds with a blank 
background. The reason that any drop is seen in performance as a function of 
eccentricity is because some noise was present in the recall process. This fi nding 
demonstrates that the attractor dynamics can support translation invariant object 
recognition even though the translation invariant weight vectors between V4 and 
IT are explicitly mapped by a modulation factor derived from the cortical mag-
nifi cation factor.

In a second simulation, individual objects were placed at all possible locations 
in a natural and cluttered visual scene. The resulting correlations between the 
target pattern and the asymptotic IT state are shown in Fig. 15A with the 
line labeled “natural background.” Many objects in the visual scene are now 
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competing for recognition by the attractor network, and the objects around the 
foveal position are enhanced through the modulation factor derived from the 
cortical magnifi cation factor; this results in a much smaller size of the receptive 
fi eld of IT neurons when measured with objects in natural backgrounds.

In addition to this major effect of the background on the size of the receptive 
fi eld, which parallels and, we suggest, may account for the physiological fi ndings 
outlined above, there is also a dependence of the size of the receptive fi elds on 
the level of object bias provided to the IT network. Examples are shown in Fig. 
15B where an object bias was used. The object bias biases the IT network toward 
the expected object with a strength determined by the value of kITBIAS and has 
the effect of increasing the size of the receptive fi elds in both blank and natural 
backgrounds (compare Fig. 15B to Fig. 15A). This models the effect found neu-
rophysiologically (Rolls et al. 2003a).

Some of the conclusions are as follows. When single objects are shown in a 
scene with a blank background, the attractor network helps neurons to respond 
to an object with large eccentricities of this object relative to the fovea. When 
the object is presented in a natural scene, other neurons in the inferior temporal 
cortex become activated by the other effective stimuli present in the visual fi eld, 
and these forward inputs decrease the response of the network to the target 
stimulus by a competitive process. The results found fi t well with the neurophysi-
ological data, in that IT operates with almost complete translation invariance 
when there is only one object in the scene, and reduces the receptive fi eld size 
of its neurons when the object is presented in a cluttered environment. The 
model described here provides an explanation of the responses of real IT neurons 
in natural scenes.

Fig. 15. Correlations as measured by the normalized dot product between the object 
vector used to train IT and the state of the IT network after settling into a stable state 
with a single object in the visual scene (blank background) or with other trained objects 
at all possible locations in the visual scene (natural background). There is no object bias 
included in the results shown in A, whereas an object bias is included in the results shown 
in B, with kITBIAS = 0.7 in the experiments with a natural background and kITBIAS = 0.1 in 
the experiments with a blank background (vis6_fi g2r.eps)
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In natural scenes, the model is able to account for the neurophysiological data 
that the IT neuronal responses are larger when the object is close to the fovea, 
by virtue of fact that objects close to the fovea are weighted by the cortical mag-
nifi cation factor. The model accounts for the larger receptive fi eld sizes from the 
fovea of IT neurons in natural backgrounds if the target is the object being 
selected compared to when it is not selected (Rolls et al. 2003a). The model 
accounts for this by an effect of top-down bias, which simply biases the neurons 
toward particular objects, compensating for their decreasing inputs produced by 
the decreasing magnifi cation factor modulation with increasing distance from the 
fovea. Such object-based attention signals could originate in the prefrontal cortex 
and could provide the object bias for the inferotemporal cortex (Renart et al. 
2000, 2001; Rolls and Deco 2002). Important properties of the architecture for 
obtaining the results just described are the high magnifi cation factor at the fovea 
and the competition between the effects of different inputs, implemented in the 
foregoing simulation by the competition inherent in an attractor network.

We have also been able to obtain similar results in a hierarchical feed-forward 
network where each layer operates as a competitive network (Deco and Rolls 
2004). This network thus captures many of the properties of our hierarchical 
model of invariant object recognition (Elliffe et al. 2002; Rolls 1992a; Rolls and 
Deco 2002; Rolls and Milward 2000; Rolls and Stringer 2001, 2006; Stringer and 
Rolls 2000, 2002; Stringer et al. 2006; Wallis and Rolls 1997), but incorporates in 
addition a foveal magnifi cation factor and top-down projections with a dorsal 
visual stream so that attentional effects can be studied (Fig. 16).

Deco and Rolls (2004) trained the network described shown in Fig. 16 with 
two objects, and used the trace learning rule (Rolls and Milward 2000; Wallis 
and Rolls 1997) to achieve translation invariance. In a fi rst experiment, we placed 
only one object on the retina at different distances from the fovea (i.e., different 
eccentricities relative to the fovea); this corresponds to the blank background 
condition. In a second experiment, we also placed the object at different eccen-
tricities relative to the fovea, but on a cluttered natural background.

Figure 17 shows the average fi ring activity of the inferior temporal cortex 
neuron specifi c for the test object as a function of the position of the object on 
the retina relative to the fovea (eccentricity). In both cases (solid line for blank 
background, dashed line for cluttered background) relatively large receptive 
fi elds are observed, because of the translation invariance obtained with the trace 
learning rule and the competition mechanisms implemented within each layer of 
the ventral stream. (The receptive fi eld size is defi ned as the width of the recep-
tive fi eld at the point where there is a half-maximal response.) However, when 
the object was in a blank background (solid line in Fig. 17), larger receptive fi elds 
were observed. The decrease in neuronal response as a function of distance from 
the fovea is mainly the effect of the magnifi cation factor implemented in V1. On 
the other hand, when the object was in a complex cluttered background, the 
effective size of the receptive fi eld of the same inferior temporal cortex neuron 
shrinks because of competitive effects between the object features and the back-
ground features in each layer of the ventral stream. In particular, the global 
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Fig. 16. Cortical architecture for hierarchical and attention-based visual perception. The 
system is essentially composed of fi ve modules structured such that they resemble the two 
known main visual paths of the mammalian visual cortex. Information from the retino-
geniculo-striate pathway enters the visual cortex through area V1 in the occipital lobe and 
proceeds into two processing streams. The occipital-temporal stream leads ventrally 
through V2–V4 and IT (inferior temporal visual cortex) and is mainly concerned with 
object recognition. The occipitoparietal stream leads dorsally into PP (posterior parietal 
complex) and is responsible for maintaining a spatial map of an object’s location. The 
solid lines with arrows between levels show the forward connections, and the dashed lines 
show the top-down back-projections. Short-term memory systems in the prefrontal cortex 
(PF46) apply top-down attentional bias to the object or spatial processing streams. (After 
Deco and Rolls 2004) (visnet3archi.eps)
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character of the competition expressed in the inferior temporal cortex module 
(caused by the large receptive fi elds and the local character of the inhibition, in 
our simulations, between the two object specifi c pools) is the main cause of the 
reduction of the receptive fi elds in the complex scene.

Deco and Rolls (2004) also studied the infl uence of object-based attentional 
top-down bias on the effective size of an inferior temporal cortex neuron for the 
case of an object in a blank or a cluttered background. To do this, we repeated 
the two simulations but now considered a non-zero top-down bias coming from 
prefrontal area 46v and impinging on the inferior temporal cortex neuron specifi c 
for the object tested (Fig. 18). We plot the average fi ring activity normalized to 
the maximum value to compare the neuronal activity as a function of the eccen-
tricity. When no attentional object bias is introduced (a), shrinkage of the recep-
tive fi eld size is observed in the complex background (dashed line). When 
attentional object bias is introduced (b), the shrinkage of the receptive fi eld 
because of the complex background is slightly reduced (dashed line). Rolls et al. 
(2003a) also found that in natural scenes that the effect of object-based attention 
on the response properties of inferior temporal cortex neurons was relatively 
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Fig. 17. Average fi ring activity of an inferior temporal cortex neuron as a function of 
eccentricity from the fovea, in the simulation of Deco and Rolls (2004). When the object 
was in a blank background (solid line), large receptive fi elds are observed because of the 
translation invariance of inferior temporal neurons. The decay is mainly the result of the 
magnifi cation factor implemented in V1. When the object was presented in a complex 
cluttered natural background (dashed line), the effective size of the receptive fi eld of the 
same inferior temporal neuron was reduced because of competitive effect between the 
object features and the background features within each layer of the ventral stream. (After 
Deco and Rolls 2004) (rf1_5a.eps)
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small. They found only a small difference in the receptive fi eld size or fi ring rate 
in the complex background when the effective stimulus was selected for action 
versus when it was not. In the framework of the model (Deco and Rolls 2004), 
the reduction of the shrinkage of the receptive fi eld is caused by the biasing of 
the competition in the inferior temporal cortex layer in favor of the specifi c IT 
neuron tested, so that it shows more translation invariance (i.e., a slightly larger 
receptive fi eld). The increase of the receptive fi eld of an IT neuron, although 
small, produced by the external top-down attentional bias offers a mechanism 
for facilitation of the search for specifi c objects in complex natural scenes.

16. A Biased Competition Model of Object and 
Spatial Attentional Effects on the Representations 
in the Visual System

Visual attention exerts top-down infl uences on the processing of sensory infor-
mation in the visual cortex, and therefore is intrinsically associated with inter-
cortical neural interactions. Thus, elucidating the neural basis of visual attention 
is an excellent paradigm for understanding the basic mechanisms of intercortical 
neurodynamics. Recent cognitive neuroscience developments allow a more direct 

0.0

1.0

0 10 20 30 40 50 60
0.0

1.0

0 10 20 30 40 50 60

(a) Without object attention (b) With object attention

Eccentricity Eccentricity

A
ve

ra
ge

 r
in

g 
ra

te

A
ve

ra
ge

 r
in

g 
ra

te
Fig. 18. Infl uence of object-based attentional top-down bias from prefrontal area 46v on 
the effective size of an inferior temporal cortex neuron for the case of an object in a blank 
(solid line) or a cluttered (dashed line) background. The average fi ring activity was nor-
malized to the maximum value to compare the neuronal activity as a function of the 
eccentricity. When no attentional object bias was introduced (a), a reduction of the recep-
tive fi eld was observed. When attentional object bias was introduced (b), the reduction 
of the receptive fi eld size because of the complex background was slightly reduced. (After 
Deco and Rolls 2004) (rf1_6a.eps)
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study of the neural mechanisms underlying attention in humans and primates. In 
particular, the work of Chelazzi et al. (1993) has led to a promising account of 
attention termed the biased competition hypothesis (Desimone and Duncan 
1995; Reynolds and Desimone 1999). According to this hypothesis, attentional 
selection operates in parallel by biasing an underlying competitive interaction 
between multiple stimuli in the visual fi eld toward one stimulus or another, so 
that behaviorally relevant stimuli are processed in the cortex while irrelevant 
stimuli are fi ltered out. Thus, attending to a stimulus at a particular location or 
with a particular feature biases the underlying neural competition in a certain 
brain area in favor of neurons that respond to the location, or the features, of 
the attended stimulus.

Neurodynamical models for biased competition have been proposed and suc-
cessfully applied in the context of attention and working memory. In the context 
of attention, Usher and Niebur (1996) introduced an early model of biased com-
petition. Deco and Zihl (2001) extended Usher and Niebur’s model to simulate 
the psychophysics of visual attention by visual search experiments in humans. 
Their neurodynamical formulation is a large-scale hierarchical model of the 
visual cortex whose global dynamics is based on biased competition mechanisms 
at the neural level. Attention then appears as an emergent effect related to the 
dynamical evolution of the whole network. This large-scale formulation has been 
able to simulate and explain in a unifying framework visual attention in a variety 
of tasks and at different cognitive neuroscience experimental measurement levels 
(Deco and Rolls 2005a), namely, single cells (Deco and Lee 2002; Rolls and Deco 
2002), fMRI (Corchs and Deco 2002), psychophysics (Deco and Rolls 2005a; 
Rolls and Deco 2002), and neuropsychology (Deco and Rolls 2002). In the 
context of working memory, further developments (Deco and Rolls 2003) 
managed to model in a unifying form attentional and memory effects in the pre-
frontal cortex, integrating single-cell and fMRI data, and different paradigms in 
the framework of biased competition.

In particular, Deco and Rolls (2005c) extended previous concepts of the role 
of biased competition in attention by providing the fi rst analysis at the integrate-
and-fi re neuronal level, which allows the neuronal nonlinearities in the system 
to be explicitly modeled, to investigate realistically the processes that underlie 
the apparent gain modulation effect of top-down attentional control. In the inte-
grate-and-fi re model, the competition is implemented realistically by the effects 
of the excitatory neurons on the inhibitory neurons and their return inhibitory 
synaptic connections; this was also the fi rst integrate-and-fi re analysis of top-
down attentional infl uences in vision that explicitly models the interaction of 
several different brain areas. Part of the originality of the model is that in the 
form in which it can account for attentional effects in V2 and V4 in the paradigms 
of Reynolds et al. (1999) in the context of biased competition, the model with 
the same parameters effectively makes predictions which show that the “contrast 
gain” effects in MT (Martinez-Trujillo and Treue 2002) can be accounted for by 
the same model. These detailed and quantitative analyses of neuronal dynamical 
systems are an important step toward understanding the operation of complex 
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processes such as top-down attention, which necessarily involve the interaction 
of several brain areas. They are being extended to provide neurally plausible 
models of decision making (Deco and Rolls 2003, 2005b, 2006).

In relation to representation in the brain, the impact of these fi ndings is that 
they show details of the mechanisms by which representations can be modulated 
by attention, and moreover can account for many phenomena in attention using 
models in which the fi ring rate of neurons is represented and in which stimulus-
dependent synchrony is not involved.

17. A Representation of Faces in the Amygdala

Outputs from the temporal cortical visual areas reach the amygdala and the 
orbitofrontal cortex, and evidence is accumulating that these brain areas are 
involved in social and emotional responses to faces (Rolls 1990, 1999b, 2000b, 
2005; Rolls and Deco 2002). For example, lesions of the amygdala in monkeys 
disrupt social and emotional responses to faces, and we have identifi ed a popula-
tion of neurons with face-selective responses in the primate amygdala (Leonard 
et al. 1985), some of which may respond to facial and body gestures (Brothers 
et al. 1990). In humans, bilateral dysfunction of the amygdala can impair face 
expression identifi cation, although primarily of fear (Adolphs et al. 1995; Adolphs 
et al. 2002), so that the impairment seems much less severe than that produced 
by orbitofrontal cortex damage.

18. A Representation of Faces in the Orbitofrontal Cortex

Rolls et al. (2006a) have found a number of face-responsive neurons in the orbi-
tofrontal cortex, and they are also present in adjacent prefrontal cortical areas 
(Wilson et al. 1993). The orbitofrontal cortex face-responsive neurons, fi rst 
observed by Thorpe et al. (1983), then by Rolls et al. (2006a), tend to respond 
with longer latencies than temporal lobe neurons (140–200 ms typically, compared 
with 80–100 ms); they also convey information about which face is being seen, by 
having different responses to different faces (Fig. 19), and are typically rather 
harder to activate strongly than temporal cortical face-selective neurons, in that 
many of them respond much better to real faces than to 2-D images of faces on 
a video monitor (Rolls and Baylis 1986). Some of the orbitofrontal cortex face-
selective neurons are responsive to face gesture or movement. The fi ndings are 
consistent with the likelihood that these neurons are activated via the inputs from 
the temporal cortical visual areas in which face-selective neurons are found. The 
signifi cance of the neurons is likely to be related to the fact that faces convey 
information that is important in social reinforcement, both by conveying face 
expression (Hasselmo et al. 1989a), which can indicate reinforcement, and by 
encoding information about which individual is present, also important in evalu-
ating and utilizing reinforcing inputs in social situations (Rolls et al. 2006a).
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Fig. 19. Orbitofrontal cortex face-selective neuron as found in macaques. Peristimulus 
rastergrams and time histograms are shown. Each trial is a row in the rastergram. Several 
trials for each stimulus are shown. The ordinate is in spikes/s. The neuron responded best 
to face (a), also it responded, although less, to face (b), had different responses to other 
faces (not shown), and did not respond to non-face stimuli (e.g., c and d). The stimulus 
appeared at time 0 on a video monitor. (After Rolls 1999a; Rolls et al. 2005) (4.21a.eps)

We have also been able to obtain evidence that nonreward used as a signal to 
reverse behavioral choice is represented in the human orbitofrontal cortex (for 
background, see Rolls 2005). Kringelbach and Rolls (2003) used the faces of two 
different people, and if one face was selected then that face smiled, and if the 
other was selected, the face showed an angry expression. After good perfor-
mance was acquired, there were repeated reversals of the visual discrimination 
task. Kringelbach and Rolls (2003) found that activation of a lateral part of the 
orbitofrontal cortex in the fMRI study was produced on the error trials, that is, 
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when the human chose a face and did not obtain the expected reward (Figs. 20, 
21). Control tasks showed that the response was related to the error, and the 
mismatch between what was expected and what was obtained, in that just showing 
an angry face expression did not selectively activate this part of the lateral orbi-
tofrontal cortex. An interesting aspect of this study that makes it relevant to 
human social behavior is that the conditioned stimuli were faces of particular 
individuals and the unconditioned stimuli were face expressions. Moreover, the 
study reveals that the human orbitofrontal cortex is very sensitive to social feed-
back when it must be used to change behavior (Kringelbach and Rolls 2003, 2004; 
Rolls 2005).

To investigate the possible signifi cance of face-related inputs to the orbitofron-
tal cortex visual neurons described above, we also tested the responses to faces 
of patients with orbitofrontal cortex damage. We included tests of face (and also 
voice) expression decoding, because these are ways in which the reinforcing 
quality of individuals is often indicated. Impairments in the identifi cation of facial 

Fig. 20. Social reversal task: The trial starts synchronized with the scanner, and two 
people with neutral face expressions are presented to the subject. The subject has to select 
one of the people by pressing the corresponding button, and the person will then either 
smile or show an angry face expression for 3000 ms, depending on the current mood of 
the person. The task for the subject is to keep track of the mood of each person and 
choose the “happy” person as much as possible (upper row). Over time (after between 4 
and 8 correct trials), this will change so that the “happy” person becomes “angry” and 
vice versa, and the subject has to learn to adapt her choices accordingly (bottom row). 
Randomly intermixed trials with either two men, or two women, were used to control for 
possible gender and identifi cation effects, and a fi xation cross was presented between trials 
for at least 16000 ms. (After Kringelbach and Rolls 2003) (OFCfacereversaltask.eps)
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and vocal emotional expression were demonstrated in a group of patients with 
ventral frontal lobe damage who had socially inappropriate behavior (Hornak 
et al. 1996; Rolls 1999a). The expression identifi cation impairments could occur 
independently of perceptual impairments in facial recognition, voice discrimina-
tion, or environmental sound recognition. The face and voice expression prob-
lems did not necessarily occur together in the same patients, providing an 

Fig. 21. Social reversal: composite fi gure showing that changing behavior based on face 
expression is correlated with increased brain activity in the human orbitofrontal cortex. 
a The fi gure is based on two different group statistical contrasts from the neuroimaging 
data, which are superimposed on a ventral view of the human brain with the cerebellum 
removed, and with indication of the location of the two coronal slices (b, c) and the trans-
verse slice (d). The red activations in the orbitofrontal cortex (denoted OFC, maximal 
activation: Z = 4.94; 42, 42, −8; and Z = 5.51; x, y, z = −46, 30, −8) shown on the rendered 
brain arise from a comparison of reversal events with stable acquisition events, while 
the blue activations in the fusiform gyrus (denoted Fusiform, maximal activation: Z > 8; 
36, −60, −20 and Z = 7.80; −30, −56, −16) arise from the main effects of face expression. 
b The coronal slice through the frontal part of the brain shows the cluster in the right 
orbitofrontal cortex across all nine subjects when comparing reversal events with stable 
acquisition events. Signifi cant activity was also seen in an extended area of the anterior 
cingulate/paracingulate cortex (denoted Cingulate, maximal activation: Z = 6.88; −8, 22, 
52; green circle). c The coronal slice through the posterior part of the brain shows the 
brain response to the main effects of face expression with signifi cant activation in the 
fusiform gyrus and the cortex in the intraparietal sulcus (maximal activation: Z > 8; 32, −60, 
46; and Z > 8; −32, −60, 44). d The transverse slice shows the extent of the activation in 
the anterior cingulate/paracingulate cortex when comparing reversal events with stable 
acquisition events. Group statistical results are superimposed on a ventral view of the 
human brain with the cerebellum removed, and on coronal and transverse slices of the 
same template brain (activations are thresholded at P = 0.0001 for purposes of illustration 
to show their extent). (After Kringelbach and Rolls 2003) (OFCfacereversal.eps)
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indication of separate processing. Poor performance on both expression tests was 
correlated with the degree of alteration of emotional experience reported by the 
patients. There was also a strong positive correlation between the degree of 
altered emotional experience and the severity of the behavioural problems (e.g., 
disinhibition) found in these patients. A comparison group of patients with brain 
damage outside the ventral frontal lobe region, without these behavioral prob-
lems, was unimpaired on the face expression identifi cation test, was signifi cantly 
less impaired at vocal expression identifi cation, and reported little subjective 
emotional change (Hornak et al. 1996; Rolls 1999a).

To obtain clear evidence that the changes in face and voice expression identi-
fi cation, emotional behavior, and subjective emotional state were related to 
orbitofrontal cortex damage itself, and not to damage to surrounding areas, 
which is present in many closed head injury patients, we performed further 
assessments in patients with circumscribed lesions made surgically in the course 
of treatment (Hornak et al. 2003). This study also enabled us to determine 
whether there was functional specialization within the orbitofrontal cortex, and 
whether damage to nearby and connected areas (such as the anterior cingulate 
cortex) in which some of the patients had lesions could produce similar effects. 
We found that some patients with bilateral lesions of the orbitofrontal cortex 
had defi cits in voice and face expression identifi cation, and the group had impair-
ments in social behavior and signifi cant changes in their subjective emotional 
state (Hornak et al. 2003). The same group of patients had defi cits on a proba-
bilistic monetary reward reversal task, indicating that they have diffi culty not 
only in representing reinforcers such as face expression, but also in using rein-
forcers (such as monetary reward) to infl uence behavior (Hornak et al. 2004). 
Some patients with unilateral damage restricted to the orbitofrontal cortex also 
had defi cits in voice expression identifi cation, and the group did not have signifi -
cant changes in social behavior, or in their subjective emotional state. Patients 
with unilateral lesions of the anteroventral part of the anterior cingulate cortex 
and/or medial prefrontal cortex area BA9 were in some cases impaired on voice 
and face expression identifi cation, had some change in social behavior, and had 
signifi cant changes in their subjective emotional state. Patients with dorsolateral 
prefrontal cortex lesions or with medial lesions outside the anterior cingulate 
cortex and medial prefrontal BA9 areas were unimpaired on any of these mea-
sures of emotion. In all cases in which voice expression identifi cation was impaired, 
there were no defi cits in control tests of the discrimination of unfamiliar voices 
and the recognition of environmental sounds.

These results (Hornak et al. 2003) thus confi rm that damage restricted to the 
orbitofrontal cortex can produce impairments in face and voice expression iden-
tifi cation, which may be primary reinforcers. The system is sensitive, in that even 
patients with unilateral orbitofrontal cortex lesions may be impaired. The impair-
ment is not a generic impairment of the ability to recognize any emotions in 
others, in that frequently voice but not face expression identifi cation was impaired, 
and vice versa. This implies some functional specialization for visual versus audi-
tory emotion-related processing in the human orbitofrontal cortex. The results 
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also show that the changes in social behavior can be produced by damage 
restricted to the orbitofrontal cortex. The patients were particularly likely to be 
impaired on emotion recognition (they were less likely to notice when others 
were sad, or happy, or disgusted); on emotional empathy (they were less likely 
to comfort those who are sad, or afraid, or to feel happy for others who are 
happy); on interpersonal relationships (not caring what others think, and not 
being close to his/her family); and were less likely to cooperate with others; were 
impatient and impulsive; and had diffi culty in making and keeping close relation-
ships. The results also show that changes in subjective emotional state (including 
frequently sadness, anger, and happiness) can be produced by damage restricted 
to the orbitofrontal cortex (Hornak et al. 2003). In addition, the patients with 
bilateral orbitofrontal cortex lesions were impaired on the probabilistic reversal 
learning task (Hornak et al. 2004). The fi ndings overall thus make clear the types 
of defi cit found in humans with orbitofrontal cortex damage, and can be directly 
related to underlying fundamental processes in which the orbitofrontal cortex is 
involved (see Rolls 2005), including decoding and representing primary reinforc-
ers (including face expression), being sensitive to changes in reinforcers, and 
rapidly readjusting behaviour to stimuli when the reinforcers available change.

The results (Hornak et al. 2003) also extend these investigations to the anterior 
cingulate cortex (including some of medial prefrontal cortex area BA9) by 
showing that lesions in these regions can produce voice and/or face expression 
identifi cation defi cits and marked changes in subjective emotional state.

It is of interest that the range of face expressions for which identifi cation is 
impaired by orbitofrontal cortex damage (Hornak et al. 1996; Hornak et al. 2003; 
Rolls 1999a) is more extensive than the impairment in identifying primarily fear 
face expressions produced by amygdala damage in humans (Adolphs et al. 2002; 
Calder et al. 1996) (for review, see Rolls 2005). In addition, the defi cits in emo-
tional and social behavior described above that are produced by orbitofrontal 
cortex damage in humans seem to be more pronounced than changes in emo-
tional behavior produced by amygdala damage in humans, although defi cits in 
autonomic conditioning can be demonstrated (Phelps 2004). This result suggests 
that in humans and other primates the orbitofrontal cortex may become more 
important than the amygdala in emotion, and possible reasons for this, including 
the more powerful architecture for rapid learning and reversal that may be facili-
tated by the functional architecture of the neocortex with its highly developed 
recurrent collateral connections, which may help to support short-term memory 
attractor states, are considered by Rolls (2005).

19. Conclusions

Neurophysiological investigations of the inferior temporal cortex are revealing 
at least part of the way in which neuronal fi ring encodes information about faces 
and objects and are showing that one representation implements several types 
of invariance. The representation found has clear utility for the receiving 
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networks. These neurophysiological fi ndings are stimulating the development of 
computational neuronal network models, which suggest that part of the process 
involves the operation of a modifi ed Hebb learning rule with a short-term memory 
trace to help the system learn invariances from the statistical properties of the 
inputs it receives. Neurons in the inferior temporal cortex, which encode the 
identity of faces and have considerable invariance and a sparse distributed rep-
resentation, are ideal as an input to stimulus–reinforcer association learning 
mechanisms in the orbitofrontal cortex and amygdala that enable appropriate 
emotional and social responses to be made to different individuals. The neurons 
in the cortex in the superior temporal sulcus, which respond to face expression, 
or for other neurons to eye gaze, or for others to head movement, encode rein-
forcement-related information that is important in making the correct emotional 
and social responses to a face. Neurons of both these main types are also found 
in the orbitofrontal cortex (Rolls et al. 2006a) and are important in human social 
and emotional behavior, which is changed after damage to the orbitofrontal 
cortex. A more comprehensive description of the reinforcement-related signals 
and processing in brain regions such as the orbitofrontal cortex that are impor-
tant in emotional and social behavior, and how these depend on inputs from the 
temporal cortex visual areas, is provided in Emotion Explained (Rolls 2005).
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