Skip to main content

Working Memory Functions of the Prefrontal Cortex

  • Chapter
  • First Online:
The Prefrontal Cortex as an Executive, Emotional, and Social Brain

Abstract

The prefrontal cortex (PFC) plays an important role in many behaviors, including in situations in which actions must be guided by information that is not currently accessible in the environment. Although the construct of “working memory” is often invoked in association with the PFC, imprecise or erroneous specification of which computations relate to which aspect of anatomy or physiology has been the basis of many erroneous ideas about the functional organization of the PFC. Indeed, the manner in which working memory has been related to the PFC over the past 75 years offers several cautionary tales about the difficulty of relating brain function to behavior. This proposition is supported by consideration of data from lesions and physiological measurements from human and nonhuman primates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The clarity and prescience with which Pribram et al. (1964) relate this line of reasoning and, more generally, with which they advocate an approach of “simulation … with the use of computers” is remarkable. Although the edited volume in which their chapter appeared is no longer in print, at the time of this writing, a digitized copy was downloadable from http://www.karlpribram.com/wp-content/uploads/pdf/D-049.pdf

  2. 2.

    Although there are compelling reasons to classify the frontal eye fields as “prefrontal” from the standpoint of the evolution of neural systems (Passingham and Wise 2012), this author nonetheless finds it obfuscating when physiological studies that are limited to the frontal eye fields are labeled as studies of “prefrontal cortex.” The fact is that the properties described in these reports would almost surely not be observed in circuits in the vicinity of the principal sulcus.

References

  • Anderson JR (1983) The architecture of cognition. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Baddeley AD (1986) Working memory. Oxford University Press, London

    Google Scholar 

  • Baddeley AD, Hitch GJ (1974) Working memory. In: Bower GH (ed) The psychology of learning and motivation, vol 8. Academic, New York, pp 47–89

    Google Scholar 

  • Barak O, Tsodyks M (2014) Working models of working memory. Curr Opin Neurobiol 25:20–24

    Article  CAS  PubMed  Google Scholar 

  • Becker JT, Morris RG (1999) Working memory(s). Brain Cogn 41:1–8

    Article  CAS  PubMed  Google Scholar 

  • Chao LL, Knight RT (1995) Human prefrontal lesions increase distractibility to irrelevant sensory inputs. Neuro Rep 6:1605–1610

    CAS  Google Scholar 

  • Chao L, Knight R (1998) Contribution of human prefrontal cortex to delay performance. J Cogn Neurosci 10:167–177

    Article  CAS  PubMed  Google Scholar 

  • Cowan N (1995) Attention and memory: an integrated framework. Oxford University Press, New York

    Google Scholar 

  • Cowan N (1988) Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychol Bull 104:163–171

    Article  CAS  PubMed  Google Scholar 

  • Curtis CE, Lee D (2010) Beyond working memory: the role of persistent activity in decision making. Trends Cogn Sci 14:216–222

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378:279–281

    Article  PubMed  Google Scholar 

  • D’Esposito M, Postle BR (2015) The cognitive neuroscience of working memory. Annu Rev Psychol 66:115–142

    Article  PubMed  Google Scholar 

  • Desrochers TM, Burk DC, Badre D, Sheinberg DL (2015) The monitoring and control of task sequences in human and non-human primates. Front Syst Neurosci 9:185

    PubMed  Google Scholar 

  • Emrich SM, Riggall AC, Larocque JJ, Postle BR (2013) Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory. J Neurosci 33(15):6516–6523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feredoes E, Postle BR (2010) Prefrontal control of familiarity and recollection in working memory. J Cogn Neurosci 22:323–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Feredoes E, Tononi G, Postle BR (2006) Direct evidence for a prefrontal contribution to the control of proactive interference in verbal working memory. Proc Natl Acad Sci U S A 103:19530–19534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feredoes E, Tononi G, Postle BR (2007) The neural bases of the short-term storage of verbal information are anatomically variable across individuals. J Neurosci 27:11003–11008

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce C, Goldman-Rakic P (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 13:1479–1497

    CAS  PubMed  Google Scholar 

  • Fuster JM (2016) Fragmented LFPs and NIRS. J Cogn Neurosci 13:1479–1497

    Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of the prefrontal cortex and the regulation of behavior by representational memory. In: Mountcastle VB, Plum F, Geiger SR (eds) Handbook of neurobiology. American Physiological Society, Bethesda, pp 373–417

    Google Scholar 

  • Goldman-Rakic PS (1990) Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. In: Uylings HBM, Eden CGV, DeBruin JPC, Corner MA, Feenstra MGP (eds) Progress in brain research. Elsevier Science Publishers, Amsterdam 85, pp 325–336

    Google Scholar 

  • Hamidi M, Tononi G, Postle BR (2008) Evaluating frontal and parietal contributions to spatial working memory with repetitive transcranial magnetic stimulation. Brain Res 1230:202–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamidi M, Tononi G, Postle BR (2009) Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation. Neuropsychologia 47:295–302

    Article  PubMed  Google Scholar 

  • Hayden BY, Gallant JL (2013) Working memory and decision processes in visual area V4. Front Neurosci 7:18. doi:10.3389/fnins.2013.00018

    Article  PubMed  PubMed Central  Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  • Hyde RA, Strowbridge BW (2012) Mnemonic representations of transient stimuli and temporal sequendes in teh rodent hippocampus in vitro. Nat Neurosci 15:1430–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara AH, Wallis JD (2014) Executive control processes underlying multi-item working memory. Nat Neurosci 17:876–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara AH, Wallis JD (2015) The role of prefrontal cortex in working memory: a mini review. Front Syst Neurosci 9:173

    Article  PubMed  PubMed Central  Google Scholar 

  • LaRocque JJ, Lewis-Peacock JA, Postle BR (2014) Multiple neural states of representation in shortterm memory? It’s a matter of attention. Front Hum Neurosci 8. doi:10.3389/fnhum.2014.00005

  • Lee SH, Baker CI (2015) Multi-voxel decoding and the topography of maintained information during visual working memory. Front Syst Neurosci. doi:10.3389/fnsys.2016.00002

    Google Scholar 

  • Lee SH, Kravitz DJ, Baker CI (2013) Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nat Neurosci 16(8):997–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis-Peacock JA, Drysdale AT, Oberauer K, Postle BR (2012) Neural evidence for a distinction between short-term memory and the focus of attention. J Cogn Neurosci 24:61–79

    Article  PubMed  Google Scholar 

  • Lewis-Peacock JA, Drysdale A, Postle BR (2015) Neural evidence for the flexible control of mental representations. Cereb Cortex 25:3303–3313

    Article  PubMed  Google Scholar 

  • Mackey W, Devinsky O, Doyle W, Meager M, Curtis CE (2016) Human dorsolateral prefrontal cortex is not necessary for spatial working memory. J Neurosci 36:2847–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malmo RB (1942) Interference factors in delayed response in monkey after removal of the frontal lobes. J Neurophysiol 5:295–308

    Google Scholar 

  • Mendoza D, Torres S, Martinez-Trujillo J (2014) Sharp emergence of feature-selective sustained activity along the dorsal visual pathway. Nat Neurosci 17:1255–1262

    Article  Google Scholar 

  • Meyers EM, Qi XL, Constantinidis C (2012) Incorporation of new information into prefrontal cortical activity after learning working memory tasks. Proc Natl Acad Sci U S A 109:4651–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller GA, Galanter E, Pribram KH (1960) Plans and the structure of behavior. Henry Holt and Company, New York

    Book  Google Scholar 

  • Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working memory. Science 319:1543–1546

    Article  CAS  PubMed  Google Scholar 

  • Norman DA, Shallice T (1980) Attention to action: willed and automatic control of behavior. University of California, San Diego

    Google Scholar 

  • Oberauer K (2013) The focus of attention in working memory – from metaphors to mechanisms. Front Hum Neurosci 7:673. doi:10.3389/fnhum.2013.00673

    Article  PubMed  PubMed Central  Google Scholar 

  • Olton DS, Becker JT, Handelmann GE (1979) Hippocampus, space, and memory. Behav Brain Sci 2:313–365

    Article  Google Scholar 

  • Passingham RE, Wise SP (2012) The neurobiology of the prefrontal cortex. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Pasternak T, Lui LL, Spinelli PM (2015) Unilateral prefrontal lesions impair memory-guided comparison. J Neurosci 35:7095–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postle BR (2005) Delay-period activity in prefrontal cortex: one function is sensory gating. J Cogn Neurosci 17:1679–1690

    Article  PubMed  PubMed Central  Google Scholar 

  • Postle BR (2006) Working memory as an emergent property of the mind and brain. Neuroscience 139:23–38

    Article  CAS  PubMed  Google Scholar 

  • Postle BR (2015a) The cognitive neuroscience of visual short-term memory. Curr Opin Behav Sci 1:40–46. doi:10.1016/j.cobeha.2014.1008.1004

    Article  PubMed  PubMed Central  Google Scholar 

  • Postle BR (2015b) Essentials of cognitive neurocience. Wiley, Chichester

    Google Scholar 

  • Postle BR (2015c) Neural bases of the short-term retention of visual information. In: Jolicoeur P, LeFebvre C, Martinez-Trujillo J (eds) Mechanisms of sensory working memory: attention & performance, XXV edn. Academic Press, London, pp 43–58

    Chapter  Google Scholar 

  • Postle BR (2016) The hippocampus, memory, and consciousness. In: Laureys S, Gosseries O, Tononi G (eds) Neurology of consciousness, 2nd edn. Elsevier, Amsterdam, pp 349–363

    Chapter  Google Scholar 

  • Postle BR, Ferrarelli F, Hamidi M, Feredoes E, Massimini M, Peterson MJ, Alexander A, Tononi G (2006) Repetitive transcranial magnetic stimulation dissociates working memory manipulation from retention functions in prefrontal, but not posterior parietal, cortex. J Cogn Neurosci 18:1712–1722

    Article  PubMed  Google Scholar 

  • Pribram KH, Ahumada A, Hartog J, Roos L (1964) A progress report on the neurological processes disturbed by frontal lesions in primates. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill Book Company, New York, pp 28–55

    Google Scholar 

  • Riggall AC, Postle BR (2012) The relationship between working memory storage and elevated activity as measured with funtional magnetic resonance imaging. J Neurosci 32:12990–12998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreenivasan KK, Curtis CE, D’Esposito M (2014) Revisiting the role of persistent neural activity in working memory. Trends Cogn Sci 18:82–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Stokes MG (2015) ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn Sci 19:394–405

    Article  PubMed  PubMed Central  Google Scholar 

  • Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J (2013) Dynamic coding for cognitive control in prefrontal cortex. Neuron 78(2):364–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strowbridge (2012). “get it.” get it get it: get it.

    Google Scholar 

  • Sugase-Miyamoto Y, Liu Z, Wiener MC, Optican LM, Richmond BJ (2008) Short-term memory trace in rapidly adapting synapses of inferior temporal cortex. PLoS Comput Biol 4(5):e1000073

    Article  PubMed  PubMed Central  Google Scholar 

  • Teuber H-L (1964) The riddle of frontal lobe function in man. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw Hill, New York, pp 410–444

    Google Scholar 

  • Tsujimoto S, Postle BR (2012) The prefrontal cortex and delay tasks: a reconsideration of the “mnemonic scotoma”. J Cogn Neurosci 24:627–635

    Article  PubMed  Google Scholar 

  • Wimmer K, Ramon M, Pasternak T, Compte A (2016) Transitions between multiband oscillatory patterns characterize memory-guided perceptual decisions in prefrontal circuits. J Neurosci 36:489–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe, J. M. and M. G. Stokes (2015). Reactivation. Frontiers.

    Google Scholar 

  • Zaksas D, Pasternak T (2006) Directional signals in the prefrontal cortex and in area MT during a working memory for visual motion task. J Neurosci 26:11726–11742

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley R. Postle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Postle, B.R. (2017). Working Memory Functions of the Prefrontal Cortex. In: Watanabe, M. (eds) The Prefrontal Cortex as an Executive, Emotional, and Social Brain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56508-6_3

Download citation

Publish with us

Policies and ethics