Skip to main content

Effects of Air Pollutants on Gene Expression in Plants

  • Chapter
Air Pollution and Plant Biotechnology
  • 663 Accesses

Abstract

Air pollutants exert various effects on plants, which then show various responses to the pollutants (Alscher and Wellburn 1994; Yunus and Iqbal 1996). Among the effects and responses, those at the level of gene expression are rapidly becoming one of the best understood. For instance, several reviews on the effects of ozone (O3) on gene expression in plants (Kangasjärvi et al. 1994; Pell et al. 1994, 1997; Schraudner et al. 1996, 1997; Sandermann 1996; Sharma and Davis 1997) and one on the molecular effects of sulfur dioxide (SO2) in plants (Okpodu et al. 1996) have appeared. Overall, reports on this subject area relating to O3 outnumber those concerning other air pollutants. This chapter summarizes the effects of phytotoxic air pollutants on gene expression in higher plants, and discusses the application of this research field to environmental biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alscher RG, Wellburn AR (eds) (1994) Plant responses to the gaseous environment. Chapman & Hall, London

    Google Scholar 

  • Akkapeddi AS, Noormets A, Deo BK, et al (1999) Gene structure and expression of the aspen cytosolic copper/zinc-superoxide dismutase (PtSodCcl). Plant Sci 143: 151–162

    Article  CAS  Google Scholar 

  • Bahl A, Kahl G (1995) Air pollutant stress changes the steady-state transcript levels of three photosynthesis genes. Environ Pollut 88: 57–65

    Article  PubMed  CAS  Google Scholar 

  • Bahl A, Loitsch SM, Kahl G (1995) Transcriptional activation of plant defence genes by short-term air pollutant stress. Environ Pollut 89: 221–227

    Article  PubMed  CAS  Google Scholar 

  • Bauer S, Galliano H, Pfeiffer F, et al (1993) Isolation and characterization of a cDNA clone encoding a novel short-chain alcohol dehydrogenase from Norway spruce (Picea abies L. Karst). Plant Physiol 103: 1479–1480

    Article  PubMed  CAS  Google Scholar 

  • Beuther E, Köster S, Loss P, et al (1988) Small RNAs originating from symptomless and damaged spruces (Picea spp.) I. Continuous observation of individual trees at three different locations in NRW. J Phytopathol 121: 289–302

    Article  CAS  Google Scholar 

  • Brendley BW, Pell EJ (1998) Ozone-induced changes in biosynthesis of Rubisco and associated compensation to stress in foliage of hybrid poplar. Tree Physiol 18: 81–90

    PubMed  CAS  Google Scholar 

  • Brosché M, Strid Å (1999a) The mRNA-binding ribosomal protein S26 as a molecular marker in plants: molecular cloning, sequencing and differential gene expression during environmental stress. Biochim Biophys Acta 1445: 342–344

    PubMed  Google Scholar 

  • Brosché M, Strid Å (1999b) Cloning, expression, and molecular characterization of a small pea gene family regulated by low levels of ultraviolet B radiation and other stresses. Plant Physiol 121: 479–487

    Article  PubMed  Google Scholar 

  • Buschmann K, Etscheid M, Riesner D, et al (1998) Accumulation of a porin-like mRNA and a metallothionein-like mRNA in various clones of Norway spruce upon long-term treatment with ozone. Eur J For Pathol 28: 307–322

    Article  Google Scholar 

  • Chiron H, Drouet A, Lieutier F, et al (2000) Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding, and fungal infection. Plant Physiol 124: 865–872

    Article  PubMed  CAS  Google Scholar 

  • Clayton H, Knight MR, Knight H, et al (1999) Dissection of the ozone-induced calcium signature. Plant J 17: 575–579

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Last RL (1995) Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol 109: 203–212

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Eckardt NA, Pell EJ (1994) O3-induced degradation of Rubisco protein and loss of Rubisco mRNA in relation to leaf age in Solanum tuberosum L. New Phytol 127: 741–748

    Article  CAS  Google Scholar 

  • Eckey-Kaltenbach H, Ernst D, Heller W, et al (1994a) Biochemical plant responses to ozone IV. Cross-induction of defensive pathways in parsley (Petroselinum crispum L.) plants. Plant Physiol 104: 67–74

    PubMed  CAS  Google Scholar 

  • Eckey-Kaltenbach H, Großkopf E, Sandermann H Jr, et al (1994b) Induction of pathogen defence genes in parsley (Petroselinum crispum L.) plants by ozone. Proc R Soc Edinburgh 102B: 63–74

    Google Scholar 

  • Eckey-Kaltenbach H, Kiefer E, Grosskopf E, et al (1997) Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock. Plant Mol Biol 33: 343–350

    Article  PubMed  CAS  Google Scholar 

  • Ernst D, Schraudner M, Langebartels C, et al (1992) Ozone-induced changes of mRNA levels of ß-1,3-glucanase, chitinase and ‘pathogenesis-related’ protein 1b in tobacco plants. Plant Mol Biol 20: 673–682

    Article  PubMed  CAS  Google Scholar 

  • Ernst D, Bodemann A, Schmelzer E, et al (1996) ß-1,3-Glucanase mRNA is locally, but not systemically induced in Nicotiana tabacum L. cv. Bel W3 after ozone fumigation. J Plant Physiol 148: 215–221

    Article  CAS  Google Scholar 

  • Ernst D, Grimmig B, Heidenreich B, et al (1999) Ozone-induced genes: mechanisms and biotechnological applications. In: Smallwood MF, Calvert CM, Bowles DJ (eds) Plant responses to environmental stress. BIOS Scientific Publishers, Oxford, pp 33–41

    Google Scholar 

  • Etscheid M, Buschmann K, Köhler R, et al (1993) Differential screening in a cDNA-library from spruce for clones associated with forest decline reveals accumulation of ribulose- 1,5-bisphosphate carboxylase small subunit mRNA. J Phytopathol 137: 317–343

    Article  CAS  Google Scholar 

  • Etscheid M, Klümper S, Riesner D (1999) Accumulation of a metallothionein-like mRNA in Norway spruce under environmental stress. J Phytopathol 147: 207–213

    Article  CAS  Google Scholar 

  • Galliano H, Cabané M, Eckerskorn C, et al (1993) Molecular cloning, sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol Biol 23: 145–156

    Article  PubMed  CAS  Google Scholar 

  • Glick RE, Schlagnhaufer CD, Arteca RN, et al (1995) Ozone-induced ethylene emission accelerates the loss of ribulose-1,5-bisphophate carboxylase/oxygenase and nuclear- encoded mRNAs in senescing potato leaves. Plant Physiol 109: 891–898

    PubMed  CAS  Google Scholar 

  • Grimmig B, Schubert R, Fischer R, et al (1997) Ozone- and ethylene-induced regulation of a grapevine resveratrol synthase promoter in transgenic tobacco. Acta Physiol Plant 19: 467–474

    Article  CAS  Google Scholar 

  • Großkopf E, Wegener-Strake A, Sandermann H Jr, et al (1994) Ozone-induced metabolic changes in Scots pine: mRNA isolation and analysis of in vitro translated proteins. Can J For Res 24: 2030–2033

    Article  Google Scholar 

  • Hérouart D, Bowler C, Willekens H, et al (1993) Genetic engineering of oxidative stress resistance in higher plants. Philos Trans R Soc Lond B 342: 235–240

    Google Scholar 

  • Himelblau E, Mira H, Lin S-J, et al (1998) Identification of a functional homolog of the yeast copper homeostasis gent ATX1 from Arabidopsis. Plant Physiol 117: 1227–1234

    Article  PubMed  CAS  Google Scholar 

  • Kangasjärvi J, Talvinen J, Utriainen M, et al (1994) Plant defence systems induced by ozone. Plant Cell Environ 17: 783–794

    Article  Google Scholar 

  • Karpinski S, Wingsle G, Karpinska B, et al (1992) Differential expression of CuZn- superoxide dismutases in Pinus sylvestris needles exposed to SO2 and NO2. Physiol Plant 85: 689–696

    Article  CAS  Google Scholar 

  • Kiiskinen M, Korhonen M, Kangasjärvi J (1997) Isolation and characterization of cDNA for a plant mitochondrial phosphate translocator (Mpt1): ozone stress induces Mpt1 mRNA accumulation in birch (Betula pendula Roth). Plant Mol Biol 35: 271–279

    Article  PubMed  CAS  Google Scholar 

  • Kim K-Y, Huh G-H, Lee H-S, et al (1999) Molecular characterization of cDNAs for two anionic peroxidases from suspension cultures of sweet potato. Mol Gen Genet 261: 941–947

    Article  PubMed  CAS  Google Scholar 

  • Kirtikara K, Talbot D (1996) Alteration in protein accumulation, gene expression and ascorbate-glutathione pathway in tomato (Lyeopersicon esculentum) under paraquat and ozone stress. J Plant Physiol 148: 752–760

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Monde R-A, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118: 637–650

    Article  PubMed  CAS  Google Scholar 

  • Koch JR, Scherzer AJ, Eshita SM, et al (1998) Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation. Plant Physiol 118: 1243–1252

    Article  CAS  Google Scholar 

  • Köster S, Beuther E, Riesner D (1988) Small RNAs originating from symptomless and damaged spruces (Picea abies L., Karst.) II. Investigation of different trees from two differently exposed forest sections in the Hils area. J Phytopathol 121: 303–312

    Article  Google Scholar 

  • Kubo A, Saji H, Tanaka K, et al (1995) Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Mol Biol 29: 479–489

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Jo J, Son D (1998) Molecular cloning and characterization of the gene encoding glutathione reductase in Brassica campestris. Biochim Biophys Acta 1395: 309–314

    PubMed  CAS  Google Scholar 

  • Maccarrone M, Veldink GA, Vliegenthart JFG (1992) Thermal injury and ozone stress affect soybean lipoxygenases expression. FEBS Lett 309: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M, Veldink GA, Vliegenthart JFG, et al (1997) Ozone stress modulates amine oxidase and lipoxygenase expression in lentil (Lens culinaris) seedlings. FEBS Lett 408: 241–244

    Article  PubMed  CAS  Google Scholar 

  • Madamanchi NR, Donahue JL, Cramer CL, et al (1994) Differential response of Cu,Zu superoxide dismutases in two pea cultivars during a short-term exposure to sulfur dioxide. Plant Mol Biol 26: 95–103

    Article  PubMed  CAS  Google Scholar 

  • Miller JD, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol 120: 1015–1023

    Article  PubMed  CAS  Google Scholar 

  • No E-G, Flagler RB, Swize MA, et al (1997) cDNAs induced by ozone from Atriplex canescens (saltbush) and their response to sulfur dioxide and water-deficit. Physiol Plant 100: 137–146

    Article  CAS  Google Scholar 

  • Ohki T, Matsui H, Nagasaka A, et al (1999) Induction by ozone of ethylene production and an ACC oxidase cDNA in rice (Oryza sativa L.) leaves. Plant Growth Regul 28: 123–127

    Article  CAS  Google Scholar 

  • Okpodu CM, Alscher RG, Grabau EA, et al (1996) Physiological, biochemical and molecular effects of sulfur dioxide. J Plant Physiol 148: 309–316

    Article  CAS  Google Scholar 

  • Örvar BL, McPherson J, Ellis BE (1997) Pre-activating wounding response in tobacco prior to high-level ozone exposure prevents necrotic injury. Plant J 11: 203–212

    Article  PubMed  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, et al (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12: 1849–1862

    Article  PubMed  CAS  Google Scholar 

  • Pääkkönen E, Seppänen S, Holopainen T, et al (1998) Induction of genes for the stress proteins PR-10 and PAL in relation to growth, visible injuries and stomatal conductance in birch (Betula pendula) clones exposed to ozone and/or drought. New Phytol 138: 295–305

    Article  Google Scholar 

  • Pell EJ, Eckardt NA, Glick RE (1994) Biochemical and molecular basis for impairment of photosynthetic potential. Photosynth Res 39: 453–462

    Article  CAS  Google Scholar 

  • Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol Plant 100: 264–273

    Article  CAS  Google Scholar 

  • Pino ME, Mudd JB, Bailey-Serres J (1995) Ozone-induced alterations in the accumulation of newly synthesized proteins in leaves of maize. Plant Physiol 108: 777–785

    PubMed  CAS  Google Scholar 

  • Ramsay G (1998) DNA chips: state-of-the art. Nature Biotechnology 16: 40–44

    Article  PubMed  CAS  Google Scholar 

  • Ranieri A, Tognini M, Tozzi C, et al (1997) Changes in the thylakoid protein pattern in sunflower plants as a result of ozone fumigation. J Plant Physiol 151: 227–234

    CAS  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17: 603–614

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1995) Differential response of photosynthetic pigments, rubisco activity and rubisco protein of Arabidopsis thaliana exposed to UVB and ozone. Photochem Photobiol 62: 727–735

    Article  CAS  Google Scholar 

  • Rao MV, Lee H, Creelman RA, et al (2000) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12: 1633–1646

    Article  PubMed  CAS  Google Scholar 

  • Reddy GN, Arteca RN, Dai Y-R, et al (1993) Changes in ethylene and polyamines in relation to mRNA levels of the large and small subunits of ribulose bisphosphate carboxylase/oxygenase in ozone-stressed potato foliage. Plant Cell Environ 16: 819–826

    Article  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, et al (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116: 409–418

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H Jr (1996) Ozone and plant health. Annu Rev Phytopathol 34: 347–366

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H Jr (2000) Ozone/biotic disease interactions: molecular biomarkers as a new experimental tool. Environ Pollut 108: 327–332

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H Jr, Ernst D, Heller W, et al (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3: 47–50

    Article  Google Scholar 

  • Sävenstrand H, Brosché M, Ängehagen M, et al (2000) Molecular markers for ozone stress isolated by suppression subtractive hybridization: specificity of gene expression and identification of a novel stress-regulated gene. Plant Cell Environ 23: 689–700

    Article  Google Scholar 

  • Schlagnhaufer CD, Glick RE, Arteca RN, et al (1995) Molecular cloning of an ozone- induced 1-aminocyclopropane-l-carboxylate synthase cDNA and its relationship with a loss of rbcS in potato (Solanum tuberosum L.) plants. Plant Mol Biol 28: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Schlagnhaufer CD, Arteca RN, Pell EJ (1997) Sequential expression of two 1- aminocyclopropane-l-carboxylate synthase genes in response to biotic and abiotic stresses in potato (Solanum tuberosum L.) leaves. Plant Mol Biol 35: 683–688

    Article  PubMed  CAS  Google Scholar 

  • Schmitt R, Sandermann H Jr (1990) Biochemical response of Norway spruce (Picea abies (L.) Karst.) towards 14-month exposure to ozone and acid mist: Part II—effects on protein biosynthesis. Environ Pollut 64: 367–373

    Article  PubMed  CAS  Google Scholar 

  • Schneiderbauer A, Back E, Sandermann H Jr, et al (1995) Ozone induction of extension mRNA in Scots pine, Norway spruce and European beech. New Phytol 130: 225–230

    Article  CAS  Google Scholar 

  • Schraudner M, Ernst D, Langebartels C, et al (1992) Biochemical plant responses to ozone III. Activation of the defense-related proteins ß-1,3-glucanase and chitinase in tobacco leaves. Plant Physiol 99: 1321–1328

    Article  PubMed  CAS  Google Scholar 

  • Schraudner M, Langebartels C, Sandermann H Jr (1996) Plant defence systems and ozone. Biochem Soc Trans 24: 456–461

    PubMed  CAS  Google Scholar 

  • Schraudner M, Langebartels C, Sandermann H (1997) Changes in the biochemical status of plant cells induced by the environmental pollutant ozone. Physiol Plant 100: 274–280

    Article  CAS  Google Scholar 

  • Schraudner M, Moeder W, Wiese C, et al (1998) Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J 16: 235–245

    Article  CAS  Google Scholar 

  • Schubert R, Fischer R, Hain R, et al (1997) An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol Biol 34: 417–426

    Article  PubMed  CAS  Google Scholar 

  • Sharma YK, Davis KR (1994) Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiol 105: 1089–1096

    PubMed  CAS  Google Scholar 

  • Sharma YK, Davis KR (1995) Isolation of a novel Arabidopsis ozone-induced cDNA by differential display. Plant Mol Biol 29: 91–98

    Article  PubMed  CAS  Google Scholar 

  • Sharma YK, Davis KR (1997) The effects of ozone on antioxidant responses in plants. Free Radical Biol Med 23: 480–488

    Article  CAS  Google Scholar 

  • Sharma YK, León J, Raskin I, et al (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci USA 93: 5099–5104

    Article  PubMed  CAS  Google Scholar 

  • Solecka D (1997) Role of phenylpropanoid compounds in plant responses to defferent stress factors. Acta Physiol Plant 19: 257–268

    Article  CAS  Google Scholar 

  • Torsethaugen G, Pitcher LH, Zilinskas BA, et al (1997) Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol 114: 529–537

    PubMed  CAS  Google Scholar 

  • Tuomainen J, Pellinen R, Roy S, et al (1996). Ozone affects birch (Betula pendula Roth) phenylpropanoid, polyamine and active oxygen detoxifying pathways at biochemical and gene expression level. J Plant Physiol 148: 179–188

    Article  CAS  Google Scholar 

  • Tuomainen J, Betz C, Kangasjarvi J, et al (1997) Ozone induction of ethylene emission in tomato plants: regulation by differential accumulation of transcripts for the biosynthetic enzymes. Plant J 12: 1151–1162

    Article  CAS  Google Scholar 

  • Vahala J, Schlagnhaufer CD, Pell EJ (1998) Induction of an ACC synthase cDNA by ozone in light-grown Arabidopsis thaliana leaves. Physiol Plant 103: 45–50

    Article  CAS  Google Scholar 

  • Van Breusegem F, Slooten L, Stassart J-M, et al (1999) Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol 40: 515–523

    PubMed  Google Scholar 

  • Wegener A, Gimbel W, Werner T, et al (1997a) Molecular cloning of ozone-inducible protein from Pinus sylvestris L. with high sequence similarity to vertebrate 3-hydroxy-3- methylglutaryl-CoA-synthase. Biochim Biophys Acta 1350: 247–252

    PubMed  CAS  Google Scholar 

  • Wegener A, Gimbel W, Werner T, et al (1997b) Sequence analysis and ozone-induced accumulation of polyubiquitin mRNA in Pinus sylvestris. Can J For Res 27: 945–948

    Article  CAS  Google Scholar 

  • Wiese CB, Pell EJ (1997) Influence of ozone on transgenic tobacco plants expressing reduced quantities of Rubisco. Plant Cell Environ 20: 1283–1291

    Article  CAS  Google Scholar 

  • Willekens H, Van Camp W, Van Montagu M, et al (1994) Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiol 106: 1007–1014

    PubMed  CAS  Google Scholar 

  • Yunus M, Iqbal M (eds) (1996) Plant response to air pollution. Wiley, Chichester

    Google Scholar 

  • Zinser C, Ernst D, Sandermann H Jr (1998) Induction of stilbene synthase and cinnamyl alcohol dehydrogenase mRNAs in Scots pine (Pinus sylvestris L.) seedlings. Planta 204: 169–176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer -Verlag Tokyo

About this chapter

Cite this chapter

Kubo, A. (2002). Effects of Air Pollutants on Gene Expression in Plants. In: Omasa, K., Saji, H., Youssefian, S., Kondo, N. (eds) Air Pollution and Plant Biotechnology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68388-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68388-9_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68390-2

  • Online ISBN: 978-4-431-68388-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics