Skip to main content

Regulation of Innervation-Related Properties of Cultured Skeletal Muscle Cells by Transmitter and Co-Transmitters

  • Conference paper
Muscle Relaxants
  • 206 Accesses

Abstract

Long-term interruption of the neuromuscular transmission induces marked changes in properties of skeletal muscle cells. These reversible changes were recognized for the first time in surgically denervated muscle and include the development of supersensitivity to acetylcholine1, the synthesis of extrajunctional nicotinic acetylcholine receptors (nAChRs) of the embryonic type2, depolarization of the membrane potential3 and the appearance of specific Na+- 4 and K+-channels5. Similar changes have been observed after long-term (days) pharmacological interruption of neuromuscular transmission in animals 6,7. Many of the changes in muscle brought about by pharmacological denervation are unfavourable to muscle function and/or influence the sensitivity to muscle relaxants. This has led to the assumption that changed properties of skeletal muscle induced by long-term interruption of neuromuscular transmission contribute to the paralysis syndrome observed in intensive care patients treated for prolonged periods with muscle relaxants8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thesleff, S., 1960, Effects of motor innervation on the chemical sensitivity of skeletal muscle. Physiol. Rev. 40, 734–752

    PubMed  CAS  Google Scholar 

  2. Hartzel, H.O and P.M. Fambrough, 1972, Acetylcholine receptors. Distribution and extrajunctional density in rat diaphragm after denervation correlated with acetylcholine sensitivity. J. Gen. Physiol. 60, 248–262

    Google Scholar 

  3. Axelsson, J. and S. Thesleff, 1959, A study of supersensitivity in denervated mammalian skeletal muscle. J. Physiol. (Lond.) 149, 178–193

    Google Scholar 

  4. Harris, J.B. and S. Thesleff, 1971, Studies on tetrodotoxin resistant action potentials in denervated skeletal muscle. Acta Physiol. Scand. 83, 382–388

    Article  PubMed  CAS  Google Scholar 

  5. Schmid-Antomarchi, H., J.F. Renaud, G. Romey, M. Hugues, A. Schmid and M. Lazdunski, 1985, The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+-channel in mammalian skeletal muscle. Proc. Natl. Acad. Sci. USA 82, 21288–2191

    Article  Google Scholar 

  6. Berg, D.K. and Z. W. Hall, 1975, Increased extrajunctional acetylcholine sensivity produced by chronic post-synaptic neuromuscular blockade. J. Physiol. (Lond.) 244, 659–676

    CAS  Google Scholar 

  7. Chang, C.C., S.T. Chuang, and M.C. Huang, 1975, Effects of chronic treatment with various neuromusculair blocking agents on the number and distribution of acetylcholine receptors in the rat diaphragm. J. Physiol. (Lond.) 250, 161–173

    CAS  Google Scholar 

  8. Agoston S., M. Seyr, K.S. Khuenl-Brady and R.H. Henning, 1993, Neuromuscular blocking agents: use in the ICU. Anesth. Clinics of North America 11, 345–359.

    Google Scholar 

  9. Fischbach, G.D. and Robbins, N., 1971, Effect of chronic disuse of rat soleus neuromuscular junctions on postsynaptic membrane. J. Neurophysiol. 34, 562–569

    PubMed  CAS  Google Scholar 

  10. Eldridge, L., Liebhold, M. and Steinbach, J.H., 1981, Alterations in cat skeletal neuromuscular junctions following prolonged inactivity. J. Physiol. (Lond.) 313, 529–545

    CAS  Google Scholar 

  11. Waud, B.E., Amaki, Y. and Waud, D.R., 1985, Disuse and d-Tubocurarine sensitivity in isolated muscles. Anesth. Analg. 64, 1178–82

    Article  PubMed  CAS  Google Scholar 

  12. Drachman, D.B. and F. Witzke, 1972, Trophic regulation of acetylcholine sensitivity of muscle: effect of electrical stimulation. Science 176, 514–516

    Article  PubMed  CAS  Google Scholar 

  13. Lavoie, P.A., G. Collier and A. Tennenhouse, 1976, Comparison of a-bungarotoxin binding to skeletal muscles after inactivity or denervation. Nature 260, 349–350

    Article  PubMed  CAS  Google Scholar 

  14. Pestronk, A, D.B. Drachman and J.W. Griffin, 1976, Effect of muscle disuse on acetylcholine receptors. Nature 260, 352–353

    Article  PubMed  CAS  Google Scholar 

  15. Mathers, D.A and S. Thesleff, 1978, Studies on neurotrophic regulation of murine skeletal muscle. J. Physiol. (Lond.) 282, 105–114

    CAS  Google Scholar 

  16. Pestronk, A., D.B. Drachman and J.W. Griffin, 1976, Effect of botulinum toxin on throphic regulation of acetylcholine receptors. Nature 264, 787–789

    Article  PubMed  CAS  Google Scholar 

  17. Hogue, C.W., J.M. Ward, M.S. Itani and J. A. J. Martyn, 1992, Tolerance and upregulation of acetylcholine receptors follow chronic infusion of d-tubocurarine. J. Appl. Physiol. 72, 1326–1331.

    PubMed  CAS  Google Scholar 

  18. Fontaine, B. and J. P. Changeux, 1989, Localization of nicotinic acetylcholine receptor a-subunit transcripts during myogenesis and motor end plate development in the chick. J. Cell. Biol. 108, 1025–1037

    Article  PubMed  CAS  Google Scholar 

  19. Martinou, J.C. and J.P. Merlie, 1991, Nerve-dependent modulation of acetylcholine receptor ∈-subunit gene expression. J. Neurosci. 11, 1291–1299

    PubMed  CAS  Google Scholar 

  20. Mishina, M. T. Takai, K. Imoto, M. Noda, T. Takahashi, S. Numa, C. Methfessel and B. Salmann, 1986, Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406–411

    Article  PubMed  CAS  Google Scholar 

  21. Gu, Y and Z.W. Hall, 1988, Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervating rat muscle. Neuron 1, 117–125

    Article  PubMed  CAS  Google Scholar 

  22. Davis, R.L, H. Weintraub and A.B. Lasser, 1987, Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000

    Article  PubMed  CAS  Google Scholar 

  23. Buonanno, A., L. Apone; M.I. Morasso, R. Beers, H.R. Brenner and R. Eftimie, 1992, The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA. Nucl. Acids Res. 20, 539–544

    Article  PubMed  CAS  Google Scholar 

  24. Eftimie, R., H.R. Brenner and A. Buonanno, 1991, Myogenin and Myo D join a family of skeletal muscle genes regulated by electrical activity. Proc. Natl. Acad. Sci. USA 88, 1349–1353

    Article  PubMed  CAS  Google Scholar 

  25. Fischbach, G.D and S.A. Cohen, 1973, The distribution of acetylcholine sensitivity over uninnervated and innervated muscle fibers grown in cell culture. Dev. Biol. 31, 147–162

    Article  PubMed  CAS  Google Scholar 

  26. Klarsfeld, A. and J. P. Changeux, 1985, Activity regulates the level of acetylcholine receptor a-subunit mRNA in cultured chicken myotubes. Proc. Natl. Acad. Sci. USA 82, 4558–4562

    Article  PubMed  CAS  Google Scholar 

  27. Harris, D.A., D.L. Falls, R.M. Dill-Devor and G. D. Fischbach, 1988, Acetylcholine receptor-inducing factor from chicken brain increases the levels of mRNA encoding the receptor a-subunit. Proc. Natl. Acad. Sci. USA 85, 1983–1987

    Article  PubMed  CAS  Google Scholar 

  28. Inestrosa, N.C., J.B. Miller, L. Silberstein, L. Ziskind-Conhaim and Z. W. Hall, 1983, Developmental regulation of 16S acetylcholinesterase and acetylcholine receptors in a mouse muscle cell line. Exp. Cell. Res. 147, 393–405

    Article  PubMed  CAS  Google Scholar 

  29. Shainberg, A. and M. Burnstein, 1976, Decrease of acetylcholine receptor synthesis in muscle cultures by electrical stimulation. Nature 264, 368–369

    Article  PubMed  CAS  Google Scholar 

  30. Pezzementi, L. and J. Smith, 1981, Ryanodine alters the rate of acetylcholine receptor synthesis in chick skeletal muscle cell cultures. J. Biol. Chem. 256, 12651–12654

    PubMed  CAS  Google Scholar 

  31. McManamaa, J.L., J.C. Blosser and S. H. Appel, 1982, Inhibitors of membrane depolarization regulate acetylcholine receptor synthesis by a calcium-dependent, cyclic nucleotide-independent mechanism. Biochem. Biophys. Acta 720, 28–35

    Article  Google Scholar 

  32. Smilowitz, H., E. Smart, C. Bowik and R.J. Chang, 1988, Regulation of the number of a-bungarotoxin binding sites in cultured chick myotubes by a 1,4 dihydropyridine calcium channel antagonist. J. Neurosci. Res. 19, 321–325

    Article  PubMed  CAS  Google Scholar 

  33. Klarsfeld, A., R. Laufer, B. Fontaine, A. Devillers-Thiéry, C. Dubreuil and J.P. Changeux, 1989, Regulation of muscle AChR a subunit gene expression by electrical activity. Involvement of protein kinase C and Ca2+. Neuron 2, 1229–1236

    Article  PubMed  CAS  Google Scholar 

  34. Betz, H. and J.P. Changeux, 1979, Regulation of muscle acetylcholine receptor synthesis in vitro by cyclic nucleotide derivatives. Nature 278, 749–752

    Article  PubMed  CAS  Google Scholar 

  35. Fontaine, B., A. Klarsfeld and J.P. Changeux, 1987, Calcitonine gene-related peptide and muscle activity regulate acetylcholine receptor α-subunit mRNA levels by distinct intracellular pathways. J. Cell. Biol. 105, 1337–1342

    Article  PubMed  CAS  Google Scholar 

  36. Moss, S.J., P.C. Harkness, I.J. Mason, E.A. Bernard and A.W. Mudge, 1991, Evidence that CGRP and cAMP increase transcription of AChR α-subunit gene, but not of other subunits genes. J. Mol. Neurosci 3, 101–108

    Article  PubMed  CAS  Google Scholar 

  37. Green, W.N., A.F. Ross and T. Claudio, 1991, cAMP stimulation of acetylcholine receptor expression is mediated through posttranslational mechanisms. Proc. Natl. Acad. Sci. USA 88, 854–858

    Article  PubMed  CAS  Google Scholar 

  38. Henning, R.H., J. Van den Akker, S.A. Nelemans and A. Den Hertog, 1994, Induction of a distinct population of Na+/K+-pumps by long-term stimulation of nicotinic acetylcholine receptors in C2C12 myotubes. Br. J. Pharmacol. 111, 459–464

    Article  PubMed  CAS  Google Scholar 

  39. Henning, R.H., S.A Nelemans, J. Van den Akker and A. Den Hertog, 1992, The nucleotide receptors on mouse C2C12 myotubes. Br. J. Pharmacol. 106, 853–858

    Article  PubMed  CAS  Google Scholar 

  40. Henning, R.H., M. Duin, S.A. Nelemans and A. Den Hertog, 1993, Characterization of P2-purinoceptor mediated cyclic AMP formation in C2C12 myotubes. Br. J. Pharmacol. 110, 133–138

    Article  PubMed  CAS  Google Scholar 

  41. Henning, R.H., M. Duin, A. Den Hertog and S.A. Nelemans, 1993, Activation of the phospholipase C pathway by ATP is mediated exclusively through the nucleotide type P2-purinoceptor in C2C12 myotubes. Br. J. Pharmacol. 110, 747–752

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Japan

About this paper

Cite this paper

Henning, R.H. (1995). Regulation of Innervation-Related Properties of Cultured Skeletal Muscle Cells by Transmitter and Co-Transmitters. In: Fukushima, K., Ochiai, R. (eds) Muscle Relaxants. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66896-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66896-1_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66898-5

  • Online ISBN: 978-4-431-66896-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics