Skip to main content
  • 1294 Accesses

Abstract

The transdermal drug delivery system (TDDS) has several advantages including the avoidance of the hepatic first-pass effect of drugs, long-acting sustained release of drugs, improved patient compliance, and painless administration. However, traditional TDDS has a limitation for the molecular size of drugs (<500 Da). Thus, TDDS formulations are not suitable for administration of high molecular hydrophilic drugs, such as proteins and vaccines. To overcome this problem, physicochemical methods, such as electroporation, microneedle, and needle-free injection (NFI), are becoming popular to increase skin permeation of mal-absorptive drugs. Among these techniques, NFIs have been investigated as an administration device not only for high molecular weight compounds like insulin and human-growth hormone, but also for vaccine and gene delivery. Currently biotechnology-derived medications are the leading edge of medical treatment and many biopharmaceuticals have dominated the top 10 used agents in the global market. In the near feature, development of self-administered injectable biopharmaceuticals associated with NFI or a combination of NFI and new transdermal drug innovative technologies will be needed to be able to incorporate and used into normal routines within patients’ homes and work places.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imoto J-I, Konishi E (2005) Needle-free jet injection of a mixture of Japanese encephalitis DNA and protein vaccines: a strategy to effectively enhance immunogenicity of the DNA vaccine in a murine model. Viral Immunol 18:205–212

    Article  CAS  PubMed  Google Scholar 

  2. Jackson LA, Austin G, Chen RT et al (2001) Safety and immunogenicity of varying dosages of trivalent inactivated influenza vaccine administered by needle-free jet injectors. Vaccine 19:4703–4709

    Article  CAS  PubMed  Google Scholar 

  3. Agerso H, Moller-Pedersen J, Cappi S et al (2002) Pharmacokinetics and pharmacodynamics of a new formulation of recombinant human growth hormone administered by ZomaJet 2 vision, a new needle-free device, compared to subcutaneous administration using a conventional syringe. J Clin Pharmacol 42:1262–1268

    Article  CAS  PubMed  Google Scholar 

  4. Jovanovic-Peterson L, Palmer JP, Sparks S, Peterson CM (1993) Jet-injected insulin is associated with decreased antibody production and postprandial glucose variability when compared with needle-injected insulin in gestational diabetic women. Diabetes Care 16:1479–1484

    Article  CAS  PubMed  Google Scholar 

  5. Theintz GE, Sizonenko PC (1991) Risks of jet injection of insulin in children. Eur J Pediatr 150:554–556

    Article  CAS  PubMed  Google Scholar 

  6. Inoue N, Kobayashi D, Kimura M et al (1996) Fundamental investigation of a novel drug delivery system, a transdermal delivery system with jet injection. Int J Pharm 137:75–84

    Article  CAS  Google Scholar 

  7. Schramm-Baxter J, Mitragotri S (2004) Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power. J Control Release 97:527–535

    Article  CAS  PubMed  Google Scholar 

  8. http://www.ihealthnet.com/products/biojector-2000/

  9. http://www.meditrend.com.au/zeta.html#hide2

  10. http://www.antarespharma.com/portfolio-and-products/drugs/zoma-jet-needle-free-auto-injector

  11. http://www.sumaveldosepro.com/AboutSumavel

  12. http://pharmajet.com/fda-approved-needleless-flu-shot/

  13. http://www.insujet.com

  14. http://www.dantonioconsultants.com/prod_ji_human.htm

  15. http://injexuk.com/about-injex/

  16. http://www.penjet.com

  17. http://jtip.com/product_overview.html

  18. Arora A, Hakim I, Baxter J et al (2007) Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc Natl Acad Sci U S A 104:4255–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stachowiak JC, Li TH, Arora A et al (2009) Dynamic control of needle-free jet injection. J Control Release 135:104–112

    Article  CAS  PubMed  Google Scholar 

  20. Stachowiak JC, von Muhlen MG, Li TH et al (2007) Piezoelectric control of needle-free transdermal drug delivery. J Control Release 124:88–97

    Article  CAS  PubMed  Google Scholar 

  21. Bos JD, Meinardi MMHM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9:1–5

    Article  Google Scholar 

  22. Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587

    Article  CAS  PubMed  Google Scholar 

  23. Tokudome Y, Sugibayashi K (2004) Mechanism of the synergic effects of calcium chloride and electroporation on the in vitro enhanced skin permeation of drugs. J Control Release 95:267–274

    Article  CAS  PubMed  Google Scholar 

  24. Baxter J, Mitragotri S (2005) Jet-induced skin puncture and its impact on needle-free jet injections: experimental studies and a predictive model. J Control Release 106:361–373

    Article  CAS  PubMed  Google Scholar 

  25. Schramm J, Mitragotri S (2002) Transdermal drug delivery by jet injectors: energetics of jet formation and penetration. Pharm Res 19:1673–1679

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida D, Todo H, Hasegawa T, Sugibayashi K (2008) Effect of molecular weight on the dermatopharmacokinetics and systemic disposition of drugs after intracutaneous injection. Eur J Pharm Sci 35:5–11

    Article  CAS  PubMed  Google Scholar 

  27. Yoshida D, Todo H, Hasegawa T, Sugibayashi K (2008) Effect of vasoactive agents on the dermatopharmacokinetics and systemic disposition of model compounds, salicylate and FITC-dextran 4 kDa, following intracutaneous injection of the compounds. Int J Pharm 356:181–186

    Article  CAS  PubMed  Google Scholar 

  28. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36

    Article  CAS  Google Scholar 

  29. Higuchi WI (1962) Analysis of data on the medicament release from ointments. J Pharm Sci 51:802–804

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida D, Todo H, Hasegawa T, Sugibayashi K (2007) Dermatopharmacokinetics of salicylate following topical injection in rats: effect of osmotic pressure and injection volume on salicylate disposition. Int J Pharm 337:142–147

    Google Scholar 

  31. Anderson DM, Shelley S, Crick N, Buraglio M (2002) No effect of the novel antidiabetic agent nateglinide on the pharmacokinetics and anticoagulant properties of warfarin in healthy volunteers. J Clin Pharmacol 42:1358–1365

    Article  CAS  PubMed  Google Scholar 

  32. Simon JK, Carter M, Pasetti MF et al (2011) Safety, tolerability, and immunogenicity of inactivated trivalent seasonal influenza vaccine administered with a needle-free disposable-syringe jet injector. Vaccine 29:9544–9550

    Article  PubMed  Google Scholar 

  33. McAllister L, Anderson J, Werth K et al (2014) Needle-free jet injection for administration of influenza vaccine: a randomised non-inferiority trial. Lancet 384:674–681

    Article  PubMed  Google Scholar 

  34. Grosenbaugh DA, Leard T, Pardo MC et al (2004) Comparison of the safety and efficacy of a recombinant feline leukemia virus (FeLV) vaccine delivered transdermally and an inactivated FeLV vaccine delivered subcutaneously. Vet Ther 5:258–262

    CAS  PubMed  Google Scholar 

  35. Jones GF, Rapp-Gabrielson V, Wilke R et al (2005) Intradermal vaccination for mycoplasma hyopneumoniae. J Swine Health Prod 13:19–27

    Google Scholar 

  36. Williams J, Fox-Leyva L, Christensen C et al (2000) Hepatitis a vaccine administration: comparison between jet-injector and needle injection. Vaccine 18:1939–1943

    Article  CAS  PubMed  Google Scholar 

  37. Pehling GB, Gerich JE (1984) Comparison of plasma insulin profiles after subcutaneous administration of insulin by jet spray and conventional needle injection in patients with insulin-dependent diabetes mellitus. Mayo Clin Proc 59:751–754

    Article  CAS  PubMed  Google Scholar 

  38. Kerum G, Profozić V, Granić M et al (1987) Blood glucose and free insulin levels after the administration of insulin by conventional syringe or jet injector in insulin treated type 2 diabetics. Horm Metab Res 19:422–425

    Article  CAS  PubMed  Google Scholar 

  39. Verhagen A, Ebels JT, Jonkman JHG, Dogterom AA (1995) Pharmacokinetics and pharmacodynamics of a single dose of recombinant human growth hormone after subcutaneous administration by jet-injection: comparison with conventional needle-injection. Eur J Clin Pharmacol 49:69–72

    Article  CAS  PubMed  Google Scholar 

  40. Brearley C, Priestley A, Leighton-Scott J, Christen M (2007) Pharmacokinetics of recombinant human growth hormone administered by cool.Click 2, a new needle-free device, compared with subcutaneous administration using a conventional syringe and needle. BMC Clin Pharmacol 7:1–7

    Article  Google Scholar 

  41. Engwerda EEC, Abbink EJ, Tack CJ, De Galan BE (2011) Improved pharmacokinetic and pharmacodynamic profile of rapid-acting insulin using needle-free jet injection technology. Diabetes Care 34:1804–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Walter JR, Xu S (2015) Therapeutic transdermal drug innovation from 2000 to 2014: current status and outlook. Drug Discov Today 20:1293–1299

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Todo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Todo, H. (2017). Drug Delivery to Skin by Needle-Free Injector. In: Sugibayashi, K. (eds) Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56526-0_16

Download citation

Publish with us

Policies and ethics